ON THE V-TRANSVERSALITY CONSTRUCTION OF EQUIVARIANT FRAMED MAPS

Masaharu Morimoto

Graduate School of Natural Science and Technology, Okayama University

Abstract. Let G be a finite group. For a pointed G-map $Y^+ \wedge V^{\bullet} \to V^{\bullet}$, we introduce the notion of V-transversality, where Y is a compact (smooth) G-manifold, V is a real G-module, $Y^+ = Y \coprod \{y_{\infty}\}$, and $V^{\bullet} = V \cup \{v_{\infty}\}$. Every V-transversal G-map $Y^+ \wedge V^{\bullet} \to V^{\bullet}$ gives rise of a G-framed map with the target manifold Y. This yields a one-to-one correspondence from the set of pointed G-homotopy classes to the set of G-framed cobordisms. From this view point, we discuss the Burnside ring of G and the equivariant stable G-cohomotopy group $\omega_G^0(Y)$ which consists of equivalence classes of pointed G-maps $Y^+ \wedge V^{\bullet} \to V^{\bullet}$ for $V = \mathbb{C}[G]^m$ $(m \gg 1)$.

1. Introduction

In this article, we report results obtained from discussions with Takashi Matsunaga and Yasuhiro Hara.

Let G be a finite group throughout this paper. A G-framed map f is a pair of a G-map $f:(X,\partial X)\to (Y,\partial Y)$ and a real G-vector bundle isomorphism $b:TX\oplus \varepsilon(\mathbb{R}^m)\to f^*TY\oplus \varepsilon(\mathbb{R}^m)$, where X and Y are compact (smooth) G-manifolds of same dimension. Let $\mathfrak{N}(G,Y)$ be the set of G-framed cobordism classes of G-framed maps with the target manifold Y. Let $\omega_G^0(Y)$ be the equivariant stable cohomotopy group of Y, of which the definition will be given in Section 2. Let V be a real G-module (of finite dimension). In this paper we introduce the notion that a

²⁰¹⁰ Mathematics Subject Classification. Primary 57S17; Secondary 57R85.

 $Key\ words\ and\ phrases.$ equivariant transversality, equivariant framed map, the Burnside ring, equivariant stable cohomotopy group.

This research was partially supported by JSPS KAKENHI Grant Number 26400090.

G-map $Y^+ \wedge V^{\bullet} \to V^{\bullet}$ is V-transversal to 0 in V^{\bullet} , essentially due to T. Petrie [8], cf. [5, §5]. The next result indicates importance of the notion in equivariant surgery theory.

Theorem 1.1. The V-transversality construction gives a one-to-one correspondence

$$\Phi: \omega_G^0(Y) \to \mathfrak{N}(G,Y).$$

This is an equivariant version of [4, Theorems B and C].

Let ω_G^n denote the group $\omega_G^n(pt)$. Let A(G) denote the Burnside ring, i.e. the Grothendieck group for the category of finite G-sets. By proofs in equivariant homotopy theory, e.g. [1], [6], we have seen that A(G) is isomorphic to ω_G^0 . However the theorem above gives rise of a geometric proof.

Theorem 1.2. The V-transversality construction yields an isomorphism

$$\Psi:\omega_G^0\to A(G).$$

Details of the theorem will be given in Section 4.

Let S(G) denote the set of all subgroups of G. Let \mathcal{F} be a set of subgroups of G. We call \mathcal{F} lower closed if $H \in \mathcal{F}$ then $S(H) \subset \mathcal{F}$. We call \mathcal{F} conjugation invariant if $gHg^{-1} \in \mathcal{F}$ holds for all $H \in \mathcal{F}$ and $g \in G$. Hereafter, we suppose that \mathcal{F} is lower closed and conjugacy invariant. Let $\mathfrak{F} = \mathfrak{F}(G, \mathcal{F})$ be the category such that $\mathrm{Obj}(\mathfrak{F})$ is same as \mathcal{F} and $\mathrm{Mor}(\mathcal{F})$ consists of all (H, g, K) with $H, K \in \mathcal{F}$, $g \in G$ and $gHg^{-1} \subset K$. Let Y be a compact G-manifold. If $H \leq K \leq G$ then we have the restriction map $\mathrm{res}_H^K : \omega_K^n(Y) \to \omega_H^n(Y)$. If $H \leq G$ and $g \in G$ then we have the conjugation map $c_g : H \to gHg^{-1}$ and hence the induced map $c_g^* : \omega_{gHg^{-1}}^n(Y) \to \omega_H^n(Y)$. For $(H, g, K) \in \mathrm{Mor}(\mathfrak{F})$, the homomorphism $(H, g, K)^*$ is defined to be the composition

$$\omega_K^n(Y) \xrightarrow{\operatorname{res}_{gHg^{-1}}^K} \omega_{gHg^{-1}}(Y) \xrightarrow{c_g^*} \omega_H^n(Y).$$

Let $\omega_{G,\mathcal{F}}^n(Y)$ denote the inverse limit

inv-
$$\lim_{\mathfrak{F}} \omega_H^n(Y)$$
 $(H \in \mathcal{F}).$

We set $\omega_{G,\mathcal{F}}^n = \omega_{G,\mathcal{F}}^n(pt)$. It is interesting to study the image and the kernel of the canonical map

$$\operatorname{res}_{\mathcal{F}}: \omega_G^0(Y) \to \omega_{G,\mathcal{F}}^0(Y).$$

Theorem 1.3 (Y. Hara-M. M.). Let G be a nontrivial nilpotent group and $\mathcal{F} = \mathcal{S}(G) \setminus \{G\}$. The canonical map $\operatorname{res}_{\mathcal{F}} : \omega_G^0 \to \omega_{G,\mathcal{F}}^0$ is surjective if and only if G is a cyclic group of order a prime or a product of distinct primes.

This implies

Corollary 1.4. Let G and \mathcal{F} be as above and let Y be a compact G-manifold such that $Y^G \neq \emptyset$. If the canonical map $\operatorname{res}_{\mathcal{F}} : \omega_G^0(Y) \to \omega_{G,\mathcal{F}}^0(Y)$ is surjective then G is a cyclic group of order a prime or a product of distinct primes.

Let k_G be the product of the primes p such that G contains a normal subgroup N with index p. Here k_G is understood to be 1 if G is a perfect group. The next lemma is essentially due to R. Oliver [7, Lemma 8].

Lemma 1.5. There exists an element $\gamma_G = [X_1] - [X_2]$ of A(G) such that $|X_1^G| - |X_2^G| = k_G$ and $\operatorname{res}_H^G \gamma_G = 0$ for all H < G, where X_1 and X_2 are finite G-sets.

Proposition 1.6. Let G be a nontrivial group and $\mathcal{F} = \mathcal{S}(G) \setminus \{G\}$. Then the kernel of $\operatorname{res}_{\mathcal{F}} : \omega_G^0 \to \omega_{G,\mathcal{F}}^0$ is generated by γ_G .

Corollary 1.7. Let G and \mathcal{F} be as above. Then $\gamma_G \omega_G^0(Y)$ is contained in the kernel of $\omega_G^0(Y) \to \omega_{G,\mathcal{F}}^0(Y)$.

2. The equivariant stable cohomotopy group $\omega_G^n(Y)$

Let Y be a compact G-manifold. We denote by Y^+ the disjoint union $Y \coprod \{y_\infty\}$ and the point y_∞ is regarded as the base point of Y^+ . Let V be a real G-module. We denote by V^{\bullet} the one-point compactification $V \cup \{v_\infty\}$ and v_∞ is regarded as the base point of V^{\bullet} . The smash product

$$Y^+ \wedge V^{\bullet} = \frac{Y^+ \times V^{\bullet}}{(Y^+ \times v_{\infty}) \cup (y_{\infty} \times V^{\bullet})}$$

can be regarded as the Thom space of real G-vector bundle $\pi: Y \times V \to Y$ with fiber V.

We denote by \mathbb{R} the 1-dimensional real vector space with trivial G-action. For a finite G-CW complex X and an integer n, we define $\omega_G^n(X)$ by

$$\omega_G^n(X) = \lim_{m \to \infty} [A, B]_0^G$$

where

$$A = \begin{cases} X^+ \wedge M_m^{\bullet} & (n \ge 0) \\ X^+ \wedge (\mathbb{R}^{|n|} \oplus M_m)^{\bullet} & (n < 0), \end{cases}$$

$$B = \begin{cases} (\mathbb{R}^n \oplus M_m)^{\bullet} & (n \ge 0) \\ M_m^{\bullet} & (n < 0), \end{cases}$$

$$M_m = \mathbb{C}[G]^{\oplus m},$$

and $[-,-]_0^G$ stands for the set of all homotopy classes of maps in the category of pointed G-spaces. We set $\omega_G^n = \omega_G^n(pt)$. Define the map $\deg_H : \omega_G^0 \to \mathbb{Z}$ by

$$\deg_H([f:M_m^{\bullet}\to M_m^{\bullet}])=\deg(f^H:M_m^{H^{\bullet}}\to M_m^{H^{\bullet}}).$$

It is known that the map

$$\prod_{H \in \mathcal{S}(G)} \deg_H : \omega_G^n \to \prod_{H \in \mathcal{S}(G)} \mathbb{Z}$$

is injective and

$$[V^{\bullet}, V^{\bullet}]_0^G \cong \omega_G^0$$

via the canonical map whenever $V \supset \mathbb{C}[G]$.

3. V-transversality of G-maps $Y^+ \wedge V^{\bullet} \rightarrow V^{\bullet}$

In this section we introduce the notion of V-transversality due to T. Petrie [8]. Let V be a real G-module with a G-invariant inner product. For $H \leq G$, V is decomposed into $V^H \oplus V_H$ as real $N_G(H)$ -modules, where V^H is the H-fixed point set of V. A base point preserving G-map $\alpha: Y^+ \wedge V^{\bullet} \to V^{\bullet}$ is called V-transversal to 0 in the target space V^{\bullet} if the following conditions are fulfilled.

- (1) α is smooth on a neighborhood of X.
- (2) α is transversal to 0 in V, i.e. $d_x\alpha: T_x(Y\times V)\to T_0V$ is surjective at every $x\in X$.
- (3) the normal derivative $\nu_x(\alpha): V_H \to V_H$ at x, where $H = G_x$, coincides with the identity map $V_H \to V_H$ for every $x \in X$,

where $X = \alpha^{-1}(0)$ and $\nu_x(\alpha)$ is defined to be the composition

$$V_H \xrightarrow{\text{incl}} V = T_{\pi_V(x)} V \xrightarrow{\text{incl}} T_x(Y \times V) \xrightarrow{d_x \alpha} T_0(V) \xrightarrow{\text{proj}} V_H.$$

Lemma 3.1. Let Y be a compact G-manifold with G-invariant Riemannian metric, A a closed G-subset of Y, V a real G-module, and $\varepsilon: Y^+ \wedge V^{\bullet} \to \mathbb{R}$ a G-invariant positive function. Let $\alpha: Y^+ \wedge V^{\bullet} \to V^{\bullet}$ be a base-point preserving G-map such that $\alpha: A^+ \wedge V^{\bullet} \to V^{\bullet}$ is V-transveral to 0 in V^{\bullet} . Then there exists a base-point preserving G-homotopy $H: I \times (Y^+ \wedge V^{\bullet}) \to V^{\bullet}$, where I = [0,1], from α to $\beta: Y^+ \wedge V^{\bullet} \to V^{\bullet}$ satisfying the following conditions.

- (1) $H(t,(x,v)) = \alpha(x,v)$ for all $t \in I$, $x \in A$, and $v \in V$.
- (2) $d(\alpha(y,v), H(t,(y,v))) < \varepsilon(y,v)$ for all $(y,v) \in Y \times V$.
- (3) β is V-transversal to 0 in V^{\bullet} .

A G-framed map $\mathbf{f} = (f, b)$ consists of a G-map $f : X \to Y$, where X and Y are compact (smooth) G-manifolds, and a real G-vector bundle isomorphism $b: T(X) \oplus \varepsilon_X(\mathbb{R}^m) \to f^*T(Y) \oplus \varepsilon_X(\mathbb{R}^m)$ for some integer $m \geq 0$.

Suppose $\alpha: Y^+ \wedge V^{\bullet} \to V^{\bullet}$ is V-transversal to 0 in V^{\bullet} . Then set $X = \alpha^{-1}(0)$ and let $f: X \to Y$ be the composition of the inclusion $j_X: X \to Y \times V$ and the projection $\pi_Y: Y \times V \to Y$. There is a canonical isomorphism

$$T(Y \times V)|_X = (\pi_Y TY \oplus \pi_V TV)|_X = f^*TY \oplus \varepsilon(V).$$

We also have an isomorphism

$$T(Y \times V)|_X = TX \oplus \nu(X, Y \times V) \cong TX \oplus (\alpha|_X)^* \nu(0, V) = TX \oplus \varepsilon(V).$$

Thus we get a G-vector bundle isomorphism

$$\beta: TX \oplus \varepsilon(V) \to f^*TY \oplus \varepsilon(V)$$

such that $(\beta|_x)(x,v) = (x,v)$ ($\in \varepsilon(V)$) for all $x \in X$ and $v \in V_H$, where $H = G_x$. By Lück-Madsen [3, Appendix, Proposition (A2)] and [5, §6], in the case $m > \dim Y$, we obtain a G-vector bundle isomorphism

$$b: TX \oplus \varepsilon(\mathbb{R}^m) \to f^*TY \oplus \varepsilon(\mathbb{R}^m)$$

such that β and b are stably regularly G-homotopic. This procedure obtaining $\mathbf{f} = (f, b)$ from α is called the V-transversality construction of G-framed maps. The construction may also be called Pontryagin- $Petrie\ construction$ of G-framed maps, cf. [4, §7].

4. The isomorphism
$$\Psi:\omega_G^0\to A(G)$$

Let $\alpha: V^{\bullet} \to V^{\bullet}$ be a base-point preserving G-map such that $V \supset \mathbb{C}[G]$. Then we have $\dim V^G \geq 2$. Suppose α is V-transversal to 0 in V^{\bullet} . The V-transversality construction yields $X = \alpha^{-1}(0)$, $f = \alpha|_X : X \to \{pt\}$, $\beta: \varepsilon(V) \to \varepsilon(V)$ and $b: \varepsilon(V^G) \to \varepsilon(V^G)$ such that $\beta|_x: V \to V$ coincides with $d\alpha_x: V \to V$ for $x \in X$, and β is regularly G-homotopic to $b \oplus id_{\varepsilon(V_G)}$. Decompose the G-set $X = \alpha^{-1}(0)$ into the disjoint union of G-orbits $X_i = Gx_i$, where $i = 1, \ldots, k$; i.e. $X = \coprod_{i=1}^k X_i$. We define

$$\varepsilon(d\alpha_{x_i}) = \begin{cases} 1 & \text{(if } d\alpha_{x_i} \text{ is orientation preserving),} \\ -1 & \text{(if } d\alpha_{x_i} \text{ is orientation reversing).} \end{cases}$$

Set

$$X_{+} = \coprod_{i} Gx_{i} : \varepsilon(d\alpha_{x_{i}}) = 1,$$
 $X_{-} = \coprod_{i} Gx_{i} : \varepsilon(d\alpha_{x_{i}}) = -1.$

Then we obtain an element $[X_+] - [X_-]$ of A(G). The correspondence $[f] \longmapsto [X_+] - [X_-]$ gives the map $\Psi : \omega_G^0 \to A(G)$. We have a canonical one-to-one correspondence $\Xi : \mathfrak{N}(G,pt) \to A(G)$. Moreover the diagram

commutes. Once it was admitted that Φ is a one-to-one correspondence, the map Ψ is bijective and hence an isomorphism.

REFERENCES

- [1] T. tom Dieck, Transformation Groups, Walter de Gruyter, Berlin-New York, 1987.
- [2] E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479–520.
- [3] W. Lück and I. Madsen, Equivariant L-Theory I, Math. Z. 203 (1990), 503-526.
- [4] J. W. Milnor, Topology from the Differentiable Viewpoint, Princeton Univ. Press, Princeton, New Jersey, 1965.
- [5] M. Morimoto, Equivariant surgery theory: Construction of equivariant normal maps, Publ. Res. Inst. Math. Sci. Kyoto Univ. 31 (1995), 145-167.

- [6] M. Morimoto, The Burnside ring revisited, in: Current Trends in Transformation Groups, A. Bak, M. Morimoto and F. Ushitaki (eds.), K-Monographs in Math. 7, Kluwer Academic Publ., Dordrecht-Boston, 2002, pp. 129-145.
- [7] R. Oliver, Fixed point sets of groups on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155-177.
- [8] T. Petrie, One fixed point actions on spheres I, Adv. Math. 46 (1982), 3-14.

Graduate School of Natural Science and Technology, Okayama University 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530 Japan E-mail address: morimoto@ems.okayama-u.ac.jp