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Abstract

In this paper we consider the Cauchy problem in a class of fractional differential
equations. Let 1 < a < 2. We consider the Cauchy problem

D, ult) = p(t)t*u(t)?,
lim u(t) =0, lim #7%U/(t) = (@ — 1),
t—0+4+ t—0+

where p is continuous, a, o, A € R with 0 < 0, A > 0 and D§, is the Riemann-Liouville
fractional derivative. If a = 2, then this problem is the problem in [6].

1 Introduction

In [6], Knezevi¢-Miljanovié¢ considered the Cauchy problem

W' (t) = p(t)teult)’,
{ tl—lrr(Eri. u(t)p:)[)?uu,(o) = A, (1-1)

where p is continuous, a,o, A € R with ¢ < 0 and A > 0. She proved that if p satisfies

1
/ lp(t)|t*T7dt < oo,
0

then the problem has a solution.

On the other hand, fractional differential equations have been studied by many math-
ematicians. For example, in [1] and [7], the authors considered the differential equation of
fractional order

D, u(t) + f(t,u(t)) =0,

where 1 < o < 2 and D, is the Riemann-Liouville fractional derivative. The Riemann-
Liouville fractional derivative of order « of u is given by

1 d [

Dg, u(t) = T(n = o) dt* J,

(t — s)* " u(s)ds,



where n = [a] + 1 and T’ is the gamma function. If o = 2, then n = 3 and

D2, u(t) = F(l'ﬁ% /0 u(s)ds = u'(2).

In this paper we consider the Cauchy problem (1.1) in a class of fractional differential
equations. Let 1 < a < 2. We consider the Cauchy problem

D u(t) = p(t)t°u(t)°,
{ tlgrg;t(t) =p0, Jim #2700 (1) = (o~ 1A, (1.2)

where p is contiriuous, a,0,A € R with ¢ < 0 and A > 0. If @ = 2, then the Cauchy
problem (1.2) is the problem (1.1).

2 Main result

In this section we derive first the integral equation which is equivalent to the problem
(1.2) (Lemma 2.3). Next, by using the Banach fixed point theorem, we obtain the existence
and uniqueness result of solutions of the problem (1.2) (Theorem 2.1).

Let u be a continuous function from (0,00) into R and o be a positive real number.
The Riemman-Liouville fractional integral of order « of u is defined by

() = I‘—(la_) /0 (6= 8)7u(s)ds.

The following lemmas can be found in [5] and [1].

Lemma 2.1. Leta > 0 and u € C(0,1)NL*(0,1). Then the fractional differential equation
Dg u(t) = 0 has a unique solution

u(t) = ct® ' 4 et 4 - £ pt* T,
where c; ER (i =1,...n) and n = [a] + 1.

Lemma 2.2. Let o > 0 and v € C(0,1) N L*(0,1) satisfying D§ u € C(0,1) N L*(0,1).
Then

I§.Dg u(t) = u(t) + Cit* ! + Cot* 2 4 -+ 4 Cpt®™"
for some C1,Cs,...,C, €R andn = [a] + 1.
Next we derive the integral equation which is equivalent to the problem (1.2).

Lemma 2.3. Let p be a continuous function, a € R, 0 < 0 and A > 0. Then the solution
of the Cauchy problem (1.2) is
t

u(t) = Xt + lea—) ; (t — 8)* 'p(s)s®u(s)’ds.
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Proof. By Lemma 2.2, the equation Dg, u(t) = p(t)t*u(t)? is equivalent to the integral
equation

u(t) = IS, p(t)t°u(t)” + C1t* ! + Cot*?

for some C; and Cp. By the definition of the Riemman-Liouville fractional integral If, , we
have

1 t
t) = _ a—1 a ad ta—l C ta—2.
u(t) @) /0 (t — s)* 'p(s)s’u(s)°ds + Cy + Gy
The condition lim; o u(t) = 0 implies C; = 0. Thus

u(t) = %15 /0 (t — 8)*'p(s)s®u(s)ds + Cyt* .

Since

lim 7%/ (t) = (a — 1)C4,

t—0
we obtain that C; = A. |
The following is our main result.

Theorem 2.1. Let p be a continuous function from 0, 1] into R such that

1
/ Ip(6) £+ V7 dt < oo,
0
where 1 < a < 2,a € R, 0 < 0 and A\ > 0. Then there ezists a unique solution u :
(0,h] — R of the Cauchy problem (1.2) such that 3t*~! < u(t) for any t € (0, h].

Proof. By Lemma 2.3, instead of the Cauchy problem (1.2) we consider the integral equa-
tion

u(t) = > 4 I‘_(laj /0 (t — 5)* 'p(s)s®u(s)’ds.

Choose 0 < h < 1 satisfying

[ wostreas <t (3)

/Oh Ip(s)|sH D7 ds < EI(;LI) (%)1—,7

and
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We denote by C[0,h] the space of all continuous functions from [0, ] into R with the
maximum norm given by |lu| = maxo<t<n |u(t)| for any u € C[0, h]. Let X be a subset of
C[0, h] defined by

X = {u € C[0,A] | u(0) =0, tlix& 27 (t) = (o — 1)\, gt"_l < u(t), Vt €10, h]} :

Since a mapping ¢ — At*~! belongs to X, we obtain that X # . Let A be an operator
from X into C|0, h] defined by

1 t
Au(t) = Mot + —-/ t — s)* 1p(s)s*u(s)ds.
) w7 | =9 nleleeu
Then A(X) C X. Indeed, let uw € X. We have Au(0) = 0 and
lim £7*(Au)'(t) = (o — 1A
t—0

Moreover we obtain that

Au(t) > x>t — ﬁ ; (t — 8)*|p(s)|s®u(s)’ds

> Al - -I%x—)— /Ot(t —8)*7p(s)|s” (%s) ads

Aol r‘é‘ﬁ (%)a /0 (= )2 p(s)]s*ds.

Since (t —s)* 1 <t*lfor0<s<t<1and

/Oh lp(s)ls‘”“c(s < T(a) @) o

we have
Au(t) > aemt— L (A e / t Ip(s)|s**ds
' - I'(a) \ 2 0

A

> ta—l a1

> A 2t

)‘ a—1
= §t

Hence we have Au € X. We will find a fixed point of A. Let ¢ be an operator from X into
C|0, ] defined by

2, t#0,

wMﬁ%:{f“’tza
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Then we obtain that
A
olx) = {ze clon [0 = A 5 <20, weon )

and ¢[X] is a closed subset of C[0,h]. Hence it is a complete metric space. Let ®4 be an
operator from ¢[X]| into ¢[X]| defined by

@ aplu] = p[Au].
By the mean value theorem for any u;,u; € X there exists a mapping £ such that

uf (t) — ug(t) _ o-1
wl) —m) of(t)",

where
min{us (8, ua(t)} < €(6) < mae{us (1) wa(6)}
for almost every ¢ € [0, h]. For ¢ # 0, we have
[Baplunl(t) ~ Daslul O] = lolAuil() - plAw)(o)
ey [ 9 B () — o))

Since (t — s)*™* < t*! and

ui(s)” —ua(s)° = oll€(s)1" |ua(s) — ua(s)]

< 102 huas) - walo)

5‘8

for 0 < s <t<1, we have

1@ aplua)(t) — Bacolua] (1)
i,-(la—) / p()5° (s ()7 — un(5)°)ds

< 5@ (g) ol [ Ilsere

I(a) (3) o] f [p(s)]s** 7 dsllilua] — olua]]

<

ds

ui(s)  us(s)
30‘—1 - sa—l

for 0 < t < h. Therefore we have

[aplus] ~ @asual] < 75 (3) lol [ (ol dslipt] = vl



Since

[ s < 20 (Y

f‘—(loT) (g)“—l o] /: Ip(s)[s*T@Vods < 1.

Hence ®4 is contractive. By the Banach fixed point theorem, there exists a unique fixed
point @[u] € ¢[X] of ®4. Since ®4¢[u] = ¢[u], we have Au = u. Therefore u is a unique
solution of of the Cauchy problem (1.2). a

we have

Remark 2.1. If a = 2, then Theorem 2.1 is the result of [6]. See also [3]. In [4], we
considered the Cauchy problem

u'(8) = f(t u(®),
{ u(0) = 0,(u’(c§) =\ (2.1)

which is a generalization of the problem (1.1). Theorem 2.1 will be generalized to the case
of the problem (2.1). This is a further topic. In [4], we considered the Cauchy problem

u'(t) = f(t,u(), ¥'(2)),
{ u(0) = 0, v'(0) =UA. (2.2)

Theorem 2.1 will be generalized to the case of the problem (2.2). This is also a further
topic.
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