# Generalized Beckner's inequalities and its applications to new geometric properties

新潟大学・理学部 斎藤 吉助 (Kichi-Suke Saito)
Department of Mathematics, Faculty of Science, Niigata University
新潟大学大学院・自然科学研究科 田中 亮太朗 (Ryotaro Tanaka)
Department of Mathematical Science,
Graduate School of Science and Technology, Niigata University

#### 1 Introduction

This note is a survey on [7, 8]. For a Banach space X, let

$$\delta_X(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x, y \in S_X, \|x-y\| = \varepsilon \right\}$$

for each  $\varepsilon \in (0,2]$ , and let

$$\rho_X(\tau) = \sup \left\{ \frac{\|x + \tau y\| + \|x - \tau y\|}{2} - 1 : x, y \in S_X \right\}$$

for each  $\tau \geq 0$ . These constants are, respectively, the moduli of convexity and smoothness of X. Let 1 . Then a Banach space <math>X is said to be

- (i) uniformly convex if  $\delta_X(\varepsilon) > 0$  for all  $\varepsilon \in (0, 2]$ ,
- (ii) q-uniformly convex if there exists C > 0 such that  $\delta_X(\varepsilon) \geq C\varepsilon^q$  for each  $\varepsilon \in (0,2]$ ,
- (iii) uniformly smooth if  $\lim_{\tau\to 0^+} \rho_X(\tau)/\tau = 0$ , and
- (iv) p-uniformly smooth if there exists K>0 such that  $\rho_X(\tau)\leq K\tau^p$  for all  $\tau\geq 0$ .

Obviously the implications (ii)  $\Rightarrow$  (i) and (iv)  $\Rightarrow$  (iii) hold. These properties are called geometric properties of Banach spaces as well as strict convexity and uniform non-squareness, and play important roles in the study of Banach space geometry. For basic facts of p-uniform smoothness and q-uniform convexity, the readers are referred to [1, 9].

A norm  $\|\cdot\|$  on  $\mathbb{R}^2$  is said to be absolute if  $\|(x,y)\| = \|(|x|,|y|)\|$  for all  $(x,y) \in \mathbb{R}^2$ , normalized if  $\|(1,0)\| = \|(0,1)\| = 1$ , and symmetric if  $\|(x,y)\| = \|(y,x)\|$ . The set of all absolute normalized norms on  $\mathbb{R}^2$  is denoted by  $AN_2$ . Bonsall and Duncan [3] showed the following characterization of absolute normalized norms on  $\mathbb{R}^2$ . Namely, the set  $AN_2$  of all absolute normalized norms on  $\mathbb{R}^2$  is in a one-to-one correspondence with the set  $\Psi_2$  of all convex functions  $\psi$  on [0,1] satisfying  $\max\{1-t,t\} \leq \psi(t) \leq 1$  for each  $t \in [0,1]$  (cf.

[6]). The correspondence is given by the equation  $\psi(t) = \|(1-t,t)\|$  for each  $t \in [0,1]$ . Remark that the norm  $\|\cdot\|_{\psi}$  associated with the function  $\psi \in \Psi_2$  is given by

$$\|(x,y)\|_{\psi} = \begin{cases} (|x| + |y|)\psi\left(\frac{|y|}{|x| + |y|}\right) & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

We also remark that the norm  $\|\cdot\| \in AN_2$  is symmetric if and only if  $\psi(1-t) = \psi(t)$  for each  $t \in [0,1]$ . For example, the function  $\psi_p$  corresponding to  $\|\cdot\|_p$  is given by

$$\psi_p(t) = \begin{cases} ((1-t)^p + t^p)^{1/p} & \text{if } 1 \le p < \infty, \\ \max\{1-t, t\} & \text{if } p = \infty, \end{cases}$$

and satisfies  $\psi_p(1-t) = \psi_p(t)$  for each  $t \in [0,1]$ . Let  $\Psi_2^S = \{\psi \in \Psi_2 : \psi(1-t) = \psi(1-t) \text{ for each } t \in [0,1]\}$ .

The aim of this note is to present generalized Beckner inequalities, and to introduce new geometric properties of Banach spaces that generalize *p*-uniform smoothness and *q*-uniform convexity using absolute normalized norms.

### 2 Generalized Beckner inequalities

We first consider generalized Beckner inequalities. The original Becker inequality is the following: Let  $1 , and let <math>\gamma_{p,q} = \sqrt{(p-1)/(q-1)}$ . Then the inequality

$$\left(\frac{|u + \gamma_{p,q} v|^q + |u - \gamma_{p,q} v|^q}{2}\right)^{1/q} \le \left(\frac{|u + v|^p + |u - v|^p}{2}\right)^{1/p}$$

holds for each  $u, v \in \mathbb{R}$ . This was shown in 1975 by Beckner [2]. It is also known that  $\gamma_{p,q}$  in the above inequality is the best constant, that is, if  $\gamma \in [0, 1]$  and the inequality

$$\left(\frac{|u+\gamma v|^q + |u-\gamma v|^q}{2}\right)^{1/q} \le \left(\frac{|u+v|^p + |u-v|^p}{2}\right)^{1/p}$$

holds for each  $u, v \in \mathbb{R}$ , then we have  $\gamma \leq \gamma_{p,q}$ . In [10], we constructed an elementary proof of these facts.

Beckner's inequality is easily extended to Banach spaces; see [4, Corollary 1.e.15] for the proof.

**Theorem 2.1.** Let  $1 , and let <math>\gamma_{p,q} = \sqrt{(p-1)/(q-1)}$ . Then the inequality

$$\left(\frac{\|x+\gamma_{p,q}y\|^q + \|x-\gamma_{p,q}y\|^q}{2}\right)^{1/q} \le \left(\frac{\|x+y\|^p + \|x-y\|^p}{2}\right)^{1/p}$$

holds for each  $x, y \in X$ .

Using the functions  $\psi_p$  and  $\psi_q$ , Beckner's inequality can be viewed as follows: Let  $1 , and let <math>\gamma_{p,q} = \sqrt{(p-1)/(q-1)}$ . Then the inequality

$$\frac{\|(u+\gamma_{p,q}v, u-\gamma_{p,q}v)\|_{q}}{2\psi_{q}(\frac{1}{2})} \leq \frac{\|(u+v, u-v)\|_{p}}{2\psi_{p}(\frac{1}{2})}$$

holds for each  $u, v \in \mathbb{R}$ . From this observation, we considered in [7] generalized Beckner's inequality. Namely, for each  $\varphi, \psi \in \Psi_2$ , let

$$\Gamma(\varphi,\psi) = \left\{ \gamma \in [0,1] : \frac{\varphi(\frac{1-\gamma u}{2})}{\psi(\frac{1-u}{2})} \le \frac{\varphi(\frac{1}{2})}{\psi(\frac{1}{2})} \text{ for all } u \in [0,1] \right\},\,$$

and let  $\gamma_{\varphi,\psi} = \max \Gamma(\varphi,\psi)$ . Then we have the following result. Suppose that X is a Banach space. Then for each  $\psi$  the  $\psi$ -direct sum of X, denoted by  $X \oplus_{\psi} X$ , is the space  $X \times X$  equipped with the norm  $\|(x,y)\|_{\psi} = \|(\|x\|,\|y\|)\|_{\psi}$ .

**Theorem 2.2** (Generalized Beckner's inequality [7]). Let X be a Banach space. Suppose that  $\varphi, \psi \in \Psi_2^S$ , and that  $\gamma \in \Gamma(\varphi, \psi)$ . Then the inequality

$$\frac{\|(x+\gamma y, x-\gamma y)\|_{\varphi}}{2\varphi(\frac{1}{2})} \le \frac{\|(x+y, x-y)\|_{\psi}}{2\psi(\frac{1}{2})}$$

holds for each  $x, y \in X$ .

We present some conditions that  $\gamma_{\varphi,\psi} > 0$ ; see [7] for details. For each  $\psi \in \Psi_2^S$ , let  $\psi_L^I$  denote the left derivative of  $\psi$ .

**Theorem 2.3.** Let  $\varphi, \psi \in \Psi_2^S$ . Then the following hold:

- (i) If  $\varphi'_L(1/2) = 0$  and  $\psi'_L(1/2) < 0$ , then  $\gamma_{\varphi,\psi} > 0$ .
- (ii) If  $\varphi'_L(1/2) < 0$  and  $\psi'_L(1/2) = 0$ , then  $\gamma_{\varphi,\psi} = 0$ .
- (iii) If  $\varphi_L'(1/2) < 0$  and  $\psi_L'(1/2) < 0$ , then  $\gamma_{\varphi,\psi} > 0$ .

In particular, if  $\varphi'_L(1/2) < 0$  then

$$\gamma_{\varphi,\psi} \le \frac{\varphi(\frac{1}{2})\psi_L'(\frac{1}{2})}{\psi(\frac{1}{2})\varphi_L'(\frac{1}{2})}.$$

**Theorem 2.4.** Let  $\varphi, \psi \in \Psi_2^S$ . Suppose that the second derivatives  $\varphi''$  and  $\psi''$  are continuous on  $(\delta, 1 - \delta)$  for some  $0 \le \delta < 1/2$ . Then the following hold:

- (i) If  $\varphi''(1/2) = 0$  and  $\psi''(1/2) > 0$ , then  $\gamma_{\varphi,\psi} > 0$ .
- (ii) If  $\varphi''(1/2) > 0$  and  $\psi''(1/2) = 0$ , then  $\gamma_{\varphi,\psi} = 0$ .
- (iii) If  $\varphi''(1/2) > 0$  and  $\psi''(1/2) > 0$ , then  $\gamma_{\varphi,\psi} > 0$ .

In particular, if  $\varphi''(1/2) > 0$  then

$$\gamma_{\varphi,\psi} \le \sqrt{\frac{\varphi(\frac{1}{2})\psi''(\frac{1}{2})}{\psi(\frac{1}{2})\varphi''(\frac{1}{2})}}.$$

Remark 2.5. We remark that

$$\sqrt{\frac{\psi_q(\frac{1}{2})\psi_p''(\frac{1}{2})}{\psi_p(\frac{1}{2})\psi_q''(\frac{1}{2})}} = \sqrt{\frac{p-1}{q-1}} = \gamma_{p,q},$$

where  $\gamma_{p,q}$  is the best constant for Beckner's inequality.

For each  $\psi \in \Psi_2$ , define the function  $\psi^*$  by

$$\psi^*(t) = \max_{0 \le s \le 1} \frac{(1-s)(1-t) + st}{\psi(s)}$$

for each  $t \in [0, 1]$ . Then  $\psi^* \in \Psi_2$  and  $(\mathbb{R}^2, \|\cdot\|_{\psi})^* = (\mathbb{R}, \|\cdot\|_{\psi^*})$ , and so the function  $\psi^*$  is called the *dual function* of  $\psi$ ; see [5]. Clearly,  $\psi \in \Psi_2^S$  if and only if  $\psi^* \in \Psi_2^S$ .

Generalized Beckner inequalities have the following duality property.

Theorem 2.6. Let  $\varphi, \psi \in \Psi_2^S$ . Then  $\gamma_{\varphi,\psi} = \gamma_{\psi^*,\varphi^*}$ .

## 3 New geometric properties

We now consider new geometric properties of Banach spaces. First, we present the following characterizations of p-uniform smoothness and q-uniform convexity.

**Proposition 3.1.** Let X be a Banach space, and let 1 . Then X is p-uniformly smooth if and only if there exists <math>M > 0 such that  $\rho_X(\tau) \le \|(1, M\tau)\|_p - 1$  for each  $\tau \in [0, 1]$ .

*Proof.* Suppose that X is p-uniformly smooth. Then there exists a K > 0 satisfying  $\rho_X(\tau) \leq K\tau^p$  for each  $\tau > 0$ . Since the function f on [0, 1] given by

$$f(\tau) = 1 + pK(1+K)^{p-1}\tau^p - (1+K\tau^p)^p$$

is nondecreasing, it follows that  $f \geq 0$ . Putting  $M = p^{1/p} K^{1/p} (1+K)^{1-1/p}$  we have

$$\rho_X(\tau) \le 1 + K\tau^p - 1$$

$$\le (1 + pK(1 + K)^{p-1}\tau^p)^{1/p} - 1$$

$$= \|(1, M\tau)\|_p - 1$$

for each  $\tau \in [0, 1]$ .

Conversely, let M be a positive real number such that

$$\rho_X(\tau) \le \|(1, M\tau)\|_p - 1$$

for each  $\tau \in [0,1]$ . Then for each  $\tau \in [0,1]$  one has

$$\rho_X(\tau) \le \|(1, M\tau)\|_p - 1 = (1 + M^p \tau^p)^{1/p} - 1 \le 1 + \frac{1}{p} M^p \tau^p - 1 = \frac{1}{p} M^p \tau^p.$$

On the other hand, if  $\tau \geq 1$  then  $\rho_X(\tau) \leq \tau \leq \tau^p$ . Hence we obtain

$$\rho_X(\tau) \le \max\{M^p/p, 1\}\tau^p$$

for each  $\tau \geq 0$ , that is, the space X is p-uniformly smooth.

**Proposition 3.2.** Let  $2 \le q < \infty$ . Then a Banach space X is q-uniformly convex if and only if it is K > 0 such that  $\|(1 - \delta_X(\varepsilon), K\varepsilon)\|_q \le 1$  for each  $\varepsilon \in [0, 2]$ .

*Proof.* Suppose that X is q-uniformly convex. Then there exists C > 0 such that  $\delta_X(\varepsilon) \ge C\varepsilon^q$  for each  $\varepsilon \in [0, 2]$ . One can easily check that

$$(1-x)^q \le 1 - \frac{x}{2}$$

for each  $x \in [0,1]$ . Hence, by  $0 \le C\varepsilon^q \le \delta_X(\varepsilon) \le 1$ , we have

$$(1 - \delta_X(\varepsilon))^q \le (1 - C\varepsilon^q)^q \le 1 - \frac{C\varepsilon^q}{2}.$$

Putting  $K = (C/2)^{1/q}$ , we obtain  $||(1 - \delta_X(\varepsilon), K\varepsilon)||_q = ((1 - \delta_X(\varepsilon))^q + K^q \varepsilon^q)^{1/q} \le 1$  for each  $\varepsilon \in [0, 2]$ .

Conversely, assume that there exists K > 0 such that  $\|(1 - \delta_X(\varepsilon), K\varepsilon)\|_q \le 1$  for each  $\varepsilon \in [0, 2]$ . Then  $(1 - \delta_X(\varepsilon))^q \le 1 - K^q \varepsilon^q$ , and so

$$1 - \delta_X(\varepsilon) \le (1 - K^q \varepsilon^q)^{1/q} \le 1 - \frac{1}{q} K^q \varepsilon^q.$$

Thus, for  $C = K^q/q$ , we have  $\delta_X(\varepsilon) \ge C\varepsilon^q$  for each  $\varepsilon \in [0,2]$ . This shows X is q-uniformly convex.

These propositions allows us to consider new geometric properties using absolute normalized norms. We now introduce  $\psi$ -uniform smoothness and  $\psi^*$ -uniform convexity as follows: Let  $\psi \in \Psi_2$ . Then a Banach space X is said to be

- (i)  $\psi$ -uniformly smooth if there exists M > 0 such that  $\rho_X(\tau) \leq ||(1, M\tau)||_{\psi} 1$  for each  $\tau \in [0, 1]$ .
- (ii)  $\psi^*$ -uniformly convex if there exists K > 0 such that  $\|(1 \delta_X(\varepsilon), K\varepsilon)\|_{\psi^*} \le 1$  for each  $\varepsilon \in [0, 2]$ .

Then Propositions 3.1 and 3.2 guarantee that a Banach space X is

- (a) p-uniformly smooth if and only if it is  $\psi_p$ -uniformly smooth, and
- (b) q-uniformly convex if and only if it is  $\psi_q$ -uniformly smooth.

Naturally, one has  $\psi_q = (\psi_p)^*$  provided that 1/p + 1/q = 1. Hence the above new geometric properties are natural generalizations of that of *p*-uniform smoothness and *q*-uniform convexity.

For further results in this direction, the readers are referred to [8].

#### References

- [1] B. Beauzamy, Introduction to Banach spaces and Their geometry, 2nd ed., North-Holland, Amsterdam-New York-Oxford, 1985.
- [2] W. Beckner, Inequalities in Fourier analysis, Ann. of Math., 102 (1975), 159–182.
- [3] F. F. Bonsall and J. Duncan *Numerical ranges II*, Cambridge University Press, Cambridge, 1973.

- [4] J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces II*, Springer-Verlag, Berlin, 1979.
- [5] K.-I. Mitani, S. Oshiro and K.-S. Saito, Smoothness of  $\psi$ -direct sums of Banach spaces, Math. Inequal. Appl., 8 (2005), 147–157.
- [6] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on  $\mathbb{C}^2$ , J. Math. Anal. Appl., 244 (2000), 515–532.
- [7] K.-S. Saito and R. Tanaka, On generalized Beckner's inequality, Ann. Funct. Anal., 6 (2015), 267–278.
- [8] K.-S. Saito and R. Tanaka, New geometric properties of Banach spaces, to appear in Math. Nachr.
- [9] Y. Takahashi, K. Hashimoto and M. Kato, On sharp uniform convexity, smoothness, and strong type, cotype inequalities, J. Nonlinear Convex Anal., 3 (2002), 267–281.
- [10] R. Tanaka, K.-S. Saito and N. Komuro, Another approach to Beckner's inequality, J. Math. Inequal., 7 (2013), 543–549.