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1 Introduction and Preliminaries
Let us consider the following problem
(MP)  Minimize f(z):

= (f
subject to gi(z) £ 0,
z e C,

1(2), -+ 5 fm())
te T

where the functions f; : X - R,s€ M :={1,--- ,m}and g, : X - R, teT
are locally Lipschitz on a Banach space X, T is an arbitrary (possibly infinite)
index set, and C is a closed convex subset of X. We denote the feasible set
by F =: {z € Clgs(z) £0,t € T}.

In this paper, due to Chankong-Haimes method, for j € M and 2z € C,

we associate to (MP) the following scalar problem,

(P;(z)) Minimize f;(z
subject to fk(

)
)< S, ()kEM”‘—M\{J}
)< 0,te

9:(x
z € C.
Relationships between (MP) and (Pj(z)) are established and optimality con-

ditions of the problems are given.

Let us denote by R™) a following linear space,

R := {X = (A\)eer | At = 0 for all t € T but only finitely many A, # 0}.



For each A € R(™), the supporting set corresponding to A is T()) := {t €
T | A # 0}. It is a finite subset of 7. We denote RSFT) = {A = (M)ter €

RT) | X, > 0,t € T}. It is a nonnegative cone of R™. For A € R™ and

{#t}ter C Z, Z being a real linear space, we understand that

Z)\ 2 = ZtGT () Aeze it T(X) 75@
t2 = £ T

Throughout this paper X is a Banach space, C is a nonempty closed
convex subset of X, T is a compact topological space, f : X — R is a locally
Lipschitz function, and g, : X — R, € T, are locally Lipschitz with respect

to x uniformly in ¢, i.e.,
Vz € X,3U(z),3K >0, |g:(v)—g(v)] < K|lu—v|, Yu,v e U(z), VteT.

The following concepts can be found in the Clarke’s books [1, 2]. Let D
be a nonempty closed convex subset of X. The normal cone to D at a point
z € D coincides with the normal cone in the sense of convex analysis and
given by Np(,2) :=={ve X* |v(z —2) <0,Vz € D}.

Let g : X — R be a locally Lipschitz function. The directional deriva-
tive of g at z € X in direction d € X, is ¢'(2;d) = lim £ —‘Z—“L—td—)—-g-g-z— if

t—0t+

the limit- exists. The Clarke generalized directional derivative of g at z €

X in direction d € X is ¢°(2;d) := lim %upw The Clarke sub-

y—‘>Z
t—0t

differential of g at z € X, denoted by 9°(z), is defined by 8°g(z) :=
{veX*|v(d) <g%z;d),Vvd e X} .
A locally Lipschitz function g is said to be regular (in the sense of Clarke)

at z € X if ¢’(z;d) exists and

9°(2;d) = ¢'(2;d),Vd € X.
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Definition 1.1 Let C be a subset of R™ and f : R™ — R be a locally Lipschitz
function.

(i) The function f is said to be pseudoconvez at x € C if f(y) < f(z) =
uly — ) < 0,u € 9f(x),y € C, equivalently, u(y —z) =2 0 = f(y) =
f(x),u € df(x),y € C. The function f is said to be pseudoconver on C if it
is pseudoconvez at every x € C.

(11) The function f is said to be quasiconvex at x € C if f(y) £ f(z) =
uly —z) £ 0,u € 3°f(z),y € C, equivalently, u(y — z) > 0 = f(y) >
f(z),u € 8°f(x),y € C. The function f is said to be quasiconvex on C if it

ts quasiconvex at every x € C.

We need the following lemmas.

Lemma 1.1 Let f : X — R be a locally Lipschitz pseudoconvex function. If
there exits u € 0°f(x) such that u(y — z) > 0, y,x € X, then f(y) > f(z).

Lemma 1.2 Let f : X — R be a locally Lipschitz function. If f is pseudo-

convex then f is quasiconver.

Now we give the definition of efficient solution of (MP).

Definition 1.2 A point z € F 1is said to be an efficient solution of (MP) if

there exists no other x € Fyy such that
fi(z) £ fi(2), for alli € M

and

fio(x) < fiy(2), for some iy € M.
The criteria of Chankong-Haimes method applied for (MP) is as follows.

Lemma 1.3 A feasible point z of (MP) is an efficient solution if and only
if it is a solution of (P;(z)) for each j € M.



2 Optimality Conditions

First of all, let us consider the following scalar optimization problem in or-
der to recall some concepts of solution for a single objective optimization
problem.
(P) Minimize f(x)
subject to g:;(z) £ 0,t €T,
zel

where f : R" — R is locally Lipschitz function and functions ¢;,¢ € T and C
are as above. Also, the feasible set of (P) is denoted by Fp := {z € C|g;(z) <
0,teT}.

Let z € R™. We need the following condition,

(A): FdeTe(z): g7(x;d) <0, for all t € I(z) := {t € T|g,(z) = 0}.

According to Theorems 4.1 and 4.2 presented in [10] (where the problem

(P) is defined on a Banach space), we derive the following theorems for

the case of the involved functions are defined on R™ and the index set 7T is

compact. The proofs can be omitted.

Theorem 2.1 Let z be an optimal solution for (P). Assume that the condi-

tion (A) holds for z. Then there exists A € R such that

0e€df(z)+ Z MOg:(z) + No(2), gu(z) =0 for allt € T(N).  (2.1)
teT
We now establish optimality conditions for (Pj(z)) and (MP). The fol-
lowing condition is associated to the problem (P;(z)), and the feasible set of
(Pi(2)) is denoted by F;(z).
Let z € R", I(z) = {t € T | go(x) = 0}, Hj(z) = {k € M7 | fi(z) =
f(2)}, and T(z) = I(z) U H;(z).
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N | g (z;d) <0, for all t € I(z),
(4j): 3d€To(): { fo(z:d) < 0, for all k € H,(z).
Lemma 2.1 Let z be an optimal solution of P;(z), assume that the condition

(A;) holds for z, then there exist puy 2 0,k € M7 and X € Rf) such that

0€0°fi(2)+ > mdf(z) + Y MB:(2) + Ne(2), g:(2) = 0,V¢ € T(N).
keMi teT
(2.2)

Lemma 2.2 Let z € F;(z). Assume that the function f; is pseudoconvez,

the functions fi,k € M7 and g;,t € T are quasiconvexz. If there exist pj =
0,k € M’ and ) € Rf) such that (2.2) holds. Then z is an optimal solution
for (Pj(2)).

Theorem 2.2 (Necessary Condition) If z is an efficient solution, then

there exist T > 0 and X € RSLT) such that the following condition holds

0> 70fi(z) + > M0a(z) + N(C,2), Mgi(z) =0, VteT. (2.3)

ieM teT

Theorem 2.3 (Sufficient Condition) Let z € F, assume that 77 f is pseu-

doconvex at z and Mgy, t € T are quasiconver. If there exist T > 0 and

A€ RSLT) such that (2.3) holds, then z is an efficient solution of (MP).

3 Mixed Duality

The dual problem of (MP) in a mixed type of Wolfe type and in Mond-Weir
type is formulated by
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(MD) Maximize f(y)+ > et Mege(y)e
subject to 0 € 37,0 Ti0°fi(y) + D per (M + 1) 0°9:(y) + N(C, ),
mg(y) 20,1 €T,
Te=1,7>0,7€R™e=(1,---,1) e R™,
(y,m, A ) € CxR™ x RY xR,

Let us denote by G the feasible set of (MD). The optimal values of the
problems (MP) and (MD) are denoted by V/(MP) and V(MD) , respectively.

Theorem 3.1 (Weak Duality) Let z and (y, 7, A\, 1) be the feasible solution
of (MP) and (MD), respectively. Assume that (t7f + 3 ,cp(Me + pi)gs) is
pseudoconvez, fi,i € M and g,,t € T are reqular on C. Then the following

cannot hold:

f(@) < fy) +Z)\tgt

teT

Theorem 3.2 (Strong Duality) Suppose that y is an efficient solution
for (MP) and weak duality theorem (Theorem 3.1) holds, then there exist

A € R&T) and 7;,1 € M such that (y,T,\, 1) is an efficient solution for
(MD).

4 Properties of Lagrange Function

The Lagrange function associated to (MP) is formulated by

Lz, \) = { f(z) + Doter Mge(z)e, (z,A) € C X Rf)

~+00, otherwise.

For every A € ]R-g_T), the function L(-, A) is locally Lipschitz on X.
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From now on, we suppose that the function L(-, A) is pseudoconvex on X

for every A € R&T), and f,gs,t € T, are regular on X.

Theorem 4.1 If z is an efficient solution of (MP) and there exists j € M
such that the condition (A;) holds for z, then (z,7,),0) and (2,7,0,X) are
solutions of (MD).

Theorem 4.2 Suppose that (y*, 7%, \*, u*) is a weakly efficient solution of
(MD).

i) It holds L(y, \*+p*) = V(MD) forally € Gy :={y € C | (y, 7", X*,u*) €
G} and prgi(y*) =0 for allt € T.

i1) Furthermore, if V(MD) = V(MP) then Ly, \*+ p*) = V(MD) for all
y € Sol(MP) and (\f + u;)9:(y) =0 forallt € T.
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