On a class of indecomposable modules with trivial source

Masafumi Murai April 25, 2012

Abstract The concept of *p*-radical groups was introduced by Motose-Ninomiya [MN]. Later Tsushima [Ts] investigated *p*-radical blocks, a block-wise version of *p*-radical groups. Here we consider more general blocks and introduce module-theoretical viewpoint.

Introduction

Let p be a prime. Let k be an algebraically closed field of characteristic p. Tsushima [Ts] has defined p-radical blocks. In this paper we consider a more general concept and give a module theoretical consideration. We need to introduce some terminology. Let G be a group and P a p-subgroup of G. An indecomposable (right) kG-module S is said to be weakly P-radical if it is P-projective and the number of indecomposable summands (counting multiplicity) of S_P equals $\frac{\dim S[vx(S)]}{|P|}$ (for notation, see below). A simple kG-module S is said to be P-radical if $(1_P)^G \simeq mS \oplus V$, where m is an integer and V is a kG-module not involving S, in which case m is positive, since $Hom_{kG}(S, (1_P)^G) \neq 0$. We call a p-block B of G weakly P-radical if any simple kG-module in B is weakly P-radical. We call B P-radical if any simple kG-module in B is P-radical. Clearly B is P-radical if and only if $(1_P)^G e_B$ is semi-simple, where e_B is a block idempotent of kG corresponding to B. So when P is a Sylow p-subgroup of G, a P-radical block is a p-radical block in the sense of Tsushima [Ts].

In Section 1 we show for any p-subgroup P of G, B is P-radical if and only if B is weakly P-radical. In Section 2 we consider relationship between weakly P-radical simple modules and subgroups of G for a Sylow p-subgroup P of G. We obtain an alternative proof of a theorem of Laradji [La]. In Section 3 we consider D-radical blocks B for a defect group D of B and strengthen a theorem of Hida-Koshitani [HK].

For a k-module X dim X denotes the k-dimension of X. For an indecomposable kG-module S, let $\mathrm{vx}(S)$ be a vertex of S. For a group H and kH-modules X,Y, Hom (X,Y) denotes $\mathrm{Hom}_{kH}(X,Y)$ and let P(X) be the projective cover of X. For subgroups H,K of $G,H\setminus G/K$ denotes a complete set of representatives of (H,K)-double cosets in G.

1. Weakly P-radical and P-radical modules

Let P be a p-subgroup of the group G. For an indecomposable kG-module S, let $n_{S,P}$ be the number of indecomposable summands of S_P (counting multiplicity), let $n'_{S,P}$ be the number of indecomposable summands of S_P (counting multiplicity) whose vertices are G-conjugate to vx(S). Note that $n'_{S,P}$ is positive, if S is P-projective, cf.[Fe,III 4.6]. Let $m_{S,P}$ be the multiplicity of S in $(1_P)^G$ as direct summands. If S is simple, let $k_{S,P}$ be the multiplicity of S in $(1_P)^G$ as irreducible constituents.

Lemma 1. Let S be a P-projective indecomposable kG-module. Then $n_{S,P} \leq \frac{\dim S|vx(S)|}{|P|}$ and the following are equivalent.

- (i) $n_{S,P} = \frac{\dim S[\operatorname{vx}(S)]}{|P|}$.
- (ii) S_P is a direct sum of modules of the form $(1_A)^P$ where A is a vertex of S contained in P.
- (iii) $S_P \simeq \bigoplus_i (1_{Q_i})^P$, where Q_i are subgroups of P of the same order. If these conditions hold, then S has a trivial source.

Proof. We have $S_P=\bigoplus_{i=1}^{n_{S,P}}W_i^P$, where W_i are indecomposable kQ_i -modules for $Q_i\leq P$ with $Q_i\leq_G \operatorname{vx}(S)$. So dim $S=\sum_i|P:Q_i|\operatorname{dim}W_i\geq (\sum_i\operatorname{dim}W_i)|P|/|\operatorname{vx}(S)|\geq n_{S,P}|P|/|\operatorname{vx}(S)|$. Thus $n_{S,P}\leq \frac{\operatorname{dim}S|\operatorname{vx}(S)|}{|P|}$. The rest follows from [Fe, III 4.6].

As stated in Introduction, for a p-subgroup P of G, we say an indeccomposable kG-module S weakly P-radical if S is P-projective and $n_{S,P} = \frac{\dim S|vx(S)|}{|P|}$. For this definition we have the following, which is straightforward to see.

Lemma 2. Let P be a p-subgroup of G and let S be an indecomposable kG-module. Let x be any element of G. Then $n_{S,P} = n_{S,P^x}, n_{S,P}' = n_{S,P^x}', m_{S,P} = m_{S,P^x}$ and if S is simple $k_{S,P} = k_{S,P^x}$. In particular, if S is weakly P-radical, then S is weakly P^x -radical.

Recall that a weight U for G is a projective simple $k[N_G(Q)/Q]$ -module for a p-subgroup Q of G ([Al]). So as a $kN_G(Q)$ -module U is indecomposable with trivial source and has Q as a vertex. The Green correspondent of U with respect to $(G,Q,N_G(Q))$ is said to be an Alperin (kG-)module.

The following strengthens Lemma 1 of [Al].

Theorem 3. Let P be a p-subgroup of G. Let S be a P-projective indecomposable kG-module with trivial source. Then $m_{S,P} \leq n'_{S,P}$ and the equality holds if and only if S is an Alperin module.

Proof. We compute $n'_{S,P}$. Let Q be a vertex of S. Let U be the Green correspondent of S with respect to $(G,Q,N_G(Q))$. By Green's theorem, $U^G=S\oplus V$, where V is \mathcal{X} -projective for $\mathcal{X}=\{Q\cap Q^x;x\notin N_G(Q)\}$. Since V_P has no

direct summands whose vertex is G-conjugate to Q, it suffices to consider $(U^G)_P$. By Mackey decomposition, $(U^G)_P \simeq \bigoplus_{x \in N_G(Q) \backslash G/P} ((U^x)_{N_G(Q)^x \cap P})^P$. Assume that $((U^x)_{N_G(Q)^x\cap P})^P$ has an indecomposable summand with vertex G-conjugate to Q. Then for a vertex R of some indecomposable summand of $(U^x)_{N_G(Q)^x\cap P}$, we have $R^u\geq Q^g$ for some $u\in P$ and $g\in G$. Since U^x has a vertex Q^x , which is normal in $N_G(Q)^x$, we have $R \leq Q^x$. Therefore $R = Q^x$. Hence $P \geq Q^x$. Conversely assume $P \geq Q^x$. Then $N_G(Q)^x \cap P \geq Q^x$. Therefore $(U^x)_{N_G(Q)^x\cap P}=\overline{U^x}_{\overline{N_G(Q)^x\cap P}}$, where $\overline{N_G(Q)^x\cap P}=N_G(Q)^x\cap P/Q^x$ and $\overline{U^x}$ is the $N_G(Q^x)/Q^x$ -module corresponding to U^x .

Since $\overline{U^x}$ is projective, we obtain $\overline{U^x}_{\overline{N_G(Q)^x \cap P}} \simeq \frac{\dim U}{|\overline{N_G(Q)^x \cap P}|} k[\overline{N_G(Q)^x \cap P}].$ Since $k[\overline{N_G(Q)^x \cap P}] = (1_{Q^x})^{N_G(Q)^x \cap P}$, we have $((U^x)_{N_G(Q)^x \cap P})^P \simeq \frac{\dim U}{|N_G(Q)^x \cap P|} (1_{Q^x})^P$.

Therefore $n'_{S,P} = \sum_{x \in N_G(Q) \backslash G/P, P \geq Q^x} \frac{\dim U}{|N_G(Q)^x \cap P|}$. Now we consider $m_{S,P}$. By the Burry-Carlson-Puig theorem, $m_{S,P}$ equals the multiplicity of U in $((1_P)^G)_{N_G(Q)}$ as direct summands. By Mackey decomposition, we have

$$((1_P)^G)_{N_G(Q)} \simeq \bigoplus_{x \in P \setminus G/N_G(Q)} (1_{P^x \cap N_G(Q)})^{N_G(Q)}.$$

Since U has vertex Q it suffices to consider those $x \in P \backslash G/N_G(Q)$ for which $Q \leq$ $P^x. \text{ Then, } (1_{P^x\cap N_G(Q)})^{N_G(Q)}=(1_{\overline{P^x\cap N_G(Q)}})^{\overline{N_G(Q)}}, \text{ where } \overline{N_G(Q)}=N_G(Q)/Q.$ Put $(1_{\overline{P^x \cap N_G(Q)}})^{\overline{N_G(Q)}} \simeq n_x \overline{U} \oplus V_x$, where \overline{U} is the $\overline{N_G(Q)}$ -module correspoding

 V_x has no summands isomorphic to \bar{U} . Then $m_{S,P} = \sum_{x \in P \setminus G/N_G(Q), Q < P^x} n_x$. Now

$$\dim \operatorname{Hom}((1_{\overline{P^x\cap N_G(Q)}})^{\overline{N_G(Q)}},\bar{U})=n_x\dim \operatorname{Hom}(\bar{U},\bar{U})+\dim \operatorname{Hom}(V_x,\bar{U})\geq n_x.$$

On the other hand,

$$\begin{split} \dim \operatorname{Hom}((1_{\overline{P^x \cap N_G(Q)}})^{\overline{N_G(Q)}}, \bar{U}) &= \dim \operatorname{Hom}((1_{\overline{P^x \cap N_G(Q)}}, \bar{U}_{\overline{P^x \cap N_G(Q)}}) \\ &= \frac{\dim U}{|\overline{P^x \cap N_G(Q)}|}, \end{split}$$

since \tilde{U} is projective. Therefore

$$\sum_{x \in P \backslash G/N_G(Q), Q \leq P^x} \dim \operatorname{Hom}(1_{\overline{P^x \cap N_G(Q)}})^{\overline{N_G(Q)}}, \bar{U}) = \sum_{x \in P \backslash G/N_G(Q), Q \leq P^x} \frac{\dim U}{|\overline{P^x \cap N_G(Q)}|} = n'_{S,P}.$$

Here the last equality follows by considering the correspondence $x \mapsto x^{-1}$. Hence $n'_{S,P} \geq \sum_x n_x = m_{S,P}$. If the equality holds then $m_{S,P} = n'_{S,P} \neq 0$, since S is P-projective,cf, [Fe,III 4.6]. So $n_x \neq 0$ for some x. Thus dim Hom $(\bar{U}, \bar{U}) = 1$. Since \bar{U} is projective we see \bar{U} is simple and S is Alperin. Conversely assume U is simple. Then equality holds throughout. Hence $m_{S,P} = n'_{S,P}$. The proof is complete.

Corollary 4. Let S be a P-projective simple module with trivial source. Then

$$m_{S,P} \le n'_{S,P} \le n_{S,P} \le k_{S,P} = \frac{\dim P(S)}{|P|}.$$

Proof. The first inequality follows from Theorem 3. The second is trivial. To prove the third, put $S_P \simeq \bigoplus_{i=1}^{n_{S,P}} (1_{Q_i})^P$ for suitable Q_i . Then $n_{S,P} = \dim \operatorname{Hom}(S_P, 1_P) = \dim \operatorname{Hom}(S, (1_P)^G) \leq k_{S,P}$. Further $k_{S,P} = \dim \operatorname{Hom}(P(S), (1_P)^G) = \dim$

Proposition 5. Let S be a simple module. If S is P-radical, then S is weakly P-radical.

Proof. Since S is P-projective and has trivial source, by Corollary 4 we have $m_{S,P} \le n'_{S,P} \le n_{S,P} \le k_{S,P}$. By assumption $m_{S,P} = k_{S,P}$, so that $n'_{S,P} = n_{S,P}$. Thus S is weakly P-radical.

When P is a Sylow p-subgroup of G, a weakly P-radical module is said to be just a weakly radical module. The same is true for other terminology. Also $n_{S,P}$ is denoted by n_S etc. Such convention is justified by Lemma 2. Note that then radical blocks are p-radical blocks as defined by Tsushima [Ts]. .

Corollary 6. ([Ok2, Lemma 1]) A radical (simple) module is weakly radical.

The following is fundamental.

Proposition 7. ([Ok1, Lemma 2.2]). A simple kG-module with trivial source is an Alperin module.

Lemma 8. If S is an Alperin module, then $(\dim S)_p = |P : vx(S)|$, where P is a Sylow p-subgroup of G with $vx(S) \leq P$.

Proof. See the proof of Lemma 2.2 of [Ok1].

Proposition 9. Let S be a simple kG-module. Let P be a Sylow p-subgroup of G.

- (i) If S is weakly radical, $\dim P(S) \ge |\operatorname{vx}(S)| \dim S \ge |P| (\dim S)_{p'}$. Furthermore the following conditions are equivalent.
 - (ii) S is radical.
 - (iii) S is weakly radical and $\dim P(S) = |P|(\dim S)_{p'}$.
 - (iv) S is weakly radical and $\dim P(S) = |vxS| \dim S$.
 - (v) $n_S = \frac{\dim P(S)}{|P|}$.

Proof. We may assume $P \ge \text{vx}(S)$. (i) By Corollary 4 we have $\frac{\dim P(S)}{|P|} = k_S \ge n_S = \frac{\dim S}{|P:\text{vx}(S)|}$, from which the

first inequality follows. The second inequality follows from Green's theorem.

(ii) \Rightarrow (iii): By Corollary 6, S is weakly radical. Also by Corollary 4 $n_S = k_S$. We have $n_S = \frac{\dim S}{|P: v \times (S)|} = (\dim S)_{p'}$ by Proposition 7 and Lemma 8. And $k_S = \frac{\dim P(S)}{|P|}$. Thus the equality holds.

(iii)⇒(iv): This follows from (i).

(iv) \Rightarrow (v): Since S is weakly radical, $n_S = \frac{\dim S}{|P| \cdot \text{vx}(S)|}$. The result follows.

 $(v)\Rightarrow$ (ii): Write $S_P=\oplus_{i=1}^{n_S}(W_i)^P$, where each W_i is an indecomposable kQ_i -module for some $Q_i\leq P$. Then dim Hom $(1_P,S_P)=\sum_i\dim$ Hom $(1_P,(W_i)^P)=\sum_i\dim$ Hom $(1_{Q_i},W_i)\geq n_S$. So we have

$$n_S \le \dim \operatorname{Hom}(1_P, S_P) = \dim \operatorname{Hom}((1_P)^G, S) \le k_S = \frac{\dim P(S)}{|P|}.$$

Hence equality holds throughout. Likewise we have dim $\operatorname{Hom}(S,(1_P)^G)=k_S$. Hence there exist submodules U and V of $(1_P)^G$ with the following properties: $U \simeq k_S S$, $(1_P)^G/V \simeq k_S S$ and V does not involve S. Then $U \cap V = 0$ and hence $(1_P)^G = U \oplus V$. Thus S is radical. The proof is complete.

Corollary 10. Let S be a simple kG-module for a p-solvable group G. Then S is radical if and only if S is weakly radical.

Proof. "only if" part: This follows from Corollary 6. "if" part: Let P be a Sylow p-subgroup of G. Since G is p-solvable dim $P(S) = |P|(\dim S)_{p'}$ by Fong's theorem [Na, Corollary10.14]. Thus Proposition 9 yields the result.

Remark. There does exist a simple kG-module which is weakly radical but not radical. Indeed, clearly 1_G is always weakly radical. Let G be the alternating group of degree 5 and p=3. Then dim $P(1_G)=6([{\rm HB,\,p.222}])$. So by Proposition 9, 1_G is not radical.

Corollary 11. If B is radical, then $(1_P)^G e_B \simeq \bigoplus_S (\dim S)_{p'} S$, where S runs through simple modules in B up to isomorphism.

Theorem 12. Let P be a p-subgroup of G. Then B is P-radical if and only if B is weakly P-radical.

Proof. "if" part: Let $(1_P)^G e_B \simeq \bigoplus_{S} m_{S,P} S \oplus X$, where S runs through simple modules in B up to isomorphism. Assume $X \neq 0$ and let T be a simple submodule of X. Then dim $\operatorname{Hom}(T,(1_P)^G) > m_{T,P}$. But dim $\operatorname{Hom}(T,(1_P)^G) = \dim \operatorname{Hom}(T_P,1_P) = n_{T,P} = n_{T,P}' = m_{T,P}'$ by Proposition 7 and Theorem 3, a contradiction. Hence X=0 and B is P-radical.

"only if" part: This follows from Proposition 5. □

The group G is said to be p-radical, if $(1_P)^G$ is semi-simple for a Sylow p-subgroup P of G ([Ts,p.80]),

Corollary 13. G is p-radical if and only if any simple kG-module is weakly radical.

Lemma 14. If an Alperin module S is weakly radical, then S is simple.

Proof. By Theorem 3 $m_S = n_S$. From $(1_P)^G = m_S S \oplus V$, we have $n_S = \dim \operatorname{Hom}(S_P, 1_P) = \dim \operatorname{Hom}(S, (1_P)^G) = m_S \dim \operatorname{Hom}(S, S) + \dim \operatorname{Hom}(S, V)$ Thus $\operatorname{Hom}(S, S) = k$ and $\operatorname{Hom}(S, V) = 0$. Let T be a simple module in the

head of S. Since Hom $(T, (1_P)^G)$ = Hom $(T_P, 1_P) \neq 0$, T is a submodule of V or S. The former is impossible, since Hom (S, V) = 0. Thus the latter holds. Then there is a non-zero homomorphism $\varphi : S \to \operatorname{Soc}(S)$. Of course $\varphi(J(S)) = 0$. Since Hom (S, S) = k, φ must be a monomorphism. Therefore J(S) = 0. Thus S is simple.

Proposition 15. Let B be a block of G. Assume that Alperin's weight conjecture [Al] is true for B. Then the following are equivalent.

- (i) B is radical.
- (ii) $(1_P)^G e_B$ is a direct sum of weakly radical indecomposable modules.
- (iii) All Alperin modules in B are weakly radical.
- *Proof.* (i) \Rightarrow (ii): Any simple module S in B is radical. Hence S is weakly radical by Corollary 6.
- (ii) \Rightarrow (iii):Let S be an Alperin module in B. Then $m_S = n_S' > 0$ by Theorem 3 and [Fe,III 4.6]. Hence S is weakly radical.
- $(iii)\Rightarrow$ (i): Let S be an Alperin module in B. Then S is weakly radical. Hence S is simple by Lemma 14. Thus, by Alperin's weight conjecture, any simple module T in B is an Alperin module. Hence T is weakly radical. So B is weakly radical and radical by Theorem 12.

Proposition 16. Let S be an indecomposable kG-module. If dim S is prime to p, then S is weakly radical if and only if G/Ker S is a p'-group.

Proof. (i) "only if" part: Let P be a Sylow p-subgroup of G. By Lemma 1, we have $S_P \simeq \bigoplus_i (1_{Q_i})^P$, where Q_i are vertices of S. Thus $Q_i = P$ for all i and $P \leq \operatorname{Ker} S$.

"if" part: Since $P \leq \text{Ker}S$, the result follows by Lemma 1.

2. Weakly radical simple modules and subgroups

In this section we consider relationship between weakly radical simple modules and subgroups.

Proposition 17. Let S be a simple kG-module with trivial source. Let H be a subgroup of G and let U be a simple kH-module such that $S \simeq U^G$.

- (i) If S is weakly radical, then U is weakly radical.
- (ii) Let P be a Sylow p-subgroup of G. The following are equivalent.
- (iia) S is radical and $P(S) \simeq P(U)^G$.
- (iib) dim $\operatorname{Inv}_{P^x \cap H}(U) = \frac{\dim P(U)}{|P^x \cap H|}$ for any $x \in G$.
- (iic) U is radical and S is weakly radical.
- *Proof.* (i) Choose a Sylow p-subgroup P of G such that $Q = P \cap H$ is a Sylow p-subgroup of H. We have $(U_Q)^P|S_P$ by Mackey decomposition. Since S has a trivial source, so does U. So we can put $U_Q \simeq \bigoplus_i (1_{R_i})^Q$ for some subgroups R_i of Q. Then $(U_Q)^P \simeq \bigoplus_i (1_{R_i})^P$. Since S is weakly radical, all R_i have the same order. Thus U is weakly radical by Lemma 1.

(iia) \Rightarrow (iib): We have $n_S = \dim \operatorname{Hom}(1_P, S_P) = \dim \operatorname{Hom}((1_P)^G, S) = \dim \operatorname{Hom}(((1_P)^G)_H, U) = \sum_{x \in P \setminus G/H} \dim \operatorname{Hom}((1_{P^x \cap H})^H, U)$. Here

$$\dim \operatorname{Hom}((1_{P^x \cap H})^H, U) = \dim \operatorname{Hom}(1_{P^x \cap H}, U_{P^x \cap H}) = \dim \operatorname{Inv}_{P^x \cap H}(U).$$

And

$$\dim \operatorname{Hom}((1_{P^x \cap H})^H, U) \leq \dim \operatorname{Hom}(P(U), (1_{P^x \cap H})^H) = \dim \operatorname{Hom}(P(U)_{P^x \cap H}, 1_{P^x \cap H}) = \frac{\dim P(U)}{|P^x \cap H|}.$$

 $= \dim \operatorname{Hom}(P(U)_{P^x \cap H}, 1_{P^x \cap H}) = \frac{\dim P(U)}{|P^x \cap H|}.$ Further, $\sum_x \frac{|H|_p}{|P^x \cap H|} = |G:H|_{p'}$. Therefore $n_S \leq \frac{\dim P(U)|G:H|_{p'}}{|H|_p} = \frac{\dim P(S)}{|G|_p} = k_S$. Since S is radical, equality holds throughout by Proposition 9, and the result follows.

(iib) \Rightarrow (iia): From the above proof we obtain $n_S = \frac{\dim P(U)|G:H|}{|G|_p}$ Since $P(S)|P(U)^G$, $\frac{\dim P(U)|G:H|}{|G|_p} \ge \frac{\dim P(S)}{|G|_p} = k_S$. Therefore $n_S = k_S$ by Corollary 4, and S is radical by Proposition 9. Further, $P(S) \simeq P(U)^G$.

(iia) \Rightarrow (iic): Since S is weakly radical by Corollary 6, U is weakly radical by (i). So by Proposition 9 it suffices to show dim P(U) = |vx(U)| dim U. We have $\dim P(S) = |G: H| \dim P(U)$. Since S is radical, by Proposition 9 dim $P(S) = |vx(S)| \dim S = |vx(S)| |G: H| \dim U$. Since $vx(S) =_G vx(U)$, the result follows.

(iic) \Rightarrow (iia):Since U is radical, dim $P(U)^G = |G:H||vx(U)|$ dimU. Since S is weakly radical, by Proposition 9 dim $P(S) \ge |\text{vx}(S)| \text{dim}(S) = |\text{vx}(S)| |G: H| \text{dim } U$. Hence dim $P(S) \ge \text{dim} P(U)^G$. But $P(S)|P(U)^G$. So the equality holds throughout. Therefore $P(S) \simeq P(U)^G$ and S is radical by Proposition 9.

Theorem 18([La,Theorem]) Let P be a Sylow p-subgroup of G. The following are equivalent.

- (i) G is p-radical.
- (ii) For any simple kG-module S, there are a subgroup H of G and a simple kH-module U with the following properties: $S = U^G$, $vx(U) \leq KerU$, $P^x \cap H$ is a Sylow p-subgroup of H for any $x \in G$.
- (iii) For any simple kG-module S, there are a subgroup H of G and a simple kH-module U with the following properties: $S = U^G$, vx(S) < KerU, $P^x \cap H$ is a Sylow p-subgroup of H for any $x \in G$.

Proof. (i) ⇒ (ii) G is p-solvable by [Ok2]. So there are H and U as above such that $S = U^G$ and that dim U is a p'-number by [Na,Theorem 10.11]. Since G is p-solvable, $P(S) \simeq P(U)^G$ by Fong's theorem [Na,Corollary 10.14]. Hence U is radical by Proposition 17. Therefore vx(U) ≤ Ker U by Corollary 6 and Proposition 16. Further, for any $x \in G$, dim $U = \dim \operatorname{Inv}_{P^x \cap H}(U) = \frac{\dim P(U)}{|P^x \cap H|} = \frac{|H|_p \dim U}{|P^x \cap H|}$ by Proposition 16, Proposition 17 (iib) and Fong's theorem [Na,Corollary 10.14]. So $P^x \cap H$ is a Sylow p-subgroup of H for any $x \in G$.

- (ii) \Rightarrow (i) By Corollary 13, it suffices to show S is weakly radical. From the condition that $\operatorname{vx}(U) \leq \operatorname{Ker}(U)$, we see $U|(1_{\operatorname{Ker}(U)})^H$. This implies U is weakly radical. We have $S_P \simeq \sum_{x \in H \setminus G/P} (U^x_{H^x \cap P})^P$. Since U^x is a weakly radical kH^x -module and $H^x \cap P$ is a Sylow p-subgroup of H^x , we have $U^x_{H^x \cap P} \simeq \bigoplus_i (1_{Q_{x,i}})^{H^x \cap P}$ and $|Q_{x,i}| = |\operatorname{vx} U|$. Therefore $S_P \simeq \bigoplus_{x,i} (1_{Q_{x,i}})^P$. So S is weakly radical by Lemma 1.
 - (ii) \Rightarrow (iii). Since vx(U) is a vertex of S, the result follows.
- (iii) \Rightarrow (ii). Since $\operatorname{vx}(S) \leq \operatorname{Ker} U$, $\operatorname{vx}(S) \leq \operatorname{vx}(U)$ for a vertex of $U([\operatorname{NT}, \operatorname{Theorem} 4.7.8 \ (i)])$. But $\operatorname{vx}(S) =_G \operatorname{vx}(U)$. So $\operatorname{vx}(U) = \operatorname{vx}(S) \leq \operatorname{Ker} U$. The proof is complete.

In case of normal subgroups we have the following

Proposition 19. Let N be a normal subgroup of G. Let S (resp. X) be a simple kG-(resp. kN-)module.

- (i) If $S|X^G$ and X is weakly radical, then S is weakly radical.
- (ii) If $X|S_N$ and S is weakly radical, then X is weakly radical.

Proof. Let P be a Sylow p-subgroup of G.

(i) We have $S_P|(X^G)_P$. By Mackey decomposition,

$$(X^G)_P \simeq \bigoplus_{x_i \in N \setminus G/P} ((X^{x_i})_{P \cap N})^P.$$

It is straightforward to check that for each x_i , X^{x_i} is also weakly radical. So by Lemma 1, for each i, $(X^{x_i})_{P\cap N}\simeq \oplus_j (1_{Q_{ij}})^{P\cap N}$, where Q_{ij} are subgroups of $P\cap N$ such that $|Q_{ij}|=|\mathrm{vx}(X)|$. Hence S is weakly radical by Lemma 1.

(ii) We have $X_{P\cap N}|S_{P\cap N}$. Put $S_P\simeq \oplus_i (1_{Q_i})^P$ for suitable $Q_i\leq P$. Then for each i,

$$((1_{Q_i})^P)_{P\cap N}\simeq \oplus_{u\in Q_i\setminus P/P\cap N}(1_{N\cap (Q_i)^u})^{P\cap N},$$

Since Q_i are G-conjugate, $|N \cap (Q_i)^u|$ are the same for all i and u. Thus X is weakly radical by Lemma 1. The proof is complete.

3. D-radical blocks

Let B be a block of G with defect group D. D-radical blocks have been investigated in [Hida-Koshitani]

Lemma 20. Let P and Q be p-subgroups of G.

- (i) If S is a weakly P-radical module and $P \leq Q$, then S is weakly Q-radical.
- (ii) If S is a P-radical module and $P \leq Q$, then S is Q-radical. In particular, if B is D-radical, then B is radical.
 - (iii) If B is P-radical, P contains a defect group of B.
- Proof (i) Let X be an indecomposable summand of S_Q . Then, since S is weakly P-radical, $(1_{Q_i})^P|X_P$ for some $Q_i \leq P$ with $Q_i =_G vx(S)$. Then there is a vertex vx(X) of X with $vx(X) \geq Q_i$. But $vx(X) \leq_G vx(S)$, so $vx(X) = Q_i$. Since X has trivial source, we obtain $X = (1_{Q_i})^Q$. Thus S is weakly Q-radical.
- Since X has trivial source, we obtain $X = (1_{Q_i})^Q$. Thus S is weakly Q-radical. (ii) Since there is an epi $(1_P)^Q \to 1_Q$, there is an epi $\varphi : (1_P)^G \to (1_Q)^G$. We have $(1_P)^G = U \oplus V$, where $U \simeq mS$ for some integer m and V does not involve S. Then $(1_Q)^G = \varphi(U) + \varphi(V)$. Here $\varphi(U) \simeq m'S$ for some integer m' and $\varphi(V)$ does not involve S. Hence $(1_Q)^G = \varphi(U) \oplus \varphi(V)$, and S is Q-radical.
- (iii) Let S be a simple module in B with vertex D. Then S is P-radical, and S is weakly P-radical. Thus P contains a vertex of S, and the result follows. The proof is complete.

Lemma 21. Let S be an indecomposable kG-module. Let $vx(S) = Q \le P$ for a p-subgroup P of G. The following are equivalent.

- (i) S is weakly P-radical and Q is strongly closed in P with respect to G.
- (ii) S is weakly P-radical and Q is weakly closed in P with respect to G.
- (iii) $S_P \simeq n(1_Q)^P$ for some integer n and $Q \triangleleft P$.
- (iv) $Q \leq \text{Ker} S$.

Proof. (i) \Rightarrow (ii): This is trivial.

- (ii) \Rightarrow (iii): We have $S_P \simeq \bigoplus_i (1_{Q_i})^P$, where $Q_i =_G Q$ for each i. Since $Q, Q_i \leq P$, we obtain $Q_i = Q$. Therefore $S_P \simeq n(1_Q)^P$ for some integer n. Clearly $Q \triangleleft P$.
 - (iii) \Rightarrow (iv): Clearly $S_Q \simeq m1_Q$ for some integer m.
- (iv) \Rightarrow (i): We have $S_Q \simeq m1_Q$ for some integer m, so that S is weakly Q-radical. Thus S is weakly P-radical by Lemma 20. Put $N = \operatorname{Ker} S$. Then $S_N \simeq m1_N$ and S is N-projective. Hence S and 1_N have a common vertex. Thus Q is a Sylow p-subgroup of N. Since $Q \leq P \cap N \leq N$, we obtain $Q = N \cap P$. Then for any $g \in G$, $Q^g \cap P \leq N \cap P = Q$. Thus Q is strongly closed in P with respect to G. The proof is complete.

Let $B_0(G)$ be the principal block of G.

Theorem 22 (Okuyama). If $B_0(G)$ is radical, G is p-solvable.

Proof. See the proof of Theorem 1 of [Ok2].

Let $R_p(G)$ be the maximal normal p-solvable subgroup of G.

The following strengthens Theorem 1.1 of [HK].

Theorem 23. Let P be a Sylow p-subgroup of G with $P \ge D$. The following are equivalent.

- (i) B is D-radical.
- (ii) B is weakly D-radical.
- (iii) There is a p-solvable normal subgroup N of G such that:

B covers $B_0(N)$, D is a Sylow p-subgroup of N, and $B_0(N)$ is radical.

- (iv) For a block b of $R_p(G)$ covered by B, it holds that:
- D is a defect group of b, b is D-radical, and $G = N_G(D)R_p(G)$.
 - (v) B is radical and D is strongly closed in P with respect to G.
 - (vi) B is radical and D is weakly closed in P with respect to G. (vii) B is radical and there is a simple kG-module S in B with KerS > D.
- (viii) B is radical and there is a normal subgroup N of G such that D is a $Sylow\ p$ -subgroup of N.

Proof. (i)⇔(ii) This follows from Theorem 12.

- (ii) \Rightarrow (iii): Let S_1 be a simple kG-module in B with vertex D. Put $N = \text{Ker} S_1$. Since S_1 is weakly D-radical, $(S_1)_D \simeq n1_D$ for some integer n. So $D \leq N$. Since B covers $B_0(N)$, D is a defect group of $B_0(N)$. Thus D is a Sylow p-subgroup of N. For any simple kN-module X in $B_0(N)$, choose a simple kG-module S in B lying over X. Then, since S is weakly D-radical, we see X is weakly radical by Proposition 19 and Lemma 20. So $B_0(N)$ is radical by Theorem 12 and N is p-solvable by Theorem 22.
- (iii) \Rightarrow (iv): Let b be a block of $R_p(G)$ covered by B. Since $N \leq R_p(G)$ and b covers $B_0(N)$, we may assume D is a defect group of b. By the Frattini argument $G = N_G(D)N = N_G(D)R_p(G)$. Let S be a simple module in b. For any irreducible constituent X of S_N , X lies in $B_0(N)$ and X is weakly D-radical. Thus S is weakly D-radical. So b is weakly D-radical and hence D-radical by Theorem 12.
- (iv) \Rightarrow (ii): For any simple kG-module S in B, let X be an irreducible constituent in b of $S_{R_p(G)}$. Then, since b is D-radical and hence weakly D-radical, $X_D \simeq \bigoplus_i (1_{Q_i})^D$, where $Q_i =_{R_p(G)} \text{vx}(X)$. S_D is a direct sum of of the modules of the form $(X^g)_D$, $g \in G$. Now there is $n \in N_G(D)$ such that $X^g \simeq X^n$. Then

$$(X^g)_D \simeq (X^n)_D \simeq (X_D)^n \simeq \bigoplus_i (1_{Q_i^n})^D.$$

Since $|Q_i^n| = |vx(X)|$, S is weakly D-radical. Hence (ii) follows.

- $(v) \Rightarrow (vi)$: This is trivial.
- (vi) \Rightarrow (v): Let S be a simple module in B with vertex D. Since S is weakly radical and D is weakly closed in P with respect to G, D is strongly closed in P with respect to G by Lemma 21.
- $(v)\Rightarrow$ (ii): Let S be a simple module in B. We have $S_P\simeq \bigoplus_i (1_{Q_i})^P$, where Q is a vertex of S and $Q_i=Q^{x_i},\ x_i\in G$. We may assume $Q\leq D$. $((1_{Q_i})^P)_D\simeq \bigoplus_{u\in Q_i\setminus P/D}(1_{Q_i^u\cap D})^D$. We see $Q_i^u=Q^{x_iu}\leq D^{x_iu}\cap P\leq D$ by (v). Therefore $((1_{Q_i})^P)_D\simeq \bigoplus_u (1_{Q_i^u})^D$. Hence S is weakly D-radical.
- (i) and (iii) \Rightarrow (vii): By Lemma 20, B is radical. Let S be a simple module in B lying over 1_N . Then $D \leq N \leq \text{Ker } S$.

- (vii) \Rightarrow (viii): Let N = Ker S. Then B covers $B_0(N)$. Therefore $D = D \cap N$ is a defect group of $B_0(N)$.
- (viii) \Rightarrow (v): This follows from the fact that $D = P \cap N$. The proof is complete. \Box

Remark. The implication (i)⇒ (ii) has been proved in Lemma 7 of [Ko] in a different way.

Corollary 24 ([HK], Corollary 1.3). If $vx(S) \leq KerS$ for any simple module S in B, then B is D-radical.

Proof. Let S be a simple module in B. By Lemma 21 S is weakly D-radical. Hence B is weakly D-radical, and B is D-radical by Theorem 23. \Box

The following extends Theorem 22.

Corollary 25. Let B be a radical block of G with defect group D. If D is a Sylow p-subgroup of G, then G is p-solvable.

Proof. We see B is D-radical. If N is as in (iii) of Theorem 23, then N is p-solvable and G/N is a p'-group. Hence G is p-solvable.

References

- [Al] J.L.Alperin: Weights for finite groups, Proc. Symp. Pure Math. 47, 369-379, American Mathematical Society, Providence RI, 1987.
- [Fe] W.Feit: The representation theory of finite groups, North-Holland, Amsterdam, 1982.
- [HK] A.Hida and S.Koshitani: Morita equivalent blocks in non-normal subgroups and p-radical blocks in finite groups, J.London Math.Soc.(2) **59** (1999), 541-556.
- [HB] B.Huppert and N.Blackburn: Finite groups II, Springer-Verlag, Berlin, 1982.
- [Ko] S.Koshitani: On the kernels of representations of finite groups II, Glasgow Math.J.32 (1990),341-347.
- [La] A.Laradji: A characterization of p-radical groups, J. Algebra 188 (1997), 686-691.
- [MN] K.Motose and Y.Ninomiya: On the subgroups H of a group G such that $J(KH)KG \supset J(KG)$, Math.J.Okayama Univ. 17 (1975), 171-176.
- [NT] H.Nagao and Y.Tsushima: Representations of finite groups, Academic Press, New York, 1989.

- [Na] G.Navarro: Characters and blocks of finite groups, Cambridge University Press, Cambridge, 1998.
- [Ok1] T.Okuyama: Module correspondence in finite groups, Hokkaido Math.J. 10 (1981), 299-318.
- [Ok2] T.Okuyama:p-radical groups are p-solvable, Osaka J.Math. 23 (1986), 467-469.
- [Ts] Y.Tsushima: On p-radical groups, J.Algebra 103 (1986), 80-86.

Meiji-machi 2-27 Izumi Toki-shi Gifu 509-5146 Japan