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On non-radially symmetric solutions of the
Liouville-Gel’fand equation on a two-dimensional
annular domain
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Mathematical Institute, Tohoku University

1 Introduction

We consider the Liouville-Gel’fand equation

(LG)

Au+ =0 in €,
u=0 on 0,

where ) is a positive parameter and (), is a two-dimensional annulus defined by
Q= {zeR%e< x| <1}

for 0 < € < 1. What we are concerned with is the structure of non-radially symmetric
solutions of (LG) when ¢ is small.

If a domain. is a disk, from the well known result obtained by Gidas, Ni and Nirenberg [5],
there is no non-radially symmetric solution of (LG). On the other hand in the case of an an-
nulus, the existence of non-radially symmetric solutions is revealed by Lin [7] and Nagasaki
and Suzuki [8]. More precisely, Lin showed that non-radially symmetric solutions appear
through a bifurcation from radially symmetric solutions and Nagasaki and Suzuki proved
that for any k € N, there exists a k-mode solution such that fQ e*dx is large. Here, by k-
mode solution, we mean a solution which is invariant under the rotation of 2« /k, and is not
invariant under the rotation of 27 /m for m > k. From the subsequent work by Dancer [2],
the set of the bifurcating non-radially symmetric solutions is unbounded in (A, u) plane. Ad-
ditionally, for a general non-simply connected domain, del Pino, Kowalczyk and Musso [3]
obtained a solution which blows up at k different points as A — 0.

From these results, it is expected that the bifurcating non-radially symmmetric solutions
connect to the large solutions obtained in [8, 3]. Our problem is to show this expectation
when the inside radius of the annulus is small.

To accomplish this, first we have to derive an appropriate limiting equation of (LG) as
¢ — 0 and study (non-radially symmetric) solutions of the limiting equation. These were
investigated in [6]. We will introduce the limiting equation and mention the relation between
(LG) and the limiting equation in the next section briefly. Based on the study of the limiting
equation, we construct solutions of (LG). '
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2 Limiting equation and Main result

In this section we introduce the limiting equation of (LG) obtained in [6] and state our main
result. The limiting equation is given by the following.

Av+Ae” =0 in R*\ {0},
o(a) =  (B=Dioglal+o(1) as s -0, (EE)
| —(B+2)loglz| +o(1) as |z — oo,

where A > 0 and B > 2 are parameters. This equation is derived by the method of matched
asymptotic expansions. See [6] for details. We only explain that an approximate solution of
(LG) can be constructed if we find a solution of (LE). Let v be a solution of (LE) and put

A= Ae(371),

Uz) = (g - %) Iog% +v (6_(%_%)32) .

Then we see at once that (A, U) satisfies
AU+ AY =0 in Q..

Furthermore, the bottom equation of (LE) implies that as £ — 0,

B .
<—~ - —2—> log-l— +(B-2) log et + o(1) =0(1) if |z|=¢,
£

U(x) - é g 1 ~(3-3) .
(5—5)1og-€—~<3+2>1oge G o) =o(1) it |z =1

provided that B > 2. This says that U approximately satisfies the boundary condition of
(LG). Therefore (A, u) = (A, U) is an approximate solution of (LG).
We introduce solutions of (LE). Radially symmetric solutions of (LE) are given by

1
rK 4 p-K)2

(4, B,v) = (8K? 2K, vk), wvk(r)=log =

where 7 = |z| and K > 1 is a parameter. Moreover, (LE) has the following non-radially
symmetric solutions.

1
r2{rk +r—* — 2pcos(kd + v)}?’

(Aa Bv U) = (Skz(l - 02)>2k‘> 'Uk,p,'y>) Uk,aﬁ(x) = 1Og

Here © = (rcos,rsinf), k € N, p € (0,1) and vy € S* = R/27Z. Parameters k, p
and -~y represent the number of frequency in the rotational direction, dilation and rotation
respectively. This non-radially symmetric solution was first exhibited in [1], and it was
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shown in [9] that all the solutions of (LE) consist only of the above radially and non-radially

symmetric solutions. See also [6].

The approximate solution (A, U) of (LG) by using the above non-radially symmetric
solution is (A,U) = (8k2(1 — p?)e*~1, (k — 1/k)log(1/e) + v(e~ "% z)). This function
approximately satisfies (LG) provided that k¥ > 2, while this approximation fails if £ = 1.
Therefore we have to modify the approximation in this case, and this actually can be done.
The following theorem is our main result, which concerns the construction of solutions of
(LG) based on the approximate solutions.

Theorem 1. Let § > 0 be an arbitrary fixed constant. Then there exists a positive number
€g such that, for any € € (0, &g, (LG) has non-radially symmetric solutions

(AN u) = (8K*(1 — p*)e* uehpr), k€N, pes1—46],v€eS

which satisfies

(k - %) log-i— ke (7 F ) +0 () i k22,

1 1
4log — +v1p4 (77'2) + O (TE log —~> if k=1
T T,

€ €

u€,k,p,’7 (x) =

as € — 0. Here 1, > 0 is the solution of the equation (2log 7)/7 = loge, and the above
expansion is uniform forx € Q, k € N, p € [§,1 = §] and vy € S™.

This theorem indicates that non-radially symmetric solutions bifurcating from radially sym-
metric solutions connect to the large solutions obtained in [8, 3], as we expected.
In the next section, we discuss how Theorem 1 is proved.

3 Sketch of proof

We mention the sketch of the proof of Theorem 1 in this section. We only treat the case
k > 2. By setting A = 8(1 — p?)e*~! and performing the change of variables z — £,
(LG) is rewritten as

Au + 8k%(1 — p¥)e¥ ke =0 in Q,
{ (14 a1

v=0 on 99,

where
Qe = {a: € R2;E%(l+%) <zl < 5‘%(1'%)} :



We introduce a correction function to correct the boundary value of the approximate solution.
The correction function v, is defined as a solution of the linear equation

Av, =0, in €,

1 1 -
Ve = — <k — E) Iogg — Ugay, 0N OS.

Then one can show that the inequality
we(z)] < C(rFef= 4 rhehth) (3.2)

holds for some universal constant C' > 0. Now we substitute u = (k — 1) log 2 + vk +
Ve + v and rewrite (3.1) to the equation for v. Then we have

Lekon(V) + Feppny v) =0, (3.3)
where

Es,k,pn(v) = Ay + 8192(1 - 02)6%‘1’7-}_%”)
Frkpn(v) = 8k2(1 — p?) {e¥enTve(e? — 1 —v) + e™er(e™ — 1)} .

It is easily seen from (3.2) that

Ck?

o pp— (lv* + &) (3.4)

|Fe epr (V)] <
provided that |u| < 1. Roughly speaking, the procedure for proving Theorem [ is that
we rewrite (3.3) as v = —E;,li’m(FE,k,p;, v)) and then apply the fixed point theorem to
this equation in an appropriate function space. Therefore the most important part is the
invertibility and the operator norm (in some appropriate space) of L, ; , . These are ensured
by the following lemma.

Lemma 2. There is a positive constant C depending only on & such that the inequality

1
“\II“LOO(QE) <C (103 g) ||77k£s,k,p,7(‘l’)”,;oo(@€) (3.9)

holds for all k = 2,3,..., p € [6,1 =6, v € Stand ¥ € {u € C*(%);u = 0 on 5)(25}
satisfying (W, ®r pr,3) 126, ja|-2am) = 0- Here mi(x) = {r?(r* +r~%)}/k* and

B sin(kd + )
k4 r=F —2pcos(kf + )

q)k,pmS(fc) :

Jorz € R*\ {0}
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Now we prove Theorem 1 by assuming Lemma 2. First we construct an axially symmet-
ric solution for the case y = 0, and then by rotating the solution, we obtain a solution for all
7. Let X be defined by

X = {u € C();uler, —22) = ulx1,22) for (z1,22) € Q).

The reason why we consider axially symmetric function is to take away the rotational invari-
ance of the equation (3.3). Lemma 2 and the Fredholm alternative show that forany f € X,
there exists a unique weak solution ¥ € H}(Q,) of the equation L, 4 ,o(¥) = f such that ¥
has axially symmetry about z;-axis. By the elliptic regularity theory, we have W € X. Thus
we can define the operator T : X 3 f — ¥ € X and the estimate

1
ISl < € (1082 ) Ief o

holds for f € X. From this inequality and (3.4), one can show that the mapping X 3 v —
~TFekpo(v) € X is a contraction mapping in {u € X; [|ull peo(q,) < CeF1log(1/¢)}
for some C' > 0 depending only on ¢ and sufficiently small . Thus we obtain the desired
solution.

What is left is to prove Lemma 2. One of the keys to proving the lemma is to determine
the kernel of the limiting operator of L. s ,, as € — 0. This is defined by

8k2(1 — p?)
r2{rk 4+ r-% — 2pcos(kf + v)}?’

Aco,k,p,'y = A + 8k2(1 -— p2)evk,p,'y = A +

which operates on functions defined on R? \ {0}. It is easy to see that the functions

rk — =k 1
(I o = = — T : 3 ; 2 y
ko1 (2) % 4 7% — 2 cos(kf + ) < Zk(m Vg,pn(2) + ))

2cos(kf + ) — p(r* +r7F) 2 0 5
- = —{ g log(1 —

_ sin(kf + ) _ i_@_v ()
T rkfrk—2pcos(k+ ) \ 4pdy 7

(I)k,p,fy,3 (.’L‘)

are bounded and satisfy Lok~ Prpn~,; = 0 for j = 1,2,3. Moreover, it can be shown
that there is no linearly independent bounded function in the kernel of Lo , . In fact, the
following lemma holds.

Lemma 3 ([4], [6]). Let ® € L™(R?) satisfy Lokp,P = 0. Then © is a linear combination

of Pr,pi,10 Prp,y,2 and P p 3.

In what follows, we briefly show Lemma 2. We prove by contradiction. Suppose that
(3.5) does not hold. Then there exist sequences {W;}%2,, {€;}52,, {k;}%21, {p;}52, and
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{75152, such that

1 .
190wy =10 (1082 ) Imileia,y 0
=7
£j — O, l\’?j — k’o & [Q,OO], P — pp € (0 1), f‘/j — Yo € Sl

as j — oo, where f; := Le, k. 0,1, (¥;). We only treat the case ko < +oo here. We can also
derive a contradiction for the case kg = +o0.

Suppose that ky < +o00. Then the L estimate for the elliptic operator and the Sobolev
embedding theorem show that a subsequence of {V;}%2, (we denote it by the same notation
{W;}52,) converges to some function ¥ in CL (R?\ {0}). Furthermore ¥ must satisfy
1] Loy < 1, Lokoypoe(¥) = 0 and (¥, Pry p,70,3) L2(R2 | -2dz) = 0. From Lemma 3,
these implies that ¥ = ¢1 Py pg,v0,1 + €2Pko p0,70,2 fOr sOME €1, €2 € R.

Let ¢, and _ be defined by

w+(x) = aylogr + B — o=k,

where .+ and 8. are determined by the relation

for R < 1. Then we can take R depending only on ¢ such that

(STl

o . 1+%
s >0, Lok pimsP+ < —K7°% in {ej( 2 <|z| < R},
2, —k—-2 -1 -3(1-%)
0 >0, Lekpmp- < —kr in (R <|z] <¢g
for large j. In particular, this shows that the maximum principle holds for the operator

1(141 o 1(1-1
Le ki pi; ON {5j?(1+k) < |z] < R} and {R™ < [z] < g o ")} Moreover, from the
maximum principle, we have

V()| < max {(Sg}z V;(z)], 2H77fjl|Loo<fzsj>} p+(z)

< C'max {ﬂl—% W5(2)l, 2”77fj”L°°(f25j)}
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1(141
for 5?(1+’°) <|z| £ R and

|W;(x)| < max {| fll,i’_l W5(z)], 2”77fj”L°°((25j)} p_(z)

< Cmax { sup |V ()], 2“"7fj“L°°(ﬁej)}

jel=R?

for R7! < |z| < 5;%(1_%). This implies that if c; = ¢, = 0, then ||V, (g, , = 0.
This contradicts the fact that ||¥,|| Lo(,,) = 1, and therefore it is enough to show that
Cl = Cp = 0.

We prove by contradiction that ¢; = c; = 0. First we assume that ¢; + ¢ > 0 and
¢1 — ¢ > 0 and derive a contradiction. Since

Dy (r,0) = =1, @4, 5(r,0) > 1 uniformly for @ € S asr — 0,

Prpoq1(r,0) =1, By ,q0(r,0) > 1 uniformly ford € S*asr — oo,

we see that my := infgegr W,;(R*!,0) > (¢; F ¢2)/2 for small R and large j. We introduce
the comparison functions 1, and 1_ defined by

Yi(z) = dulogr + B + 2r*F.
Here & and f; are determined by solving the equations
1 1+_1_
¢+(R> = 1’ ¢+ <€j( k)> = 07
vuen v (500) o

Then it can be checked that

provided that 7 is large. The maximum principle gives

U(z) > %(01 — c2)Y+ ()
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for 5?(”%) < |z| < Rand

W,(z) > —;—(cl + e (z)

I Y
for R~ < |z| < ¢ # ’°) In particular, we have

8\Ifj d¢+ i 1
> r— > d. > — (¢ —
Tor |, a6 = T | _pled) 70T 5(c1— ),
J J
Y, dib_ .
- < P27z cr <L

Multiplying Le; k; 0,4, (V;) = f; by ¥ and integrating over Q. yield

1
-3(1-4

[ freoon]ges=o((e2)")

Since the right hand side can be estimated as

<

-%(1-%)
27 . €; ) -1
/0 {T\If(r,é)%kl(r, 0)} 7':5?(“%) do < —% {(c1 —c2)* + (1 + c2)?} <10g i) ,

T &y

we conclude that (¢; — ¢3)? + (c1 + ¢2)? = 0, which gives a contradiction.
Next we consider the case ¢; —cp = 0 and ¢; + ¢z > 0. By using the comparison function
w4, we have

8\Ifj ' d30+
"Br || =T {i?i%“l’ j(x”’z“-"fj“ﬂwmsﬂ} " |, A0e)
1\ !
=0 ((log —) ) ,
€
Hence, in this case,
-4(-4)
/27r r¥(r 9)‘%(7" 0) N d0<~1{(c ;i—c)2+0(1)} log — B
0 ? 8T ? T:E%(l‘;.%) — 8 1 2 g 8] .
J

as 7 — 0. This implies that ¢; + ¢c; = 0, and a contradiction is derived.
The other cases can be treated in a similar way. Thus we conclude that ¢; = ¢; = 0, and
the Lemma 2 is proved.
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