B RAT IR SC AT R ZE 6k
1963 % 2015 4 114-121 114

A NEW SCALARIZATION APPROACH FOR SET
OPTIMIZATION PROBLEMS
(EARBLHECHT BH LV NS —LFR)

) IKE - TR 25—
Issei Kuwano*

Faculty of Engineering,
Kanagawa University, Japan

Abstract

In the paper, we introduce a scalarization function of sets, which is based on the
Euclidean inner product and a base of ordering cone, and investigate their proper-
ties. Moreover, we consider an approximate efficient solution for set optimization
problems based on a set-criterion, and show that this solution can be obtained by
solving set optimization problems scalarized by our function. Furthermore, we prove
that any sequence, which is defined by solution sets of scalarized set optimization
problems, converges to an efficient solution of the original set optimization problems.

1 Introduction

Set optimization (or set-valued optimization) has been widely developed by many re-
searchers. In these optimization problems, there are three types of solution concepts. First
is based on a vector criterion, second is based on a set criterion, and last is a complete
lattice approach. The second solution concept is presented by Kuroiwa [1]. The last solu-
tion concept is used in order to apply set optimization approach to mathematical finance
(see [2]-[3]).

On the other hand, several scalarization approaches have been proposed as one of the im-
portant tools in vector optimization ([4]-[6] and references therein). Also, some researchers
consider certain generalizations of those scalarization approaches and apply them in set
optimization [7]-[9]. In 2006, Hamel and Lohne [10] proposed some new scalarization
functions of sets based on two types of set-relations introduced in [11]. Some researchers
investigate properties and applications of Hamel and Loéhne type scalarization functions
in set optimization ([12]-[16]). From the results in these papers, we obtain that solutions
of scalarized optimization problems by these scalarization approaches are weak efficient
solutions of the original set optimization problems. However, solutions of these scalarized
optimization problems are not necessarily efficient solutions of the original set optimiza-
tion problems. In particular, the error between these solutions and efficient solutions may
be very large.

The aim of the paper is to propose a new scalarization function of sets and investigate
its properties. Moreover, we define an approximate solution for set optimization problems
based on Kuroiwa’s approach, and show that this solution can be obtained by solving
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scalarized set optimization problems by our new function.

The organization of the paper is as follows. In Section 2, we introduce some basic
concepts in set optimization. In Section 3, we introduce a new scalarization function of
sets based on inner product, and investigate some properties of this function. In Section 4,
we introduce an approximate solution for set optimization problems by using a set-relation
in [11], and show that this solution can be obtained by solving optimization problems
scalarized by a function introduced in Section 3.

2 Preliminary results

Firstly, we give the preliminary terminology and notation, which will be used in the
paper. Let N be the set of all natural numbers, R™ the n-dimensional Euclidean space
where n € N, and let A, B be two nonempty sets in R®. We denote the origin of R” by
6,; the topological interior, topological closure, and complement of A by intA, clA, and
A€, respectively; the product of & € R and A by aA := {aa|a € A}; the algebraic sum,
algebraic difference of A and Bby A+ B :={a+bla€ A,b€ B}, A— B :={a—bla €
A, b € B}, respectively; the convex hull of A by convA. Moreover, we denote the set
{(z1,...,2,)T € R™z; >0forj=1,...,n} by R7%; the family of all nonempty subsets
of R™ by p(R™); the family of all nonempty compact subsets of R™ by C(R").

Now we define the partial order on R™ by R% as follows:

z <gr yiff y—2 € R? for z,y € R™.
+ +

When <r? ¥y for z,y € R™, we define the order interval with respect to R? between x
and y by [z,y]rr = {z € R*|z <ry zandz <g» y}. When z,y € R, [2,y]r, is denoted
by [z,y]. We say that B C R™ is a base of R% iff B is convex and each k € R% \ {#,} has
a unique representation of tlie form & = A\b for some A\ > 0 and b € B.

Throughout the paper, R™ is the n-dimensional Euclidean space with the Euclidean
norm | - ||, D := {z € R™|F(z) # 0} is convex with nonempty topological interior, and
F : D =3 R" is a set-valued map.

Definition 2.1 ([6]). Let A € p(R"). Then A is said to be R?-convex (resp., closed)
if A+ R7 is convex (resp., closed). Also, we say that a set-valued map F : D = R" is
R% -property valued on D if F(z) has the R’ -property for every z € D.

Let A € p(R™). Then ag € A is said to be minimal element of A iff
(ao - Ri) NA= {ao}.

If R% is replaced by intR?}, then it is called weak minimal element of A. We denote the
set of all minimal (resp., weak minimal) elements of A by MinA (resp., WMinA4).
Now we consider two types of set-relation. Let Ay, Ay € p(R™). Then we write
Ay Sﬁ{% Az by A; C A +R7T.

A1 <g) As by A1 C A -RT

Based on these set-relations, Kuroiwa [1] proposes the following minimal element concepts
of a family of sets. Let A C p(R™). Then A € A is said to be type (*) minimal element
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of A iff for any A € A,
A<g) Ay implies  Ag <g A,

where * = [,u. From [17], it is enough to consider only the case of S]g% . Therefore, we

call it minimal element and denote Slg')l by =Rr? simply. If R"} is replaced by intR%} then

it is called weak minimal element of A. We denote the family of all minimal (resp., weak
minimal) elements of A by Min; A (resp., WMin;A).
Next, let us recall convexity and contintity notions of set-valued map (see [6], [11]).

Definition 2.2. Let F : D =3 R™ be a set-valued map. Then F'is called
(i) R7-convex on D iff for any z,y € D and X € [0, 1],

F(z + (1~ Ny) Zre AF(z) + (1 - A)F(y);

(ii) upper continuous at z € D iff for any V € p(R™), which is an open set with
F(z) C V, there exists an open neighborhood U, of z such that F(y) C V for any
y € Uy;

(iii) lower continuous at z € D iff for any V € p(R™), which is an open set with
F(z) NV # 0, there exists an open neighborhood U, of z such that F(y) NV # 0
for any y € Uy;

(iv) continuous at z € D iff it is lower and upper continuous at z € D.

Moreover, we say that F is upper continuous (resp., lower continuous, continuous) on D
iff F is upper continuous (resp., lower continuous, continuous) at every x € D.

It is easy to check that the following propositions hold.

Proposition 2.1. Let F : D = R™ be a set-valued map. Then the following statements
hold:

(i) If F is R} -convex on D then F is R -convez valued on D;
(ii) If F is R" -convex on D then J,.p F(z) is RY -convez.

Proposition 2.2 ([6]). Let A C D be a nonempty compact set and F : A =3 R™. If F is
compact-valued and upper continuous on A, then |J,c 4 F(x) is compact.

3 Scalarization of sets

Let i = 1,...,m, kj == (k},...,k")T € R"™ a vector such that k} = 1 and k} = 0 for
each j # i, and let B := conv{k;}7_;. Then it is clear that B is a base of R}. At first,
we recall the scalarization function of sets ¢(-,-) : C(R™) x B — R defined as follows:

d(Ak) = grelg(a, k)

where (-, ) is the Euclidean inner product on R".
Then we give the following lemmas.

Lemma 3.1 ([18]). Let A1, A2 € C(R™). Then, the following statements hold:
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(i) For any k € B,
gb(Al, k) = IIelgl (a, k‘)
a€Ay

(i) If Ay =g Az, then ¢(A1, k) < ¢(Az, k) for any k € B.
(111) [f Ay jint]Ri A2, then ¢(A1, k) < ¢(A2,k‘) fOT any ke B.
(iv) If the following two conditions are satisfied:
(i) Az is R} -conves;
(i) Ag Arn A1;
then there exists a ko € B such that $(A1,ko) < ¢(Az, ko).
Lemma 3.2 ([18]). Let A € C(R™). Then ¢(A,-) is continuous on B.

Let K*(A) = {y e R™|(y,k;) € [, 2]} where j = 1,...,m, A € N, and m =
1,...,A. Then we define the sets B;(\) as follows where i = 1,..., A"

Bl()\) .

Bz()\) .

Kl(\N...nK:X)nB
KiO)n...nK3*(\)NB

il

I

Byx(\) :' Kion...nK)X\NB
Byi1(A)=Ki(0\)Nn...nK2_(MNK}\NNB

Box(N) :; KiA)Nn...nK2_{(A)NK)\NNB

Byn()\) f= KM}M)N...nK) (MNNK)N\NNB

Let A be a nonempty compact and R% -convex subset of R™. Based on these sets and
Lemma 3.2, a scalarization function of sets ®, is defined by

An

1
OA(4) = 1 ; (e O(4,k)
here in(k,a) (Bi() #0)
max min(k,a i ,
‘ — J keB;()) a€A
(2% (A K) { 0 ) (Bi(\) = 0)

Then, we give several properties of this function.
Lemma 3.3 ([18]). Let A;, A; € C(R™). Then the following statements hold:
(i) ®A(A1) €R for any A € N.
(11) If A1 jRi A2 then (I))\(Al) < ‘I))\(Ag) fOT‘ any AEN.
(i) If Ay Rintry Az then @3(A1) < ®5(A2) for any A € N.

(iv) If the following two conditions are satisfied:
(i) Az is R} -conves;
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(if) A1 =gy Az and Ay Zry Ay; i
then there exists a A € N such that ®5(A1) < ®x(Az) for all X > M.
(v) There exists a ra, € R such that

lim q))\(Al) =TA,-
A—00

4 Main results

Let F : D = R™ be a set-valued map. We consider the following set optimization

problem:
Minimize F(z)
(SOP) { subject to z € D.

We say that & € D is an efficient (resp., weak efficient) solution of (SOP) iff F(z) is a
minimal (resp., weak minimal) element of the family of sets F(D) := {F(z)|z € D}. Now
we define an approximate solution of (SOP).

Definition 4.1. Let F : D =3 R™ be a set-valued map and € > 0. Then Z € D is called
e-approximate solution of (SOP) iff for any z € D,

F(z) Zr» F(z) implies F(Z)—eB =gy F(z).

We denote the family of sets {F(z)|z is an e-approximate solution of (SOP)} by
eMin; F(D); the set of all e-approximate solution of (SOP) by S.(F').

To illustrate the notion above, we give the following simple examples.

Example 4.1. Let X := [-1,1]. Then we consider the set-valued map F : X = R?

defined by
ro) = eane{ (7). () }

Min, F(X) = {F(1)},

Then

WMin F(X) = F(X),
eMin F(X) = {F(z)|z € [1 — ¢,1]}.
bExample 4.2. Let X :=[0,1]. Then we consider the set-valued map F : X =3 R defined
’ F(z) := [z,z +1].

Then
Min; F(X) = WMin F(X) = {0},

eMin F(X) = {F(z)|z < €}.



Examples 4.1 and 4.2 show that any weak efficient solution (resp., e-approximate so-
lution) is not necessary e-approximate solution (resp., weak efficient solution) for some
e > 0.

In this section, we consider a scalarized optimization problem by ®,, and show that an
approximate solution of the original set optimization problem can be obtained by solving
this problem. For this end, we give the following lemmas.

Lemma 4.1 ([17]). Let A be a nonempty compact subset of D and F : A = R™ a compact
set-valued map. If F is upper continuous on A, then Min F(A) # 0. In particular, for each
a € A there exzists an o’ € A satisfying with F(a') € Min F(A) such that F(a') <g» F(a).

Lemma 4.2 ([18]). Let A be a nonempty compact convex subset of D and F: A3 R™ a
compact set-valued map. Then the following statements hold:

(i) If F is R} -convex on A, then ®5(F) is convezx on A for any X € N.
(i) If F is continuous on A, then ®,(F) is continuous on A for any A € N.

By the proof of Theorem 3.2 in [19], we obtain the following lemma.

Lemma 4.3. Let A C intD and F : A = R™ a set-valued map. If F is compact and
R?% -conver on A, then for any x € A and € > 0 there exist a k € intR}Y N B and M > 0
such that

F(y) C F(z) — M|y — z|k +R%

for any y € Ve(z) := {y e R™||ly — z|| < ¢}.

Theorem 4.1 ([18]). Let A be a nonempty compact convex subset of D with intA # (
and F : A3 R™ a compact set-valued map. Assume that F is continuous and R7 -convez
on A, and |JMin(F(X)) C intA. If xx € A is a solution to the following optimization
problem:

Min &, (F(z))
(SOP)g, { subject to xz € A,

then x is a weak efficient solution of (SOP). In particular, if zx € intA then there ezists
a €x > 0 such that the following statements hold:

(i) xx is an ex-approrimate solution of (SOP),
(ii) ex = 0 as A — oo.

In [20], we consider a common solution of parametric vector optimization problems and
give sufficient conditions for the existence of this solution by set optimization approach.
Based on these results and Theorem 4.1, we obtain the following theorem.

Theorem 4.2. Let A be a nonempty compact convex subset of D with intA # @, T a
compact subset of R, f: A= R", u: T - R", and g: A x T — R™ defined by '

9(z,t) = f(x) + p(t).

Moreover, let F : A =3 R™ be a set-valued map defined by

F(z) = g(e,T) = f(z) + {ult) : t € T},
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Assume that f is continuous and R’ -convex on A, {u(t) : t € T} is compact and convez,
and |JMin;(F(X)) C intA. Then there ezists a xg € A with

lim @x(F(20)) = min lim ®,(F(z)) (4.1)

TEA A—00

such that xo is a common solution of g, that is, for anyx € A andt € T,

9(z,t) Zrr 9(zo, ).

Proof. By Theorem 4.1, there exists a g € A satisfying with (4.1). To use contradiction,
we assume that zg is not a common solution of g. Then there exist a tg € T and Z € A
such that

9(Z,t0) <wrr 9(z0,%0) and g(zo,t0) £rr 9(Z, o).

Since {u(t) : t € T} is compact, we have
F(z) =gz F(zo) and F(zo) Zry F(2).

By Lemma 3.3, there exists a Ag € N such that ®,(F(Z)) < ®A(F(zg)) for any A > Ap.
This contradicts (4.1). Therefore, z¢ is a common solution of g. O

5 Conclusion

In the paper, by using ¢, which is a scalarization function of sets based on the inner
product, we propose a new scalarization function of sets ®) where A € N, and investigate
their properties. Moreover, we consider convex set optimization problems with a set-
relation =Rz, and introduce an approximate solution for (SOP). In Theorem 4.1, we

prove that some convex set optimization problems can be replaced by scalar optimization
problems by ®,. Also, Theorem 4.2 shows that our scalarization function is useful to find
a common solution of parametric convex vector optimization problems.

References

[1] Kuroiwa, D.: On set-valued optimization. Proceedings of the Third World Congress
of Nonlinear Analysts, Part 2 (Catania, 2000), Nonlinear Anal. 47, 1395-1400 (2001)

[2) Hamel, A. H, Heyde, F., Rudloff, B.: Set-valued risk measures for conical market
models. Math. Finan. Econ. 5, 1-28 (2011)

[3] Hamel, A. H, Rudloff, B., Yankova, M.: Set-valued average value at risk and its
computation. Math. Finan. Econ. 7, 229-246 (2013)

[4] Gopfert, A., Riahi, H., Tammer, C., and Zilinescu, C.: Variational methods in par-
tially ordered spaces. Springer-Verlag, New York (2003)

[5] Jahn, J.: Vector Optimization—Theory, Applications, and Extensions. Springer-
Verlag, Berlin (2004)

[6] Luc, D. T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathe-
matical Systems, 319, Springer, Berlin (1989)

[7] Georgiev, P. G., and Tanaka, T.: Fan’s inequality for set-valued maps. Nonlinear
Anal. 47, 607-618 (2001)



[8] Nishizawa, S., Tanaka, T., and Georgiev, P. G.: On inherited properties of set-valued
maps. In: Takahashi, W. and Tanaka, T. (eds.): Nonlinear Analysis and Convex
Analysis, pp. 341-350. Yokohama Publishers, Yokohama (2003)

[9] Shimizu, A., Nishizawa, S., and Tanaka, T.: Optimality conditions in set-valued
optimization using nonlinear scalarization methods. In: Takahashi W. and Tanaka T.
(eds.): Nonlinear Analysis and Convex Analysis, pp. 565-574. Yokohama Publishers,
Yokohama (2007)

[10] Hamel, A., and Léhne, A.: Minimal element theorems and Ekeland’s principle with
set relations. J. Nonlinear Convex Anal. 7, 19-37 (2006)

[11} Kuroiwa, D., Tanaka, T., and Ha, T.X.D.: On cone convexity of set-valued maps.
Nonlinear Anal. 30, 1487-1496 (1997)

[12] Araya, Y.: Four types of nonlinear scalarizations and some applications in set opti-
mization. Nonlinear Anal. 75, 3821-3835 (2012)

[13] Hernéndez, E., Rodriguez-Marin, L.: Nonconvex scalarization in set-optimization
with set-valued maps. J. Math. Anal. Appl. 325, 1-18 (2007)

[14] Maeda, T.: On optimization problems with set-valued objective maps: existence and
optimality. J. Optim. Theory Appl. 153, 263-279 (2012)

[15] Kuwano, 1., Tanaka, T., and Yamada, S.: Characterization of nonlinear scalarizing
functions for set-valued maps. In: Akashi S., Takahashi W. and Tanaka T. (eds.):
Nonlinear Analysis and Optimization, pp. 193-204. Yokohama Publishers, Yokohama
(2009)

[16] Kuwano, I., Tanaka, T., and Yamada, S.: Unified scalarization for sets and set-valued
Ky Fan minimax inequalities. J. Nonlinear and Convex Anal. 11, 1-13 (2010)

[17] Hernéndez, E., Rodriguez-Marin, L.: Existence theorems for set optimization prob-
lems. Nonlinear Anal. 67, 17261736 (2007)

[18] Kuwano, I.: A characterization of set optimization problems with a set-criterion by
scalarization. preprint

[19] Kuwano, I., Tanaka, T.: Continuity of cone-convex functions. Optim. Lett. 6, 1847—
1853 (2012)

[20] Kuwano, I.: Some minimax theorems of set-valued maps and their applications. Non-
linear Anal., 109, 85-102 (2014)

121



