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This lecture deals with whether Kato’s inequality holds for the magnetic relativistic
Schr\"odinger operator $H_{A}$ with vector potential $A(x)$ and mass $m\geq 0$ associated with the
classical relativistic Hamiltonian symbol $\sqrt{(\xi-A(x))^{2}+m^{2}}$ such as

${\rm Re}[(sgnu)H_{A}u]\geq\sqrt{-\triangle+m^{2}}|u|$ , (1)

in the distribution sense, for $u$ is in $L^{2}(R^{d})$ with $H_{A}u$ in $L_{1oc}^{1}(R^{d})$ .
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as pseudo-differential operators: for $f\in C_{0}^{\infty}(R^{d})$ ,

$(H_{A}^{(1)}f)(x):= \frac{1}{(2\pi)^{d}}\int\int_{R^{d}\cross R^{d}}e^{i(x-y)\cdot\xi}\sqrt{(\xi-A(\frac{x+y}{2}))^{2}+m^{2}}f(y)dyd\xi$ , (2)

$(H_{A}^{(2)}f)(x):= \frac{1}{(2\pi)^{d}}\int\int_{R^{d}xR^{d}}e^{i(x-y)\cdot\xi}\sqrt{(\xi-\int_{0}^{1}A((1-\theta)x+\theta y)d\theta)^{2}+m^{2}}f(y)dyd\xi.$ (3)

The third $H_{A}^{(3)}$ is defined as the square root of the nonnegative selfadjoint (nonrelativistic
Schr\"odinger) operator $(-i\nabla-A(x))^{2}+m^{2}$ in $L^{2}(R^{d})$ :

$H_{A}^{(3)}:=\sqrt{(-i\nabla-A(x))^{2}+m^{2}}$ . (4)

$H_{A}^{(1)}$ is the so-called Weyl pseudo-differential operator ([ITa 86], [I89]). $H_{A}^{(2)}$ is a modification
of $H_{A}^{(1)}$ given in $[$IfMP 0$7]$ , and $H_{A}^{(3)}$ used in [LSei 10] to discuss relativistic stability of matter.

All these three operators are nonlocal operators, and, under suitable condtion on $A(x)$ ,
become selfadjoint. For $A=0$ we put $H_{0}=\sqrt{-\triangle+m^{2}}$ , where $-\triangle$ is the minus-signed
Laplacian in $R^{d}.$ $H_{A}^{(2)}$ and $H_{A}^{(3)}$ are gauge-covariant, but not $H_{A}^{(1)}.$

Inequality (1) for $H_{A}^{(1)}$ has been shown in [I89], [ITs76], and similarly will be for $H_{A}^{(2)}.$

For $H_{A}^{(3)}$ , we assume that $d\geq 2$ , as in case $d=1$ any magnetic vector potential can be
removed by a gauge tranformation. We want to show

Theorem 1 (Kato’s inequality). Let $m\geq 0$ and assume that $A\in[L_{1oc}^{2}(R^{d})]^{d}$ . Then if $u$ is
in $L^{2}(R^{d})$ with $H_{A}^{(3)}ze$ in $L_{1oc}^{1}(R^{d})$ , then the distributional inequality holds:

${\rm Re}[(sgnu)H_{A}^{(3)}u]\geq\sqrt{-\Delta+m^{2}}|u|$ , (5)
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$or$

${\rm Re}[(sgnu)H_{A}^{(3)}u]\geq[\sqrt{-\triangle+m^{2}}-m]|u|.$

Here (sgn $u$ ) $(x)$ $:=\overline{u(x)}/|u(x)|$ , if $u(x)\neq 0$ ; $=0$ , if $u(x)=0.$

From Theorem 1 follows the following corollary.

(6)

Corollary (Diamagnetic inequality) (cf. [FLSei08], [HILo12, 13]) Let $m\geq 0$ and assume
that $A\in[L_{1oc}^{2}(R^{d})]^{d}$ . Then $f,$ $g\in L^{2}(R^{d})$

$|(f, e^{-t[H_{A}^{(3)}-m]}g)|\leq(|f|, e^{-t[H_{0}-m]}|g|)$ . (7)

Once Theorem 1 is established, we can apply it to show the following theorem on essential
selfadjointness of the relativistic Schr\"odinger operator with both vector and scalar potentials
$A(x)$ and $V(x)$ :

$H:=H_{A}^{(3)}+V$. (8)

Theorem 2. Let $m\geq 0$ and assume that $A\in[L_{1oc}^{2}(R^{d})]^{d}$ . If $V(x)$ is in $L_{1oc}^{2}(R^{d})$ with
$V(x)\geq 0a.e.$ , then $H=H_{A}^{(3)}+V$ is essentially selfadjoint on $C_{0^{\infty}}(R^{d})$ and its unique
sefadjoint extension is bounded below by $m.$

The characteristic feature is that, unlike $H_{A}^{(1)}$ and $H_{A}^{(2)},$ $\dot{H}_{A}^{(3)}$ is, since being defined as
an operator square root (4), neither an integral operator nor a pseudo-differential operator

associated with a certain tractable symbol. $H$
) is, under the condition of the theorem,

essentially selfadjoint on $C_{0^{\infty}}(R^{d})$ so that $H_{A}^{(3)}$ has domain

$D[H_{A}^{(3)}]=\{u\in L^{2}(R^{d});(i\nabla+A(x))u\in L^{2}(R^{d})\},$

which contains $C_{0}^{\infty}(R^{d})$ as an operator core. Although we can know the domain of $H_{A}^{(3)}$

is determined, the point which becomes crucial is in how to derive regularity of the weak
solution $u\in L^{2}(R^{d})$ of equation

$H_{A}^{(3)}u\equiv\sqrt{(-i\nabla-A(x))^{2}+m^{2}}u=f$ , for given $f\in L_{1oc}^{1}(R^{d})$ .

We shall show inequality (5) $/(6)$ , modifying the method used in the case ([I89], [ITs92])

for the Weyl pseudo-differential operator $H_{A}^{(1)}$ , basically along the idea of Kato’s origin\‘al
proof for the magnetic nonrelativistic Schr\"odinger operator $\frac{1}{2}(-i\nabla-A(x))^{2}$ in [K72]. How-
ever, the present case seems to be not so simple as to need much further modification within
(operator theory plus alpha”’
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