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1 Introduction

This note is a survey on [7, 8]. For a Banach space X, let

5X(5)=inf{l— w;—yl 1 x,y € Sx, |lx—y||=5}
for each € € (0,2], and let
TH+TY| T —T
pein = { L= )

for each 7 > 0. These constants are, respectively, the moduli of convexity and smoothness
of X. Let 1 < p <2< q<oo0. Then a Banach space X is said to be

(i) uniformly convez if §x(e) > 0 for all € € (0,2],

(ii) q-uniformly convez if there exists C' > 0 such that x(g) > Ce? for each € € (0, 2],
(iii) uniformly smooth if lim, o+ px(7)/7 =0, and
(iv) p-uniformly smooth if there exists K > 0 such that px(7) < K7P for all 7 > 0.

Obviously the implications (ii) = (i) and (iv) = (iii) hold. These properties are called geo-
metric properties of Banach spaces as well as strict convexity and uniform non-squareness,
and play important roles in the study of Banach space geometry. For basic facts of p-
uniform smoothness and g-uniform convexity, the readers are referred to [1, 9].

A norm || - || on R? is said to be absolute if ||(z,y)|| = ||(|z|, |y])|| for all (z,y) € R?,
normalized if ||(1,0)| = ||(0,1)|| = 1, and symmetric if ||(z,y)|| = ||(y,z)||. The set of all
absolute normalized norms on R? is denoted by AN,. Bonsall and Duncan [3] showed the
following characterization of absolute normalized norms on R%. Namely, the set AN, of
all absolute normalized norms on R? is in a one-to-one correspondence with the set ¥, of
all convex functions 1 on [0, 1] satisfying max{1 — ¢,t} < ¢(t) < 1 for each t € [0,1] (cf.
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[6]). The correspondence is given by the equation (t) = [|(1 — ¢,¢)|| for each ¢ € [0,1].
Remark that the norm | - ||, associated with the function ¢ € U, is given by

lyl .
9l = (()lxl+|yl)¢< ) it ) £ 0,0),

|zl + [yl
if (z,y) = (0,0).

We also remark that the norm || - || € AN, is symmetric if and only if ¢(1 — t) = (t) for
each ¢ € [0, 1]. For example, the function ¥, corresponding to || - ||, is given by

bo(t) = (=8P +7)/7 if 1 < p < oo,
P max{l —t,t} if p = o0,

and satisfies ¢,(1 — t) = 1,(t) for each t € [0,1]. Let U5 = {tp € Uy : (1 —¢) =
Y(1—1t) for each ¢ € [0, 1]}.

The aim of this note is to present generalized Beckner inequalities, and to introduce
new geometric properties of Banach spaces that generalize p-uniform smoothness and
g-uniform convexity using absolute normalized norms.

2 Generalized Beckner inequalities

We first consider generalized Beckner inequalities. The original Becker inequality is the
following: Let 1 < p < ¢ < 00, and let v, = +/(p — 1)/(¢ — 1). Then the inequality

(’U + Vpgv]? + |u — ’Yp,qvlq> Ve < ([u + vfP + Ju — U|p> e
2 2

holds for each u,v € R. This was shown in 1975 by Beckner [2]. It is also known that Vr.g
in the above inequality is the best constant, that is, if v € [0,1] and the inequality

(Iu—lryvl"-f-lu—fyv[q)l/q < (|u+v!p+]u—v[1’>1/”

2 2

holds for each u,v € R, then we have v < Yp,q- In [10], we constructed an elementary
proof of these facts.

Beckner’s inequality is easily extended to Banach spaces; see [4, Corollary 1.e.15] for
the proof.

Theorem 2.1. Let 1 < p < g < oo, and let v, 4 = +/(p — 1)/(q — 1). Then the inequality

(Hx F ol e vp,qynq)”" < (ux bl +le yup)“f’

holds for each z,y € X.

Using the functions v, and t,, Beckner’s inequality can be viewed as follows: Let
1 <p<qg<oo,andlet 1,4 =/(p— 1)/(g — 1). Then the inequality

[|(u+ Yo.a¥ ¥ = Vp.q9)|lq < (v + v, u~ )|l
2¢4(3) - 2¢(3)
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holds for each u,v € R. From this observation, we considered in [7] generalized Beckner’s
inequality. Namely, for each ¢,9 € ¥y, let

1—7“)

(=5 o(3)
e ey

and let v,y = max['(p,9). Then we have the following result. Suppose that X is a
Banach space. Then for each 1 the 1)-direct sum of X, denoted by X &y X, is the space
X x X equipped with the norm ||(z, y)lly = (]|, [¥I)]v-

I'(p,¢) = {fy e [0,1] : for all u € [0, 1]}

Theorem 2.2 (Generalized Beckner’s inequality (7]). Let X be a Banach space. Suppose
that p, € V5, and that v € T'(p, ). Then the inequality

I +vy,2 —lle o 1@ +y.2 )y
2¢(3) - 29(3)

holds for each x,y € X.

We present some conditions that -, > 0; see [7] for details. For each ¢ € U3, let ¥},
denote the left derivative of 1.

Theorem 2.3. Let ¢,v € U5. Then the following hold:
(i) If ¢7.(1/2) = 0 and ¢¥7(1/2) < 0, then v,y > 0.
(i) If ¢1.(1/2) < 0 and ¥1(1/2) =0, then v,y = 0.

(i) If 7(1/2) < 0 and ¢¥1(1/2) <0, then v,y > 0.

In particular, if ¢ (1/2) < 0 then

1
s

Theorem 2.4. Let o, € U5. Suppose that the second derivatives ¢" and ¢ are con-
tinuous on (8,1 — &) for some 0 < § < 1/2. Then the following hold:

(1) If¢"(1/2) =0 and ¢¥"(1/2) > 0, then v, > 0.
(i) If ¢"(1/2) > 0 and ¥"(1/2) = 0, then Ypy = 0.
(i) If ¢"(1/2) > 0 and ¢"(1/2) > 0, then vy, > 0.

In particular, if ¢"(1/2) > 0 then

Remark 2.5. We remark that
%(%)%’(%) _ /p=1_
1\, 1y — __ = T’
#@(ﬁ)dh(ﬁ) q 1

where 7, , is the best constant for Beckner’s inequality.



For each 1 € Uy, define the function ¥* by

“(f) = max (1—s)(1—1t)+st
¢ (t) - 03521 ’L/)(S)

for each ¢ € [0,1]. Then %* € U3 and (R?,]| - ||4)* = (R, || - ||y+), and so the function 3" is
called the dual function of v; see [5]. Clearly, ¥ € W3 if and only if ¢* € U5,
Generalized Beckner inequalities have the following duality property.

Theorem 2.6. Let ¢, € U5. Then vpp = Yy -

3 New geometric properties

We now consider new geometric properties of Banach spaces. First, we present the fol-
lowing characterizations of p-uniform smoothness and g-uniform convexity.

Proposition 3.1. Let X be a Banach space, and let 1 < p < 2. Then X is p-uniformly
smooth if and only if there exists M > 0 such that px(7) < [|(1, M7)|, — 1 for each
T € [0,1].

Proof. Suppose that X is p-uniformly smooth. Then there exists a K > 0 satisfying
px (1) < K77 for each 7 > 0. Since the function f on [0, 1] given by

f(r)=14+pK(1+ K)P 7P — (14 K1P)?
is nondecreasing, it follows that f > 0. Putting M = p/?K1/P(1 4 K)!~/? we have

px(T) <14 K77 —1
< (1+pK(1+ K lrp)i/e -1
= [I(1, M), — 1

for each 7 € [0, 1].
Conversely, let M be a positive real number such that

px (1) < (1, M7)|l, - 1

for each 7 € [0, 1]. Then for each 7 € [0, 1] one has
1
px(7) <L M7y — 1= (1+ MPrPYYP — 1 < 14 2paerp 1 = Mo
p

On the other hand, if 7 > 1 then px(7) < 7 < 7P. Hence we obtain
px(7) < max{M?®/p,1}7?
for each 7 > 0, that is, the space X is p-uniformly smooth. 0

Proposition 3.2. Let 2 < g < 0o. Then a Banach space X is q-uniformly convez if and
only if it is K > O such that ||(1 — 6x(e), Ke)||, < 1 for each e € [0,2].
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Proof. Suppose that X is g-uniformly convex. Then there exists C' > 0 such that dx(¢) >
Ce? for each € € [0,2]. One can easily check that

T
1-2)1<1~>
(1-ap<1-3
for each z € [0,1]. Hence, by 0 < Ce? < dx(¢) < 1, we have
Ced
(1-0x(e))?! < (1-Ce?)?<1— 76

Putting K = (C/2)"/4, we obtain ||(1 — dx(e), Ke)l|l, = ((1 — dx(€))? + K%9)*? < 1 for
each € € [0, 2].

Conversely, assume that there exists K > 0 such that ||(1 — dx(¢), Ke)||g < 1 for each
£ €0,2]. Then (1 —dx(e))? <1 — K%Y, and so

1—6bx(e) < (1 - K%Y < 1~ L gaga,
q

Thus, for C = K%/q, we have §x(¢) > Ce? for each € € [0,2]. This shows X is g-uniformly
convex. 0

These propositions allows us to consider new geometric properties using absolute nor-
malized norms. We now introduce 1-uniform smoothness and i*-uniform convexity as
follows: Let ¢ € ¥,. Then a Banach space X is said to be

(i) -uniformly smooth if there exists M > 0 such that px(7) < ||(1, M7)|}y — 1 for
each 7 € [0, 1].

(ii) *-uniformly conver if there exists K > 0 such that ||(1 — dx(¢), K¢)|ly» < 1 for
each € € [0,2].

Then Propositions 3.1 and 3.2 guarantee that a Banach space X is
(a) p-uniformly smooth if and only if it is ¢,-uniformly smooth, and
(b) g-uniformly convex if and only if it is 1,-uniformly smooth.

Naturally, one has v, = (¢p)* provided that 1/p + 1/¢ = 1. Hence the above new
geometric properties are natural generalizations of that of p-uniform smoothness and g-
uniform convexity.

For further results in this direction, the readers are referred to [8].
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