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Partial regularity of p(x)-harmonic maps

Maria Alessandra Ragusa Atsushi Tachikawa *

1 Introduction

This note is concerned with the partial regularity of local minimizers of funec-
tionals which satisfies the so-called p(z)-growth condition.

Let @ C R™ (m > 2) be a bounded open set, and f: Q2 x R* x R™ —» R a
Carathéodory function satisfying

AP < flo,u, ) < A(L+[€]7) for all (z,u,€) € QX R™ x R™", (1.1)

for some constants A > A >0, ¢ > p > 1. For u: Q@ — R?, we consider the
functional defined by

Fu; Q) ———/f(a:,u,Du)da:. (1.2)
Q

The functional F is said to be of standard growth if ¢ = p. When ¢ > p, it is
said to be of non-standard growth or, more precisely, of (p, q)-growth.

As a particular case of non-standard growth, we consider the following p(z)-
growth condition.

MNEPS® < fz,u,€) <A(1+]gP@),  for all (z,u,€) € Q x R* x R™, (1.3)

where p(z) is a function defined on Q. For p(z) we assume always that p(z) > 1.
In this note, by a technical reason, we treat only the case that p(z) > 2.

In recent years, functionals and problems with p(z)-growth became of in-
creasing interest. They appear in some problems of mathematical physics.
For example, Zhikov [26] treated thermistor problems using functionals with
p(z)-growth, Rajagopal and Rizicka (see also [22]) proposed some models of
of electrorheological fluid using equations with p(z)-growth term, and Acerbi
and Mingione [3] treated stationary electrorheological fluid and obtained some
regularity results.

In this note, we treat regularity problem for vector valued (n > 2) minimizers
of functional with p(z)-growth.

For the scalar valued case (n=1), see (17, 4, 8, 9, 10, 11] and the references-
therein.

About constant p-growth functionals defined for v : @ ¢ R™ — R™ with
general m,n > 2, roughly speaking, known regularity results differ from each
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other by the structures of functionals. Let us consider the following 3 types of
functionals.

fl(u)z/a,(|Du!)d:1:, (1.4)

Q

fg('u,):/a(m,u,go‘ﬁ(m,u)hij(m,11.)DauiD5uj)dm, (1.5)
Q

.7:3(11,)2/A(JI?,?I,,DU,)(]:II, (1.6)
Q

where (g2#), (hi;)-and the Hessian matrix of A(z,u,&) with respect to ¢ are
uniformly positive definite, and da(z,u,t)/dt > 0. Moreover, we assume the
following growth conditions on a : [0,00) — [0,00) and A : 2 X R™ x R™" —
[0, 00).

AP < a(z,u,t) < A(1+1tP), forall te (0,00),
MEP < A(z,u, &) < A(L+ €]P), forall (z,4,€) € Q@ xR™ x R™,

where A, A are positive constants, and p is a constant or continuous function on
Q) with p > 2. We have the following results for minimizers of the above types
of functionals.

(I) : (Uhlenbeck [25)) Let u be a minimizer of F;, then u € Ch*(£2).

(I) : (Giaquinta-Modica [15], Fusco-Hutchinson [12] (a(z,u,t) = t7/2) ) Let
u be a minimizer of Fy, then-u € C1*(), where Qg is an open subset
of Q with H™ P=¢(Q2\ Q) = 0 for some ¢ > 0. Here, H? denotes the
g-dimensional Hausdorff measure.

(III) : (Giaquinta-Giusti [14](p = 2), Fusco-Hutchinson [12] (p > 2)) Let v be a
bounded minimizer of Fp with a(z,u,t) = t?/2 and ¢*%(z,u) = ¢g*P(z).
Then u € C1*(Qy) with H™ PI=1(Q\ Q) = 0. Here, [p] stands for the
integer part of p.

(IV) : (Giaquinta-Giusti [13]) Let u be a bounded minimizer of F3, then u €
C12(§), where Q is an open subset of Q with |-\ Qo] = 0. Here, for
a measurable set D C R™, |D| denotes the Lebesgue measure of D.

On the other hand, for p(z)-growth cases, the results of Coscia-Mingione [5] and
of Acerbi-Mingione [2] correspond to the above results (I) and (IV) respectively.
In this note we present the regularity results of [21] that correspond to a part
of (IT).

Remark 1.1. For the sake of simplicity, we are restricting ourselves to consider
only the case that p > 2. There are also regularity results for 1 < p (constant) <
2 (eg. [1]). Moreover, the results in [5] and [2] are valid for p(z) > 1.

2 Some definitions
In the following we write

B(z,R)={y e R™; [o—y| < R}



For f € L*(2) we set the integral mean f, r by

. N 1 .
fzr = ][mB(LR)f(y)dy— OABE R / fy)dy

QNB(z,R)

where |2 N B(z, R)| is the Lebesgue measure of Q N B(z, R).
If we are not interested in specifying which the center is, we only set fg.

Definition 2.1. For a bounded open set Q@ C R™ and a function p : Q@ —
(1, +00), we define LP*)(Q) and WPE)(Q) as follows:

LP@) = {u e LV Q) ; / u|P®dz < +00}.
Q
WP .= (y € LP@ NWHL(Q) ; Due LPP(Q)}.

We also define Lfo(:)(ﬂ) and Wli’cp(w)(ﬂ) similarly.

As mentioned in [6], if p(z) is uniformly continuous and 92 satisfies uniform
cone property, then

WiPE(Q) = {u e WHHQ) ; Du € LFD(Q)}.
In any case, if p(z) is continuous in Q2 we have

WEPE(Q) = {u e LL(Q); | DulP® € W)}

loc

Definition 2.2. We also define

We D (Q) == {u e Wgh () ; / DufP®dz < oo},
Q

and for a given map @
0+ Wy (Q) = {u e WHE(Q) ; u—p e WP (@)}
A map u € W, ’p (@) (Q) is called to be a local minimizer of F if it satisfies
F(u; suppyp) < F(u + ¢;suppy),

for any ¢ € Wol'p(g‘:)(ﬂ) with compact support in §.

It should be mentioned that in [21] the continuity of the coefficients g*# is
not assumed to get continuity of a minimizer. Under the condition that ¢® is in
the class so-called VMO, the partial C%%-regularity of a minimizer u is shown.
(About regularity results for standard growth problems with V M O-coefficients,
see, for example, (7, 19, 18, 20].)

VMO is given as a particular subclass of BM O. Let us now give the defini-
tion of BM O and VMOQO. The function space BM O (bounded mean oscillation)
has been first appeared in the article by John and Nirenberg [16].

Definition 2.3. Let f € L1 _(Q). We say that f belongs.to BMO(R) if

1

1f]l« = ‘EHP) AR BB / |f(y) = fz,r]dy < 0.

QNB(z,R)



VMO (vanishing mean oscillation) is given at first by Sarason in [23].

Definition 2.4. Let f € BMO(Q) and put

1
n(f, R) := sup sup —————
( PSR B(z,p) IQHB(:E)p)'

/ ) — foldy

QNB(z,p)

where B(z, p) ranges over the class of the balls of R™ of radius p. We say that
e VMOQ) if

i "R)=0.

A0 n(f, B) =0

Let us mention that C° ¢ VMO. For vector valued case, in general, we
can not expect to get regularity of weak solutions for elliptic systems with
discontinuous coefficients. So, it should be interesting to consider the regularity
problems for systems with V M O-coeflicients.

3 Partial regularity results

In [21], we obtained partial regularity for minimizers of the p(z)-energy func-
tional defined as

E(u; ) ::/ (gaﬁ(ac)h,,;j(u)DauiDﬂuj)p(m)/zdm. (3.1)
Q

On the above functional we consider the following conditions.
(H-1) There exist constants Ag, Ag, A1, A1 (0 < A} < A4, i=0,1) such that
Ml¢P < 9% (2)Cals < MolC1 MInl? < hyg(un'n’ < Aanf®

for all z € Q, v, € R™ and n € R™.

(H-2) For every u,v € R”
[ij () = hiz ()] < wollu—v]?),

where wy, is some monotone increasing concave function with wp(0) = 0.
(H-3) ¢%# are in the class L® NV MO(Q).
In the sequel, we put

n(g,R) = max n(g*, R).

1<ao,f<m
Moreover, we assume the following conditions on the exponent p(z).

(H-4) The exponent p(z) is bounded and satisfies p(z) > 2. In the following we
put
p1i=intp(z) (2 2), p2:= Sl;zpp(-'ﬂ)- (3.2)

(H-5) For some constants L > 0 and o € (0,1)

p(z) —p(y)| < Lz — y|” :==wp(|lz —y[) forallz,y e (3.3)



In the following we use the following notation:

pi(y,m) = inf p(z), p2(y,r)= sup p(z) for B(y,r) C L (3.4)
z€B(y,r) B(y,r)

Moreover, when there is no doubt of confusion, we omit the center y.

Theorem 3.1 ([21, Theorem 2.4]). Let & C R™ be a bounded domain with
sufficiently smooth boundary OQ. Assume that g*P(z) and hi;(u) satisfy the
conditions (H-1)-(H-8). Let u € WHP()(Q) be a local minimizer of the p(z)-
energy functional defined by (3.1), where p(z) : Q — [2,00) satisfies (H-4) and
(H-5). Then u € C%%(Qy) for some o € (0,1), where Qg is an open subset of
Q with H™ P (Q\ Q) = 0.

Moreover, if g*?(z) and hy;(u) are Hélder continuous, u € CL () for
some o € (0,1)

For the purpose of getting regularity results for minimizers, we frequently
use the following theorem.

Theorem [Morrey’s theorem on the growth of the Dirichlet integral] Let u be
in Wha(Q) and suppose that

p—m+q/ |Du|idy < Cp?  for all p < dist(z, Q).
B(z,p)

Then u € C2(52).

loc

For p-growth, we estimate

r"m"'p/ |Dul|?dy,
B(z,r)

to Holder continuity of the minimizers. For p(z)-growth the question “What
quantity shall we employ?” arises. In earlier literatures on p(z)-growth prob-
lems, [5, 3] etc., taking R > 0 sufficiently small, the authors used the quantity

pomtp2(e,R) / |Dulp2®Rdy, (B(z,r) C B(zg, R)).
JB(x,r)

On the other hand, in [21], we employed another quantity,
pmtea(zr) / lDu(Pz(z"")dy, (3.5)
B(z,r)

which enables us to use the iteration argument.

A brief sketch of the proof of Theorem 3.1.
First, we mention that, as standard p-growth problems, we have higher integra-
bility result for p(z)-growth case also: there exists a positive constant ¢ such
that u € Wh(+28)p(z),

For a fixed zq, choose Ry > 0 sufficiently small so that

(1 +20)p1(zo, R1) 2 (14 0)pa(zo, Ru).



Then, we have
u e Wh+29P(@)(B(z4, Ry)) ¢ Wh+8e2(z0.R0) (B(z4, Ry)).

In order to show the assertion, we employ so-called “direct approach”. Namely,
we consider frozen functionals which are sufficiently near to the original “wild”
functional and sufficiently “tame” to get the regularity, and compare the mini-
mizer of the original functional with those of frozen functionals.

For z; € B(zg, R1), choosing R > 0 so that Byg := B(21,2R) C B(xg, R1),
we define two “frozen functionals” as

fi(€) = (Qﬁﬁhij (uR)ﬁéﬁé)p(I)/z, fa(€) := (g;‘_f’hij(U,Rﬁgég)pz(zm/z’

E1(v) = / fi(Dv)dz, & (v):= fa(Dv)dz.
Bp Br
Let v be a minimizer of £ in the class v + Wol’p(z)(BR). ‘By virtue of the
regularity result by Cosia-Mingione [5], we see that for every S € (0,1) there
exists a positive constant ¢ such that

s\m—A
/ | Du|P2R) dg < P(%) [/ | Dv)P>CR) gz + R""‘B} (3.6)
B, Br

holds for any s € [0, R).
In order to get a similar type of decay estimate for Du, we estimate | Du— D).
By Taylor’s theorem, we have

f2(Du) = f3(Dv) + %(Dv)(Daui ~ Dgv'*)

1 82f
+ /é (1-: )851 3§J (Du + s(Dv — Du))

(Dot — Dov*)(Dgu? — Dgu?)ds.

Here, we should mention that v is a minimizer of £1, not of £, so the second
term of the right-hand side of the above equality does not vanish. However,
estimating the difference between the Euler-Lagrange equations of £; and &,
we can obtain

/ |Du. — Dv|P2(R) gz
Br

<c(&(u) — Ea(v)) + C(e)R° / (1 4 |Do|?)A+e)r=CR/2 g4y (3.7)
Br

Here, we also used the the fact that for any € > 0 there exists a positive constant
C(e) such that for all t > 0 and s > r > 0

17— 5] < C(e)(s — r) (1 + t(1+9)9), (3.8)

Adding to and subtracting from (3.7) the terms 5’1( ), E(v), E(v) and & (v), and
using the minimality of £(u), we get

/b | Du, — Du|P2CR) g
Br
< e(Eau) = Ex(u) + Ex(u) — E(u) + E(W) — &1(v)
+ E1(v) = E3(v)) + R / (14 |Do|?)(Fe)rz/ @R g

Br



By estimating [€2(-) —&1(1)| and |E1(-) —E(+)], we see that, for some § € (0,0/m)
and ¢ > 1,

/ | Du, — Du|P2(CR) gy
Br

< C{Rd—mé +Wé/q(clR2~bm/\

Bzr

lD?’.Zd’U)]/ (1 + [D’U:|2)p2(2R)/2d.7,‘.
Bar

(See [21, pp.16-19].) We can estimate the quantity in wg(-) as follows. First,
we see that

R*™ / | Dv|?dz
Bgr

< .
< c(Rp2CGR)-m / (1 + | Do|?) (+er CR)P@)/2 )2/ P2 F)

Br

< c(RrCRITm / (1 + | Duf?) 1+ CRN(E)/25) 2 P22 F)
Br

< C(sz(QR)—’m—wp(’ZR)m{ ) (1 + ‘D71'|2),p(m)/2(l.’13}1+wp(2R)>

7/ Bar

2/p2(2R)

For the last inequality we used so-called reverse Holder inequality with increasing
support which is valid for the minimizers of certain p(z)-growth functionals (see
(21, Lemma 3.2]). Since v is a local minimizer, we can assume that

/ (14 | Du>)P@/ 24y
Bar

is bounded. Moreover, by an assumption on wp, we see that there exists a
positive constant M such that

Rr@R) = R=CRT < ).

So, we have

_Rz_m/ |Dv|?dx
Br

C(sz@R)—m / (1+1Du,]2)p(”:)/2d:n
J B2r

IA

)2/P2(2R)

2/p2(2R)
< C(R/)2(2R)—m/ (1+\D71,[2)p2(2m/2dm) P2 ’ (3.9)
B

2R

for some positive constant c.



Now, combining (3.6), (3.7) and (3.9), and putting » = 2R, we obtain

/ (1 + |Duf?)P2(/2dy,
JB

s

< / (1 + | Du[?)P2()/ 24y, +/ |Du — Du|P*(Mdg
8 BS
SN™TP A4y (em()- 2y02(r) /2 7.\ 2/ P2(7)
< wl(2) e @l | (14 |Dup ) a2

+r°—m5} / 1+ JDu!2)p2(r)/2dﬂ?+ cas™ P, (3.10)
B‘r

Now, we are in the position to use the iteration argument to get a decay
estimate for the quantity defined by (3.5). Let us put

1/p2(r)
Y(r) = 'r(f 1+ |D11,|2)p2(1‘)/2d.7:> e
B,

Then, putting s = 7r (7 € (0,1)) in (3.10), we get

1/p2(r)
U(rr) < C(m,pl,pz)<r”2(r)""/ (14 {DU,IQ)PZ(T)/zdm) g

< egrY [L4 7B {pommO e 4 5o (e W(r)) () + c5(7r)°,
where wg = wé/(qu)’ p1 = infp(x) < po(r) < supp(z) =: p2, v := 1~ (8/p2(r))

and a € (0,v). Fix v € («,) and take 7 € (0,1) so that c377 < 77 /5. Choose
gg and rg > 0 so that

pB=m)/papfo=mOiee g Bompigo(cheq) < 1, csrg < EFQ.
9]
If ¥(r) < g for some r € (0,7g), we have

U(rr) < gr”\ll(r) + 5% < €.

Thus, by an iteration argument, we obtain
q,(,,_lc-kl,,.) < (Tk+l)u\p(,, + csT a,rkaZTy(u a)

< (TRTHYU(r) + cg(r* 7‘)0‘.
So, we get the following estimate which imply the Holder continuity.
U(s) < Crs®

Now, let

Qo := {y €N (r”(y’r)_m/g

for some r < rg with B(y,r) € Q}.

. 1/p
(1+ |Du|2)p2/zdm> ’ <ep
(y.7)



Then, for every z; € g, we have

§—mIPLmon / |Du|P*dx
A B(:vl,s)

IA

{s-a(splrm/ (1 + ‘D?j,fz)pl/?'d:lr)l/pl]pl
JB,
< (s7W(s))" < CPr.

So, we conclude that u € C%*(Qy).
By a standard argument on the Hausdorff measure, we can see that

HTPHQN\ Q) = 0.

Once we have shown the C%%regularity on {2y, we can show the Cclb.
regularity on Qg by standard arguments, estimating the quantity

/ |Du — (Du), P2CR) g,

B,

for p < R. O

It seems that many regularity results for minimizers or weak solutions to
the standard p-growth problems can be generalized to for those of p(z)-growth
problems. In fact, in preprint [24], it is shown that, when p(z) € C%1, g*B(x) e
CO-and hi;(u) € Cc%" (0 < 7,7" < 1), we can improve the estimate on the
Haudorff-dimension of the singular set for bounded minimizers as in [14, 12].
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