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Abstract

The time-ordered exponential representation of a complex time evolution operator
in the interaction picture is studied. Using the complex time evolution, we prove the
Gell Mann-Low formula under certain abstract conditions, in mathematically rigorous
manner.

1 Introduction

In this article, we consider a formula in quantum field theories of the type

$\langle\Omega, T\{\phi^{(1)}(x_{1})\cdots\phi^{(n)}(x_{n})\}\Omega\rangle$

$= \lim_{tarrow\infty}\frac{\langle\Omega_{0},T\{\phi_{I}^{(1)}(x_{1})\cdots\phi_{I}^{(n)}(x_{n})\exp(-i\int_{-t}^{t}d\tau H_{1}(\tau))\}\Omega_{0}\rangle}{\langle\Omega_{0},T\exp(-i\int_{-t}^{t}d\tau H_{1}(\tau))\Omega_{0}\rangle}$ , (1.1)

called the Gell-Mann–Low formula [1]. The meaning of each symbol in the formula (1.1)
is as follows: the symbol $\langle\cdot,$ $\rangle$ denotes the inner product of a Hilbert space of quantum state
vectors, $\phi^{(k)}(x_{k})$ and $\phi_{I}^{(k)}(x_{k})(k=1, n, x_{k}\in \mathbb{R}^{4})$ denote field operators in the Heisenberg
and the interaction picture, respectively. For instance, in quantum electrodynamics (QED),
each $\phi^{(k)}$ denotes the Dirac field $\psi_{l}$ , its conjugate $\psi_{l}\dagger$ , or the gauge field $A_{\mu}$ . The symbol $T$

denotes the time-ordering and $\Omega$ and $\Omega_{0}$ the vacuum states of the interacting and the free
theory, respectively. The operator

$T \exp(-i\int_{-t}^{t}d\tau H_{1}(\tau))$

is the time evolution operator in the interaction picture, having the following series expansion:

$T \exp(-i\int_{-t}^{t}d\tau H_{1}(\tau))$

$=1+(-i) \int_{-t}^{t}d\tau_{1}H_{1}(\tau_{1})+(-i)^{2}\int_{-t}^{t}d\tau_{1}\int_{-t}^{\tau_{1}}d\tau_{2}H_{1}(\tau_{1})H_{1}(\tau_{2})+\cdots$ , (1.2)
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which is often called the time-ordered exponential or the Dyson series for

$H_{1}(\tau):=e^{i\tau H_{0}}H_{1}e^{-i\tau H_{0}}(\tau\in \mathbb{R})$ ,

where $H_{0}$ and $H_{1}$ are the free and the interaction Hamiltonians.

This formula is a fundamental tool to generate a perturbative expansion of the $n$ -point

correlation function
$\langle\Omega, T\{\phi^{(1)}(x_{1})\cdots\phi^{(n)}(x_{n})\}\Omega\rangle$

with respect to the coupling constant. When the coupling is small enough (for QED, this

seems valid), the first few terms of the perturbation series is expected to be a good ap-

proximation of the correlation function which gives quantitative predictions for observable

variables such as scattering cross section. In QED, these predictions agree with experimental

results to eight significant figures, the most accurate predictions in all of natural science.

However, the mathematical proof of (1.1) is far from trivial and the derivations given in

physics literatures are very heuristic and informal. The purpose of the present article is to

construct a mathematically rigorous setup in which the Gell Mann–Low formula (1.1) is

adequately formulated and proved. We remark that the abstract results obtained here can
be applied to the mathematical model of QED with cut-offs, which has been discussed in Ref

[2].
In the original heuristic derivation of (1.1), Murray Gell-Mann and Francis Low [1] intro-

duced adiabatic switching of the interaction through the time-dependent Hamiltonian of the

form $H_{0}+e^{-\epsilon|t|}H_{1}$ , where $\epsilon>0$ is the small parameter which eventually vanishes. We take

an alternative way by sending the time $t$ to $\infty$ in the imaginary direction: $tarrow\infty(1-i\epsilon)$ .

The same method can be found in physics literatures (see, for example, [3, 4 In this case,

one difficulty with the mathematical proof of (1.1) is to construct the complex time evolution

which possesses the following series expansion:

$T \exp(-i\int_{z’}^{z}d\zeta H_{1}(\zeta))$

$=1+(-i) \int_{z}^{z}d\zeta_{1}H_{1}(\zeta_{1})+(-i)^{2}\int_{z}^{z}d\zeta_{1}\int_{z}^{\zeta_{1}}d\zeta_{2}H_{1}(\zeta_{1})H_{1}(\zeta_{2})+\cdots$ , (1.3)

$(z, z’\in \mathbb{C})$ for unbounded $H_{1}$ . We extend the methods obtained in [5] to “complex time”’

In Section 2, we develop an abstract theory of complex time-ordered exponential. In

Section 3, we state and prove the Gell Mann–Low formula in an abstract form under some
assumptions.

2 Abstract construction of time-ordered exponential

on the complex plane and its properties

Let $\mathcal{H}$ be a complex Hilbert space. The inner product and the norm of $\mathcal{H}$ are denoted

by $\rangle_{\mathcal{H}}$ (anti-linear in the first variable) and $\Vert\cdot\Vert_{\mathcal{H}}$ respectively. When there can be no
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danger of confusion, then the subscript $\mathcal{H}$ in $\rangle_{\mathcal{H}}$ and $\Vert\cdot\Vert_{\mathcal{H}}$ is omitted. For a linear
operator $T$ in $\mathcal{H}$ , we denote its domain (resp. range) by $D(T)$ (resp. $R(T)$ ). We also
denote the adjoint of $T$ by $\tau*$ and the closure by $\overline{T}$ if these exist. For a self-adjoint operator
$T,$ $E_{T}$ denotes the spectral measure of $T$ . The symbol $T|_{D}$ denotes the restriction of a
linear operator $T$ to the subspace $D$ . For a linear operators $S$ and $T$ on a Hilbert space,
$D(S+T):=D(S)\cap D(T)$ , $D(ST):=\{\Psi\in D(T)|T\Psi\in D(S)\}$ unless otherwise stated.

We begin by defining a time-ordered product of operator-valued functions and the time-
ordered exponential of an operator-valued function in an unambiguous way. Let $z,.z’\in \mathbb{C}$

and $\Gamma$ be a piecewisely continuously differentiable simple curve in $\mathbb{C}$ from $z’$ to $z$ . That is,
$\Gamma$ is a map from a closed interval $I=[\alpha, \beta]$ in $\mathbb{R}$ into $\mathbb{C}$ , which is piecewisely continuously
differentiable and injective, satisfying

$\Gamma(\alpha)=z’, \Gamma(\beta)=z$ . (2.1)

We define a linear order $\succ on\Gamma(I)=\{\Gamma(t)|t\in I\}\subset \mathbb{C}$ as follows. For $\zeta_{1}\rangle\zeta_{2}\in\Gamma(I)$ , there
exist $t_{1},$ $t_{2}\in I$ with $\Gamma(t_{1})=\zeta_{1}$ and $\Gamma(t_{2})=\zeta_{2}$ . Then, $\zeta_{1}\succ\zeta_{2}$ if and only if $t_{1}>t_{2}.$

In what follows, we denote $\Gamma(I)$ simply by $\Gamma$ . Let $\mathfrak{S}_{n}$ be the symmetric group of or-
der $n\in \mathbb{N}$ and $L(\mathcal{H})$ be (not necessarily bounded) linear operators in $\mathcal{H}$ . For mappings
$F_{1},$ $F_{2}$ , . . . , $F_{k}(k\in \mathbb{N})$ from $\Gamma$ into $L(\mathcal{H})$ , we define a map $T[F_{1}\ldots F_{k}]$ from $\Gamma^{k}$ into $L(\mathcal{H})$ by

$D(T[F_{1}\ldots F_{k}](\zeta_{1}, \ldots, \zeta_{k}))$

$:= \bigcap_{\sigma\in \mathfrak{S}_{k}}\bigcap_{(\zeta_{1)}\ldots,\zeta_{k})\in\Gamma^{k}}D(F_{\sigma(1)}(\zeta_{\sigma(1)})\ldots F_{\sigma(k)}(\zeta_{\sigma(k)})$
, (2.2)

$T[F_{1}\ldots F_{k}](\zeta_{1}, \ldots, \zeta_{k})\Psi$

$:= \sum_{\sigma\in \mathfrak{S}_{k}}\chi_{P_{\sigma}}(\zeta_{1}, \ldots, \zeta_{k})F_{\sigma(1)}(\zeta_{\sigma(1)})\ldots F_{\sigma(k)}(\zeta_{\sigma(k)})\Psi$
, (2.3)

for $\Psi\in D(T[F_{1}\ldots F_{k}](\zeta_{1},$
$\ldots,$

$\zeta_{k}$ where $\chi_{J}$ denotes the characteristic function of the set
$J$ , and

$P_{\sigma}=\{(\zeta_{1}, \ldots, \zeta_{k})\in\Gamma^{k}|\zeta_{\sigma(1)}\succ\cdots\succ\zeta_{\sigma(k)}\}, \sigma\in \mathfrak{S}_{k}$ . (2.4)

In what follows, we sometimes adopt a little bit confusing notation

$T(F_{1}(\zeta_{1})\ldots F_{k}(\zeta_{k})):=T[F_{1}\ldots F_{k}](\zeta_{1}, \ldots, \zeta_{k})$ , (2.5)

and call it the time-ordered product of $F_{1}(\zeta_{1})$ , . . . , $F_{k}(\zeta_{k})$ along the curve $\Gamma$ , even though the
operation $T$ does not act on the product of operators $F_{1}(\zeta_{1})$ , . . . , $F_{k}(\zeta_{k})$ but on the product
of mappings $F_{1}$ , . . . , $F_{k}.$

Next, we define a concept of time-ordered exponential of an operator-valued function. Let
$F:\Gammaarrow L(\mathcal{H})$ and let $C(F)\subset \mathcal{H}$ be a subspace spanned by all the vectors $\Psi\in \mathcal{H}$ such that
the mapping

$(\zeta_{1}, \ldots, \zeta_{n})\mapsto F(\zeta_{1})\ldots F(\zeta_{n})\Psi$ (2.6)
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is strongly continuous in the variables $(\zeta_{1}, \ldots, \zeta_{n})\in\Gamma^{n}$ . We define a time-ordered exponential

operator by

$D(T \exp(\int_{\Gamma}d\zeta F(\zeta)))$

$:= \{\Psi\in C(F) \sum_{n=0}^{\infty}\frac{1}{n!}\Vert\int_{\Gamma^{n}}d\zeta_{1}\ldots d\zeta_{n}T(F(\zeta_{1})\ldots F(\zeta_{n}))\Psi\Vert<\infty\}$ , (2.7)

$T \exp(\int_{\Gamma}d\zeta F(\zeta))\Psi :=\sum_{n=0}^{\infty}\frac{1}{n!}\int_{\Gamma^{n}}d\zeta_{1}\ldots d\zeta_{n}T(F(\zeta_{1})\ldots F(\zeta_{n}))\Psi$ , (2.8)

where the integration is understood in the strong sense.
We also define a more general time-ordered exponential operator. Let $F_{1},$ $F_{2}$ , . . . , $F_{k}$ , . . . , $F_{k+n}$

be the mappings from $\Gamma$ into $L(\mathcal{H})$ . We define a map from $\Gamma^{n}$ into $L(\mathcal{H})$ , which is labeled

by $(\zeta_{1}, \ldots, \zeta_{k})\in\Gamma^{k},$

$T[F_{1}(\zeta_{1})F_{2}(\zeta_{2})\ldots F_{k}(\zeta_{k})F_{k+1}\ldots F_{k+n}]:\Gamma^{n}arrow L(\mathcal{H})$ (2.9)

by the relations

$D(T[F_{1}(\zeta_{1})F_{2}(\zeta_{2})\ldots F_{k}(\zeta_{k})F_{k+1}\ldots F_{k+n}](\zeta_{k+1}, \ldots, \zeta_{k+n}))$

$:= \bigcap_{\sigma\in \mathfrak{S}_{k+n}}\bigcap_{(\zeta_{k+1},\ldots,\zeta_{k+\mathfrak{n}})\in\Gamma^{n}}D(F_{\sigma(1)}(\zeta_{\sigma(1)})\ldots F_{\sigma(k+n)}(\zeta_{\sigma(k+n)}))$

, (2.10)

$T[F_{1}(\zeta_{1})F_{2}(\zeta_{2})\ldots F_{k}(\zeta_{k})F_{k+1}\ldots F_{k+n}](\zeta_{k+1}, \ldots, \zeta_{k+n})\Psi$

$:= \sum_{\sigma\in \mathfrak{S}_{k+n}}\chi_{P\’{n}_{\sigma}},(\zeta_{k+1}, \ldots, \zeta_{k+n})F_{\sigma(1)}(\zeta_{\sigma(1)})\ldots F_{\sigma(k+n)}(\zeta_{\sigma(k+n)})\Psi$

, (2.11)

for $\Psi\in D(T[F_{1}(\zeta_{1})F_{2}(\zeta_{2})\ldots F_{k}(\zeta_{k})F_{k+1}\ldots F_{k+n}](\zeta_{k+1},$
$\ldots,$

$\zeta_{k+n}$ Here, we denote

$P_{n,\sigma}’ :=\{(\zeta_{k+1}, \ldots, \zeta_{k+n})\in\Gamma^{n}|\zeta_{\sigma(1)}\succ\cdots\succ\zeta_{\sigma(k+n)}\}$ (2.12)

for $\sigma\in \mathfrak{S}_{k+n}$ . In this case, we also employ a confusing notation (really confusing in the case)

$T(F_{1}(\zeta_{1})\ldots F_{k+n}(\zeta_{k+n}))$

$:=T[F_{1}(\zeta_{1})F_{2}(\zeta_{2})\ldots F_{k}(\zeta_{k})F_{k+1}\ldots F_{k+n}](\zeta_{k+1}, \ldots, \zeta_{k+n})$ , (2.13)

and call it a time-ordered product of $F_{1}(\zeta_{1})$ , . . . , $F_{k+n}(\zeta_{k+n})$ along the curve $\Gamma$ , following

physics literatures. We never use this notation unless it can be clearly understood from the

context which variables of $(\zeta_{1}, \ldots, \zeta_{k+n})$ are fixed and which variables are function argument.

Using this notation, we can define a more general time-ordered exponential operator. Let
$F_{1}$ , . . . , $F_{k},$ $F$ be operator-valued functions from $\Gamma$ into $L(\mathcal{H})$ and $F_{k+1}=\cdots=F_{k+n}=F$ . Let
$C(F_{1}, \ldots, F_{k}, F)$ be a linear subspace spanned by all the vectors $\Psi$ for which the mappings

$(\zeta_{k+1}, \ldots, \zeta_{k+n})\mapsto F_{\sigma(1)}(\zeta_{\sigma(1)})\ldots F_{\sigma(k+n)}(\zeta_{\sigma(k+n)})\Psi$ (2.14)
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are continuous for all fixed $(\zeta_{1}, \ldots, \zeta_{k})$ and all $\sigma\in \mathfrak{S}_{n+k}$ . Then, on the domain

$D(TF_{1}( \zeta_{1})\ldots F_{k}(\zeta_{k})\exp(\int_{\Gamma}d\zeta F(\zeta))):=\{\Psi\in C(F_{1}, \ldots, F_{k}, F)|$

$\sum_{n^{\underline{\perp}}0}^{\infty}\frac{1}{n!}\Vert\int_{\Gamma^{n}}d\zeta_{k+1}\ldots d\zeta_{k+n}T(F_{1}(\zeta_{1})\ldots F_{k}(\zeta_{k})F(\zeta_{k+1})\ldots F(\zeta_{k+n}))\Psi\Vert<\infty\}$ , (2.15)

We define

$TF_{1}( \zeta_{1})\ldots F_{k}(\zeta_{k})\exp(\int_{\Gamma}d\zeta F(\zeta))\Psi$

$:= \sum_{n=0}^{\infty}\frac{1}{n!}\int_{\Gamma^{n}}d\zeta_{k+1}\ldots d\zeta_{k+n}T(F_{1}(\zeta_{1})\ldots F_{k}(\zeta_{k})F(\zeta_{k+1})\ldots F(\zeta_{k+n}))\Psi$ . (2.16)

We remark that for all $\sigma\in \mathfrak{S}_{k},$

$TF_{1}( \zeta_{1})\ldots F_{k}(\zeta_{k})\exp(\int_{\Gamma}d\zeta F(\zeta))$

$=TF_{\sigma(1)}( \zeta_{\sigma(1)})\ldots F_{\sigma(k)}(\zeta_{\sigma(k)})\exp(\int_{\Gamma}d\zeta F(\zeta))$ . (2.17)

We introduce a class of operators which plays a crucial role in the following analyses. Let
$H_{0}$ be a non-negative self-adjoint operator in $\mathcal{H}.$

Definition 2.1 ($C_{0}$-class). We say that a linear operator $T$ is in $C_{0}$ -class if $T$ satisfies the
following $(I)-(III)$ :

(I) $T$ is densely defined and closed.

(II) $T$ and $\tau*$ are $H_{0}^{1/2}$-bounded.

(III) There exists a constant $b\geq 0$ such that, for all $E\geq 0,$ $T$ and $\tau*$ map $R(E_{H_{0}}([0,$ $E$

into $R(E_{H_{0}}([0,$ $E+b$

We define

$V_{E} :=R(E_{H_{0}}([0, E$ (2.18)

Dfin $:= \bigcup_{E\geq 0}V_{E}$
, (2.19)

and denote the set consisting of all the $C_{0}$-class operators also by $C_{0}$ . Note that the subspace
Dfin is dense in $\mathcal{H}$ since $H_{0}$ is self-adjoint. For $A\in C_{0}$ , we define

$A(z):=e^{izH_{0}}Ae^{-izH_{0}}, z\in \mathbb{C}$ . (2.20)
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Note that $A(z)$ is closable since its adjoint includes the operator $e^{izH_{0}}A^{*}e^{-iz^{*}H_{0}}$ which is

densely defined. We denote the closure of $A(z)$ by the same symbol. In this notation, one

obtains

$A(z)^{*}\supset A^{*}(z^{*})$ . (2.21)

The basic properties of the time-ordered exponential is summarized in the following The-

orems 2.1-2.5.

Theorem 2.1. Let $A$ be in $C_{0}$ and $z,$
$z’\in \mathbb{C}.$

(i) Take a piecewisely continuously differentiable simple curve $\Gamma_{z_{\rangle}z’}$ which starts at $z’$ and

ends at $z$ with ${\rm Im} z’\leq{\rm Im} z.$ $Then_{f}$

Dfin $\subset D(T\exp(-i\int_{\Gamma_{z,z}}, d\zeta A(\zeta)))$ (2.22)

and the restriction

$T \exp(-i\int_{\Gamma_{z,z}}, d\zeta A(\zeta))|_{Dfin}$ (2.23)

does not depend upon the simple curve from $z’$ to $z$ and depends only on $z$ and $z’,$

justifying the notation

$U(A \cdot, z, z’) :=T\exp(-i\int_{\Gamma_{z,z’}}d\zeta A(\zeta))|_{Dfin}$ (2.24)

(ii) $U(A;z, z’)$ is closable, and satisfies the following inclusion relation:

$U(A;z, z’)^{*}\supset\overline{U(A^{*};z^{\prime*},z^{*})}$ . (2.25)

Theorem 2.2. Let $T_{k},$ $A_{k}$ $(k=1, m, m\geq 1)$ be $C_{0}$ -class operators. Then, for all $z_{k},$ $z_{k}’\in$

$\mathbb{C}(k=1, \ldots, m)$ with ${\rm Im} z_{k}\leq{\rm Im} z_{k}’$ and $\zeta_{k},$ $\zeta_{k}’\in \mathbb{C}$ , it follows that

Dfin $\subset D(T_{m}(\zeta_{m}, \zeta_{m}’)\overline{U(A_{m};z_{m},z_{m}’)}\cdots T_{1}(\zeta_{1}, \zeta_{1}’)\overline{U(A_{1};z_{1},z_{1}’)})$ . (2.26)

Moreover, for all $\Psi\in$ Dfin,

$T_{m}(\zeta_{m}, \zeta_{m}’)\overline{U(A_{m)}z_{m},z_{m}’)}\cdots T_{1}(\zeta_{1}, \zeta_{1}’)\overline{U(A_{1};z_{1},z_{1}’)}\Psi$

$= \sum_{n_{1},\ldots,n_{m}=0}^{\infty}T_{m}(\zeta_{m}, \zeta_{m}’)V_{n_{m}}(A_{m};z_{m}, z_{m}’) \cdots$

. . . $T_{1}(\zeta_{1}, \zeta_{1}’)V_{n1}(A_{1};z_{1}, z_{1}’)\Psi$ , (2.27)

where the right-hand side converges absolutely, and does not depend upon the summation

order. Furthermore, this convergence is locally uniform in the complex variables

$z_{1},$
$z_{1}’,$ $\zeta_{1},$ $\zeta_{1}’$ , . . . , $z_{m},$

$z_{m}’,$ $\zeta_{m},$ $\zeta_{m}’.$
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By Theorem 2.2, it is natural to introduce the set of all the polynomials $\mathfrak{A}$ generated by

$\{T, \overline{U(A;z,z’)}, e^{i\zeta H_{0}}|T, A\in C_{0}, z, z’, \zeta\in \mathbb{C}, {\rm Im} z\leq{\rm Im} z’\}$ . (2.28)

It is clear that all $a\in \mathfrak{A}$ are closable, since they have densely defined adjoints and the
subspace Dfin is a common domain of $\mathfrak{A}$ . We define a dense subspace $\mathcal{D}$ by

$\mathcal{D}:=\mathfrak{A}$Dfin. (2.29)

Theorem 2.2 shows that $\mathcal{D}$ is also a common domain of $\mathfrak{A}$ . Moreover, for all $\Psi\in \mathcal{D}$ , there
exists a sequence $\{\Psi_{N}\}_{N}\subset$ Dfin such that

$\Psi_{N}arrow\Psi, a\Psi_{N}arrow a\Psi (a\in \mathfrak{A})$ (2.30)

as $N$ tends to infinity. This implies that if an equality $a=b(a, b\in \mathfrak{A})$ holds on Dfin, then
$a=b$ on $\mathcal{D}$ and the convergence is locally uniform in all the complex variables included in $a$

and $b$ . From this observation, we immediately have

Corollary 2.1. Let $A$ be in $C_{0}$ and $z,$
$z’\in \mathbb{C}$ with ${\rm Im} z\leq{\rm Im} z’$ . Then,

$\mathcal{D}\subset D(T\exp(-i\int_{\Gamma_{z,z’}}d\zeta A(\zeta)))$ (2.31)

and for all $\Psi\in \mathcal{D},$

$T \exp(-i\int_{\Gamma_{z,z’}}d\zeta A(\zeta))\Psi=\overline{U(A;z,z’)}\Psi$ . (2.32)

$Jn$ particular,

$T \exp(-i\int_{\Gamma_{z,z}}, d\zeta A(\zeta))\Psi$ (2.33)

is independent of the simple curve $\Gamma_{z,z’}$ and depends only on $z,$
$z’$ if $\Psi\in \mathcal{D}.$

Theorem 2.3. Let $A$ be in $C_{0}$ and $z,$
$z’\in \mathbb{C}.$

(i) For all $\Psi\in \mathcal{D}$ , the vector-valued function
$\{(z, z’)|{\rm Im} z\leq{\rm Im} z’\}\ni(z, z’)\mapsto\overline{U(A;z,z’)}\Psi\in \mathcal{H}$

is analytic on the region $\{{\rm Im} z<{\rm Im} z’\}$ and continuous on $\{{\rm Im} z\leq{\rm Im} z$ Moreover,
it is a solution of differential equations

$\frac{\partial}{\partial z}\overline{U(A;z,z’)}\Psi=-iA(z)\overline{U(A\cdot,z,z’)}\Psi$ , (2.34)

$\frac{\partial}{\partial z’}\overline{U(A;z,z’)}\Psi=i\overline{U(A;z,z’)}A(z’)\Psi$ , (2.35)

on $\{{\rm Im} z<{\rm Im} z$
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(ii) For all $\Psi\in \mathcal{D}$ , the vector valued function $\mathbb{R}^{2}\ni(t, t’)\mapsto\overline{U(A;t,t’)}\Psi$ is continuously

differentiable on the region $\mathbb{R}^{2}$ , satisfying the differential equations

$\frac{\partial}{\partial t}\overline{U(A;t,t’)}\Psi=-iA(t)\overline{U(A;t,t^{J})}\Psi$ , (2.36)

$\frac{\partial}{\partial t’}\overline{U(A;t,t’)}\Psi=i\overline{U(A;t,t’)}A(t’)\Psi$ . (2.37)

Theorem 2.4. Let $A\in C_{0}$ and $z,$ $z’,$ $z”\in \mathbb{C}$ . Then, the following properties hold.

(i) If ${\rm Im} z\leq{\rm Im} z’\leq{\rm Im} z$ the equalities

$\overline{U(A;z,z)}=I, \overline{U(A;z,z’)}\overline{U(A;z’,z")}=\overline{U(A;z,z")}$ (2.38)

hold on the subspace $\mathcal{D}$ , where I is the identity operator.

(ii) Let ${\rm Im} z\leq{\rm Im} z’$ . Then, $U(A;z, z’)$ is translationally invariant in the sense that the

equality

$e^{izH_{O}}\overline{U(A;z’,z")}e^{-izH_{0}}\Psi=\overline{U(A;z’+z,z"+z)}$ (2.39)

holds on the subspace $\mathcal{D}.$

(iii) For all $t,$ $t’\in \mathbb{R},$ $\overline{U(A;t,t’)}$ is unitary. Moreover, for all $t,$ $t’,$ $t”\in \mathbb{R}$ , the operator
equality

$\overline{U(A;t,t’)}\overline{U(A;t’,t")}=\overline{U(A;t,t")}$ (2.40)

holds.

Theorem 2.5. Let $A_{1}$ , . . . $A_{k},$ $B\in C_{0}$ , and $z,$
$z’\in \mathbb{C}$ with ${\rm Im} z\leq{\rm Im} z’$ . Let $\zeta_{1}$ , . . . , $\zeta_{k}\in \mathbb{C}$

and suppose that there exists a permutation $\sigma\in \mathfrak{S}_{k}$ satisfying

${\rm Im} z\leq{\rm Im}\zeta_{\sigma(1)}\leq\cdots\leq{\rm Im}\zeta_{\sigma(k)}\leq{\rm Im} z’$ . (2.41)

Take a simple curve $\Gamma_{z,z’}$ from $z’$ to $z$ on which $\zeta_{\sigma(1)}\succ\cdots\succ\zeta_{\sigma(k)}$ . Then, we have

$\mathcal{D}\subset D(TA_{1}(\zeta_{1})\ldots A_{k}(\zeta_{k})\exp(-i\int_{\Gamma_{z,z}}, d\zeta B(\zeta)))$ (2.42)

and

$TA_{1}( \zeta_{1})\ldots A_{k}(\zeta_{k})\exp(-i\int_{\Gamma_{z,z}}, d\zeta B(\zeta))\Psi$

$=\overline{U(B;z,\zeta_{\sigma(1)})}A_{\sigma(1)}(\zeta_{\sigma(1)})\overline{U(B;\zeta_{\sigma(1)},\zeta_{\sigma(2)})}\ldots$

. . . $\overline{U(B;\zeta_{\sigma(k-1)},\zeta_{\sigma(k)})}A_{\sigma(k)}(\zeta_{\sigma(k)})U(B;\zeta_{\sigma(k)}, z’)\Psi$ (2.43)

for all $\Psi\in \mathcal{D}.$

116



3 Complex time evolution and Gell Man-Low formula

In this section, we consider the operator

$H=H_{0}+H_{1}$ (3.1)

with $H_{1}\in C_{0}$ , and we state and derive the Gell Mann–Low formula. In what follows, we
shortly denote

$V_{n}(z, z’):=V_{n}(H_{1};z, z U(z, z’):=U(H_{1};z, z$ (3.2)

We define complex time evolution operator

$W(z) :=e^{-izH_{0}}\overline{U(z,0)}$ (3.3)

for $z\in \mathbb{C}$ with Imz $\leq 0$ . The operator $W(z)$ generates the “complex time evolution”’ in the
following sense:

Theorem 3.1. For all $\Psi\in \mathcal{D}$ , the mapping $z\mapsto W(z)\Psi$ is analytic on the lower half plane
and satisfies the “complex Schr\"odinger equation”

$\frac{d}{dz}W(z)\Psi=-iHW(z)\Psi$ . (3.4)

Proof. We first remark that $\mathcal{D}\subset D(H_{0})$ . This can be seen by noting that $\mathcal{D}\subset D(e^{H_{0}})\subset$

$D(H_{0})$ . By Theorem 2.1, one can easily estimate

$\Vert\frac{W(z+h)\Psi-W(z)\Psi}{h}-(-iH)W(z)\Psi\Vert$ (3.5)

to know that this vanishes in the limit $harrow 0.$ $\square$

Theorem 3.2. Suppose that $H_{1}$ is a $C_{0}$ -class symmetric operator. Then, $H$ is self-adjoint
and bounded below. Moreover, it follows that

$\overline{W(z)}=e^{-izH}$ , (3.6)

for all $z\in \mathbb{C}$ with ${\rm Im} z\leq 0$ . In particular, it follows that

$\overline{U(z,z’)}=e^{izH_{0}}e^{-i(z-z’)H}e^{-iz’H_{0}}, {\rm Im} z\leq{\rm Im} z’$ . (3.7)

Proof. By the present assumption, $H_{1}$ is $H_{0}^{1/2}$-bounded. This implies that $H_{1}$ is infinitesi-
mally small with respect to $H_{0}$ and thus $H$ is self-adjoint with $D(H)=D(H_{0})$ , and bounded
below by the Kato-Rellich Theorem.

By Theorem 3.1, the function $z\mapsto\langle e^{-iz^{*}H}\Phi,$ $W(z)\Psi\rangle$ is differentiable in $z$ with ${\rm Im} z<0$

for all $\Psi\in \mathcal{D},$ $\Phi\in D_{0}(H)$ $:= \bigcup_{L\in \mathbb{R}}R(E_{H}([-L,$ $L$ and we have

$\frac{d}{dz}\langle e^{-iz^{*}H}\Phi, W(z)\Psi\rangle=\langle-iHe^{-iz^{*}H}\Phi, W(z)\Psi\rangle+$

$+\langle e^{-iz^{*}H}\Phi, -iHW(z)\Psi\rangle$

$=0$ . (3.8)
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Thus, one finds

$\langle\Phi, \Psi\rangle=\langle e^{-iz^{*}H}\Phi, W(z)\Psi\rangle$ , (3.9)

for all $\Psi\in \mathcal{D}$ and $\Phi\in D_{0}(H)$ . Since $D_{0}(H)$ is a core of $e^{-iz^{e}H}$ , we obtain from (3.9)
$W(z)\Psi\in D(e^{izH})$ and

$e^{izH}W(z)\Psi=\Psi$ . (3.10)

Hence, we arrive at

$W(z)\Psi=e^{-izH}\Psi$ , (3.11)

for all $z\in \mathbb{C}$ with ${\rm Im} z<$ O. But, since both sides of (3.11) are continuous on the region
${\rm Im} z\leq 0$ , (3.11) must hold on ${\rm Im} z\leq 0$ . Since the both sides are bounded, one has

$\overline{W(z)}=e^{-izH}, {\rm Im} z\leq 0$ . (3.12)

For $z,$
$z’$ satisfying ${\rm Im} z\leq{\rm Im} z’$ , we have from (2.39)

$W(z-z’)\Psi=e^{-i(z-z’)H_{0}}\overline{U(z-z’,0)}\Psi$

$=e^{-izH_{0}}\overline{U(z,z’)}e^{iz’H_{0}}\Psi, \Psi\in \mathcal{D}$ . (3.13)

This implies

$\overline{U(z,z’)}\Psi=e^{izH_{0}}e^{-i(z-z’)H}e^{-iz’H_{0}}\Psi$ . (3.14)

$\square$

We introduce assumptions needed to derive the Gell Mann–Low formula. For a linear

operator $T$ , we denote the spectrum of $T$ by $\sigma(T)$ . If $T$ is self-adjoint and bounded from

below, then we define

$E_{0}(T) := \inf\sigma(T)$ . (3.15)

We say that $T$ has a ground state if $E_{0}(T)$ is an eigenvalue of $T$ . In that case, $E_{0}(T)$ is called

the ground energy of $T$ , and each non-zero vector in $ker(T-E_{0}(T))$ is called a ground state

of $T$ . If dimker$(T-E_{0}(T))=1$ , we say that $T$ has a unique ground state. The following

assumption are used to prove the Gell Mann–Low formula.

Assumption 3.1. (I) $H_{0}$ has a unique ground state $\Omega_{0}(\Vert\Omega_{0}\Vert=1)$ , and the ground energy
is zero: $E_{0}(H_{0})=0.$

(II) $H_{1}$ is a $C_{0}$ -class symmetric operator, and $H$ has a unique ground state $\Omega(\Vert\Omega\Vert=1)$ .

(III) $\langle\Omega,$ $\Omega_{0}\rangle\neq 0.$
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Under Assumption 3.1, we define the $m$-point Green’s function $G_{m}(z_{1}, \ldots, z_{m})$ by

$G_{m}(z_{1}, \ldots, z_{m})$

$:=e^{i(z_{1}-z_{m})E_{0}(H)}\langle\Omega, A_{1}W(z_{1}-z_{2})A_{2}\ldots A_{m-1}W(z_{m-1}-z_{m})\Omega\rangle$ , (3.16)

for ${\rm Im} z_{1}\leq\cdots\leq{\rm Im} z_{m}$ , provided that the right-hand-side is well-defined. The Gell-Mann -

Low formula is given by:

Theorem 3.3. Suppose that Assumption 3.1 holds. Let $A_{k}$ $(k=1, m, m\geq 1)$ be linear
operators having the following properties:

(I) Each $A_{k}$ is in $C_{0}$ -class.

(II) For each $k$ , there exists an integer $r_{k}\geq 0$ such that, for all $n\in \mathbb{N},$ $A_{k}$ maps $D(H^{n+r_{k}})$

into $D(H^{n})$ .

Let $z_{1},$ $z_{m}\in \mathbb{C}$ with ${\rm Im} z_{1}\leq\cdots\leq{\rm Im} z_{m}$ . Choose a simple curve $\Gamma_{T}^{\epsilon}$ from $-T(1-i\epsilon)$

to $T(1-i\epsilon)(T, \epsilon>0)$ on which $z_{1}\succ$ . . . $\succ z_{m}$ . Then, the $m$ -point Green’s junction
$G_{m}(z_{1}, \ldots, z_{m})$ is well-defined and satisfies the formula

$G_{m}(z_{1}, \ldots, z_{m})=\lim_{Tarrow\infty}\frac{\langle\Omega_{0},TA_{1}(z_{1})\ldots A_{m}(z_{m})\exp(-i\int_{\Gamma_{T}^{\epsilon}}d\zeta H_{1}(\zeta))\Omega_{0}\rangle}{\langle\Omega_{0},T\exp(-i\int_{\Gamma_{T}^{\epsilon}}d\zetaH_{1}(\zeta))\Omega_{0}\rangle}$ . (3.17)

To prove the Gell-Mann –Low formula (3.17), we prepare some lemmas. We denote
$E_{0}(H)$ simply by $E_{0}.$

Lemma 3.1. For any $\epsilon>0$ and all Borel measurable functions $f:\mathbb{R}arrow \mathbb{C}$ , we have

$\lim_{Tarrow\infty}f(H)e^{iT(\pm 1-i\epsilon)E_{0}}W(T(\pm 1-i\epsilon))\Psi=f(E_{0})P_{0}\Psi, \Psi\in D(f(H))$ , (3.18)

where $P_{0}$ is the orthogonal projection onto the closed subspace $ker(H-E_{0})$ .

Proof. By the functional calculus and Lebesgue’s convergence Theorem, we have

$\Vert f(H)e^{iT(\pm 1-i\epsilon)E_{0}}W(T(\pm 1-i\epsilon))\Psi-f(E_{0})P_{0}\Psi\Vert^{2}$

$=\Vert f(H)e^{\mp iT(H-E_{0})}e^{-T\epsilon(H-E_{0})}\Psi-f(E_{0})E_{H}(\{E_{0}\})\Psi\Vert^{2}$

$= \int_{[E_{0},\infty)}d\Vert E_{H}(\lambda)\Psi\Vert^{2}|f(\lambda)(e^{-T\epsilon(\lambda-E_{0})}\Psi-\chi_{\{E_{0}\}}(\lambda))|^{2}$

$= \int_{(E_{0_{\rangle}}\infty)}d\Vert E_{H}(\lambda)\Psi\Vert^{2}|f(\lambda)e^{-T\epsilon(\lambda-E_{0})}\Psi|^{2}$

$arrow 0_{\}}$ (3.19)

as $T$ tends to infinity. $\square$
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Lemma 3.2. Under the same assumption as in Theorem 3.3, the operators

$\overline{A_{k}}:=(H-\zeta)^{\Sigma_{j=1}^{k-1}r_{j}}A_{k}(H-\zeta)^{-\Sigma_{j=1}^{k}r_{j}}, k=1, m$ , (3.20)

are bounded.

Proof. From the assumptions,

$A_{k}(H-\zeta)^{-\Sigma_{j=1}^{k}r_{j}}\Psi\in D(H^{\Sigma_{j=1}^{k-1}r_{j}})$ , (3.21)

for all $\Psi\in \mathcal{H}$ . Thus,
$D(\overline{A_{k}})=\mathcal{H}.$

On the other hand, it is easy to check that $\overline{A_{k}}$ ’s are closed. Hence, by the closed graph
theorem, each $\tilde{A_{k}}$ ’s are bounded. $\square$

Lemma 3.3. Under the same assumption as in Theorem 3.3, it follows that

$\lim_{Tarrow\infty}A_{1}W(z_{1}-z_{2})A_{2}\ldots$

. . . $A_{m-1}W(z_{m-1}-z_{m})A_{m}f(H)e^{iT(\pm 1-i\epsilon)}W(T(\pm 1-i\epsilon))\Psi$

$=A_{1}W(z_{1}-z_{2})A_{2}\ldots A_{m-1}W(z_{m-1}-z_{m})A_{m}f(E_{0})P_{0}\Psi$ , (3.22)

for all Borel measurable functions $f$ : $\mathbb{R}arrow \mathbb{C}$ and $\Psi\in\bigcap_{n\in N}D(H^{n}f(H))$ .

Proof Under the present assumption, we see that each $A_{k}$ leaves the subspace $\bigcap_{n=1}^{\infty}D(H^{n})$

invariant, and thus $\Psi$ belongs to the domain of the operator

$A_{1}W(z_{1}-z_{2})A_{2}\ldots A_{m-1}W(z_{m-1}-z_{m})A_{m}f(H)e^{iT(\pm 1-i\epsilon)}W(T(\pm 1-i\epsilon$

Now let $\zeta\in \mathbb{C}\backslash \mathbb{R}$ . Then, we can rewrite

$A_{1}W(z_{1}-z_{2})A_{2}\ldots A_{m-1}W(z_{m-1}-z_{m})A_{m}$

$=\tilde{A_{1}}W(z_{1}-z_{2})\cdots\overline{A_{m}}W(z_{m-1}-z_{m})(H-\zeta)^{\Sigma_{k=1}^{m}r_{k}}$ (3.23)

with

$\overline{A_{k}}:=(H-\zeta)^{\Sigma_{j=1}^{k-1}r_{j}}A_{k}(H-\zeta)^{-\Sigma_{j=1}^{k}r_{j}}, k=1, m$ . (3.24)

Note that each of $\overline{A_{k}}$ ’s and $W(z_{k-1}-z_{k})$ ’s are bounded operators by Theorem 3.2 and Lemma
3.2. Then, by Lemma 3.1, one sees that for all $n\geq 1,$

$\lim_{Tarrow\infty}(H-\zeta)^{n}e^{iT(\pm 1-i\epsilon)}W(T(\pm 1-i\epsilon))\Psi$

$=(E_{0}-\zeta)^{n}P_{0}\Psi=(H-\zeta)^{n}P_{0}\Psi$ , (3.25)

which implies the desired result. $\square$
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Proof of Theorem 3.3. Put

$\mathcal{O}_{z_{1,)}z_{m}} :=A_{1}W(z_{1}-z_{2})A_{2}\ldots A_{m-1}W(z_{m-1}-z_{m})A_{m}$ . (3.26)

From Assumption 3.1, one finds

$\Omega=\frac{P_{0}\Omega_{0}}{\Vert P_{0}\Omega_{0}\Vert}$ (3.27)

to obtain

$G_{m}(z_{1}, \ldots, z_{m})=e^{i(z_{1}-z_{m})E_{0}}\langle P_{0}\Omega_{0}, \mathcal{O}_{z_{1},\ldots z_{m}\rangle}P_{0}\Omega_{0}\rangle$ (3.28)
$\langle P_{0}\Omega_{0}, P_{0}\Omega_{0}\rangle$

By Lemmas 3.1 and 3.3, we have

$\underline{\langle P_{0}\Omega_{0},\mathcal{O}_{z_{1,)}z_{m}}P_{0}\Omega_{0}\rangle}=$

$\langle P_{0}\Omega_{0}, P_{0}\Omega_{0}\rangle$

$\lim_{Tarrow\infty}\frac{\langle e^{-iz_{1}^{*}(H-E_{0})}W(T(-1-i\epsilon))\Omega_{0},\mathcal{O}_{z_{1},\ldots,z_{m}}e^{-iz_{m}(0)}W(T(1-i\epsilon))\Omega_{0}\rangle}{\langle W(T(-1-i\epsilon))\Omega_{0},W(T(1-\Omega_{0}\rangle}$ . (3.29)

Using Theorem 3.2, we find

$e^{-iz_{1}^{*}(H-E_{0})}W(T(-1-i\epsilon))$

$=e^{iz_{1}^{*}E_{0}}e^{-iz_{1}^{*}H_{0}}\overline{U(z_{1}^{*},T(1+i\epsilon))}e^{iT(1+i\epsilon)H_{0}}$ (3.30)

$e^{-iz_{m}(H-E_{0})}W(T(1-i\epsilon))$

$=e^{iz_{m}E_{0}}e^{-iz_{m}H_{0}}\overline{U(z_{m},-T(1-i\epsilon))}e^{-iT(1-i\epsilon)H_{0}}$ (3.31)

on $\mathcal{D}$ . Therefore, by Theorem 2.5, the numerator on the right-hand-side of (3.29) can be
rewritten as

$e^{-i(z_{1}-z_{m})E_{0}}\langle\Omega_{0},\overline{U(T(1-i\epsilon),z_{1})}A_{1}(z_{1})\overline{U(z_{1},z_{2})}\ldots$

. . . $\overline{U(z_{m-1},z_{m})}A_{m}(z_{m})\overline{U(z_{m},-T(1-i\epsilon))}\Omega_{0}\rangle$

$=e^{-i(z_{1}-z_{m})E_{0}}\langle\Omega_{0}, TA_{1}(z_{1}) \ldots$

. . . $A_{m}(z_{m}) \exp(-i\int_{\Gamma_{T}^{\epsilon}}d\zeta H_{1}(\zeta))\Omega_{0}\rangle$ (3.32)

and the denominater as

$\langle\Omega_{0}, U(T(1-i\epsilon), -T(1-i\epsilon))\Omega_{0}\rangle$

$= \langle\Omega_{0}, T\exp(-i\int_{\Gamma_{T}^{\epsilon}}d\zeta H_{1}(\zeta))\Omega_{0}\rangle$ . (3.33)

Finally, inserting (3.29), (3.32), and (3.33) into (3.28), we arrive at the Gell Mann–Low
formula (3.17). $\square$
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