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Abstract

We show an abstract time-periodic bifurcation theorem in Banach
spaces. The key point as well as the novelty of the method is to split
the original evolution equation into two different coupled equations,
one for the time-average of the sought solution and the other for the
“purely periodic”’ component. This approach may be particularly use-
ful in studying physical phenomena occurring in unbounded spatial

regions. Actually, we furnish a significant application of the theorem,
by providing suffcient conditions for time-periodic bifurcation from a
steady-state flow of a Navier-Stokes liquid past a three-dimensional
obstacle.

1 Introduction

Time-periodic bifurcation from a steady-state regime is a commonly ob-
served phenomenon in the dynamics of viscous liquid, for both bounded and

unbounded flow; see. e.g. [11, Section 10.3], [19, Chapter 3]. As is well-
known, it may take place when the magnitude of the driving mechanism,
$m$ (say), reaches a certain critical value, $m_{c}$ . Basically, if $m<m_{c}$ the flow
is steady, whereas once $m>m_{c}$ the flow shows an unsteady, time-periodic
character. It must be emphasized that the latter occurs even though the
driving mechanism is time-independent.

The rigorous mathematical analysis of this type of bifurcation for bounded
flow, including stability properties of the bifurcating branch, has received a
number of important contributions, beginning with the works of Iudovich
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[14], Joseph & Sattinger [15], and Iooss [13] in the early 1970. In particular,

these papers laid the foundation for a rigorous understanding of complicated

bifurcation phenomena occurring in the Taylor-Couette experiment; see [4].

However, it must also be emphasized that the approaches employed by

these authors -mostly resembling ideas introduced by E. Hopf in [12] on
similar problems for systems with a finite degree of freedom-do not apply

to the case of an unbounded flow. As a result, the important time-periodic

bifurcation phenomenon occurring in the flow of a viscous liquid past body,

like a cylinder $($ in $2D)$ or a ball $($ in $3D)$ , is left out. From a strictly technical
viewpoint, this failure is due to the circumstance that the above approaches

require the relevant time-independent, linearized operator, $\mathscr{L}$ , to be con-
tinuously invertible in the appropriate Hilbert space where the problem is
formulated. Now, while this condition is certainly satisfied if the region of
flow is bounded, since in that case $0$ can only be an eigenvalue for $\mathscr{L}$ , in the

case of an unbounded flow it fails, because $0$ becomes a point of the essen-
tial spectrum [2, Theorem 2 and Remark 2]. Nevertheless, as first pointed

out and proved by Babenko [3], the operator $\mathscr{L}$ becomes Fredholm of index
$0$ provided it is defined in the Banach space, $\mathcal{B}$ , where steady-state solu-
tions belong. Therefore, the bounded invertibility of $\mathscr{L}$ , thus defined, is
again ensured by requiring that $0$ is not an eigenvalue. In the light of these
considerations, it becomes natural to formulate the time-periodic bifurca-
tion problem in the space $\mathcal{B}$ , an approach first taken by Babenko [3], and,

successively extended and improved by Sazonov [17].

However, this kind of procedure has two drawbacks. On the one hand,

it gives up the simplicity of the Hilbert-space formulation, and, on the other

hand and more importantly, it is not able to cover the case of time-periodic
bifurcation of plane flow past a cylinder [1, p. 39]. Motivated by the latter,

in [8] the present author has introduced a different method for the study of
time-periodic bifurcation of viscous flow that allows him to overcome both
drawbacks. The method stems from the observation that, in the case of an
unbounded flow, the (time-independent) time-average over a period, $v$ , of
the sought solution, and the “purely periodic”’ (time-dependent) component,
$w$ , belong, in general, to two different function spaces, with, in particular,
$v\in \mathcal{B}$ . With this in mind, the original time-dependent equation can be

equivalently rewritten as two coupled equations, one of the elliptic type (for
$v)$ , and the other of parabolic type (for $w$ ). The problem then simplifies

to a great extent, in that one can show that, in order to obtain the desired
bifurcation result, it suffices to investigate, basically, only the properties of

the evolution equation which is proved to be naturally formulated in the
same Hilbert-space framework as that of bounded flow.
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We believe that the method introduced in [8] could be very useful in
many other problems of mathematical physics, and, in particular, those
regarding phenomena occurring in unbounded spatial regions.

For this reason, the main objective of this paper (Section 3) is to employ

the basic ideas introduced in [8] to prove an abstract time-periodic bifur-
cation result that could be applied to more general problems; see Theorem
3.1. As hinted earlier on, this theorem is formulated for the coupled sys-

tems constituted by a time-independent and a first order time-dependent

equation in Banach and Hilbert spaces, respectively; see $($ 3.5 $)^{}$ Under
suitable regularity conditions on the nonlinearities (see (H4) and Remark
3.3) and technical assumptions (see (H3)), we then show the existence of
a one-parameter family of bifurcating time-periodic solutions, provided the
spectrum of the relevant linearized operators satisfies certain specific con-
ditions (see (H1), (H2), (H5)). Roughly speaking, they amount to assume
that the linear (time-independent) operator involved in the evolution equa-
tion possesses a pair of simple, purely imaginary, complex conjugate eigen-

values, “crossing the imaginary axis with non-zero speed; see also Remark
3.1. Moreover, we show that this bifurcating branch is unique, and that the
type of bifurcation can only be super- or sub-critical.

The second part of the paper (Section 4) is dedicated to the application of

Theorem 3.1 to the study of time-periodic bifurcation of a steady-state solu-
tion to the Navier-Stokes equation in an exterior three dimensional domain
(flow past a body). In particular, we show that all technical assumptions of
Theorem 3.1 are indeed met (see Proposition 4.1-Proposition 4.3) so that
the results stated in Theorem 3.1, under the above mentioned hypotheses

on the spectrum, apply. We wish to stress out that our results differ from
those of [17] on the one hand, because they are obtained, basically, in a
Hilbert-space framework, and, on the other hand, because unlike [17], we
also show the uniqueness property of bifurcating solutions.

2 Notation

The symbols $\mathbb{N},$
$\mathbb{Z}$ , and $\mathbb{R},$

$\mathbb{C}$ stand, in the order, for the sets of positive and
relative integers, and the fields of real and complex numbers.

$\Omega$ denotes a fixed exterior domain of $\mathbb{R}^{3}$ , namely, the complement of the
closure of a bounded, open, and simply connected set, $\Omega_{0}\subset \mathbb{R}^{3}$ . We shall
assume $\Omega$ of class $C^{2}$ , and take the origin $O$ of the coordinate system in $\Omega_{0}.$

(1) $We$ wish to remark that our approach also admits of a straightforward extension to
Banach spaces; see Remark 3.2.
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Also, we denote by $R_{*}>0$ a number such that the closure of $\Omega_{0}$ is strictly
contained in $\{x\in \mathbb{R}^{3}:(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{\frac{1}{2}}<R_{*}\}.$

For $R\geq R_{*}$ , we let

$\Omega_{R}=\Omega\cap\{x\in \mathbb{R}^{2}:(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})^{\frac{1}{2}}<R\}, \Omega^{R}=\Omega-\overline{\Omega_{R}},$

where the bar denotes closure.
We set $u_{t}:=\partial u/\partial t,$ $\partial_{1}u:=\partial u/\partial x_{1}$ , and indicate by $D^{2}u$ the matrix of

the second derivatives of $u.$

For an open and connected set $A\subseteq \mathbb{R}^{3},$ $L^{q}(A)$ , $L_{loc}^{q}(A)$ , $1\leq q\leq\infty,$

$W^{m,q}(A)$ , $W_{0}^{m,q}(A)$ , $m\geq 0,$ $(W^{0,q}\equiv W_{0}^{0,q}\equiv L^{q})$ , stand for the usual
Lebesgue and Sobolev classes, respectively, of real or complex functions. (2)

Norms in $L^{q}(A)$ and $W^{m,q}(A)$ are indicated by $\Vert.\Vert_{q,A}$ and $\Vert.\Vert_{m,q,A}$ . The
scalar product of functions $u,$ $v\in L^{2}(A)$ will be denoted by $\langle u,$ $v\rangle_{A}$ . In the
above notation, the symbol $A$ will be omitted, unless confusion arises.

As customary, for $q\in[1, \infty]$ we let $q’=q/(q-1)$ be its H\"older conjugate.
By $D^{1,q}(\Omega)$ , $1<q<\infty$ , we denote the space of (equivalence classes of)

functions $u$ such that $\Vert\nabla u\Vert_{q}<\infty$ . Moreover, setting,

$\mathcal{D}(\Omega) :=\{u\in C_{0}^{\infty}(\Omega) : divu=0\}$

we let $\mathcal{D}_{0}^{1,2}(\Omega)$ be the completion of $\mathcal{D}(\Omega)$ in the norm $\Vert\nabla(\cdot)\Vert_{2}$ , and set

$Z^{2,2}(\Omega):=W^{2,2}(\Omega)\cap \mathcal{D}_{0}^{1,2}(\Omega)$ .

Furthermore, we denote by $H_{q}(\Omega)$ , $1<q<\infty,$ $(H_{2}(\Omega)\equiv H(\Omega))$ the
completion of $\mathcal{D}(\Omega)$ in the norm $L^{q}(\Omega)$ and let $P_{q}$ be the (Helmholtz) pro-
jection from $L^{q}(\Omega)$ onto $H_{q}(\Omega)$ . $P_{q}$ is independent of $q$ [ $6$ , \S III.I], so that
we shall simply denote it by P.

We define

$X^{2,\frac{4}{3}}(\Omega):=\{u:u\in L^{4}(\Omega)\cap D^{1,2}(\Omega)\cap D^{1,\frac{12}{5}}(\Omega), \partial_{1}u, D^{2}u\in L^{\frac{4}{3}}(\Omega)\}$

and
$X_{0}^{2,\frac{4}{3}}(\Omega)$

$:=\{u\in X^{2,\frac{4}{3}}(\Omega)$ : $divu=0,$ $u|_{\partial\Omega}=0\}.$

As is known, $X^{2,q}(\Omega)$ and $X_{0}^{2,q}(\Omega)$ become Banach spaces when endowed
with the “natural norm

$\Vert u\Vert_{x^{2},\#}:=\Vert u\Vert_{4}+\Vert\nabla u\Vert_{2}+\Vert\nabla u\Vert_{\frac{12}{5}}+\Vert\partial_{1}u\Vert_{\frac{4}{3}}+\Vert D^{2}u\Vert_{\frac{4}{3}}$ ;

see [9].

(2) $We$ shall use the same font style to denote scalar, vector and tensor function spaces.
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Remark 2.1 A function $u\in X^{2,\frac{4}{3}}(\Omega)$ decays to $0$ as $|x|arrow\infty$ in a well
defined sense. Precisely

$\lim_{Rarrow\infty}\int_{S_{2}}|u(R, \Theta)|^{\frac{12}{5}}d\Theta=0$

where $S_{2}$ is the unit sphere in $\mathbb{R}^{3}$ ; see [6, Lemma II.6.3].

If $M$ is a map between two spaces, we denote by $D[M],$ $N[M|$ and $R[M]$

its domain, null space and range, respectively.
In the following, $B$ is a real Banach space with associated norm $\Vert\cdot\Vert_{B}.$

By $B_{\mathbb{C}}$ $:=B+iB$ we denote the complexification of $B.$

For $q\in[1, \infty],$ $L^{q}(-\pi, \pi;B)$ is the space of functions $u$ : $(-\pi, \pi)arrow B$

such that

$( \int_{\pi}^{\pi}\Vert u(t)\Vert_{B}^{q})^{\frac{1}{q}}<\infty$ , if $q\in[1, \infty)$ ;
$ess\sup_{t\in[-\pi,\pi]}\Vert u(t)\Vert_{B}<\infty$

, if $q=\infty.$

Given a function $u\in L^{1}(-\pi, \pi;B)$ , we let $\overline{u}$ be its average over $[-\pi, \pi],$

namely,

$\overline{u}:=\frac{1}{2\pi}\int_{-\pi}^{\pi}u(t)dt.$

Furthermore, we shall say that $u$ is $2\pi$ -periodic, if $u(t+2\pi)=u(t)$ , for a.a.
$t\in \mathbb{R}$ . We then define

$\mathscr{W}_{2\pi,0}^{2}(\Omega)$ $:=\{u\in L^{2}(-\pi, \pi;Z^{2,2}(\Omega))$ and $u_{t}\in L^{2}(-\pi, \pi;H(\Omega))$ :

$u$ is $2\pi$-periodic with $\overline{u}=0$

with associated norm

$\Vert u\Vert_{7f_{2\pi,0}^{\prime 2}}:=(\int_{-\pi}^{\pi}\Vert u_{t}(t)\Vert_{2}^{2}dt)^{1/2}+(\int_{-\pi}^{\pi}\Vert u(t)\Vert_{2,2}^{2}dt)^{1/2}$

Remark 2.2 Since $W^{2,2}\subset W^{1,6}$ , from [6, Theorem II.9.1] it follows that if
$w\in \mathscr{W}_{2\pi,0}^{2}(\Omega)$ then

$\lim|w(x, t)|=0$ uniformly in $x$ , for a.a. $t\in[-\pi, \pi].$

$|x|arrow\infty$
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Setting
$\Omega_{2\pi}:=\Omega\cross[-\pi, \pi]$

we define

$\mathscr{L}_{2\pi,0}(\Omega)$ $:=\{u\in L^{2}(\Omega_{2\pi}))$ : $u$ is $2\pi$-periodic with $\overline{u}=0\},$

and its subspace

$\mathscr{H}_{2\pi,0}(\Omega)$ $:=\{u\in L^{2}(-\pi, \pi;H(\Omega)):u$ is $2\pi$-periodic with $\overline{u}=0\}.$

Moreover, for $u,$ $v\in \mathscr{L}_{2\pi,0}^{2}(\Omega)$ we put

$(u|v) := \int_{-\pi}^{\pi}\langle u(t) , v(t)\rangle dt.$

Finally, by $c,$ $c_{0},$ $c_{1}$ , etc., we denote positive constants, whose partic-
ular value is unessential to the context. When we wish to emphasize the
dependence of $c$ on some parameter $\xi$ , we shall write $c(\xi)$ .

3 An Abstract Bifurcation Theorem

Objective of this section is to prove a time-periodic bifurcation result for
a general class of equations in Banach spaces. Before proceeding in that
direction, however, we first would like to make some comments that will
also provide the motivation of our approach.

Many evolution problems in mathematical physics can be formally writ-
ten in the form

$u_{t}+L(u)=N(u, \mu)$ , (3.1)

where $L$ is a linear differential operator (with appropriate homogeneous
boundary conditions), and $N$ is a nonlinear operator depending on the pa-
rameter $\mu\in \mathbb{R}$ , such that $N(O, \mu)=0$ for all admissible values of $\mu$ . Then,
roughly speaking, time-periodic bifurcation for (3.1) amounts to show the
existence a family of non-trivial time-periodic solutions $u=u(\mu;t)$ of (un-
known) period $T=T(\mu)$ ( $T$-periodic solutions) in a neighborhood of $\mu=0,$

and such that $u(\mu;\cdot)arrow 0$ as $\muarrow 0$ . Setting $\tau:=2\pi t/T\equiv\omega t$ , (3.1)
becomes

$\omega u_{\tau}+L(u)=N(u, \mu)$ (3.2)
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and the problem reduces to find a family of $2\pi$-periodic solutions to (3.2)

with the above properties. We now write $u=\overline{u}+(u-\overline{u})$ $:=v+w$ and

observe that (3.2) is formally equivalent to the following two equations

$L(v)=N(v+w, \mu) :=N_{1}(v, w, \mu)$ ,
(3.3)

$\omega w_{\tau}+L(w)=N(v+w, \mu)-\overline{N(v+w,\mu)} :=N_{2}(v, w, \mu)$ .

At this point, the crucial issue is that in many applications -typically when

the physical system evolves in an unbounded spatial region the (steady-state

component”’ $v$ lives in function spaces with quite less “regularity (3) than

the space where the “purely periodic” component $w$ does. For this reason, it
is much more appropriate to study the two equations in (3.3) in two different
function classes. As a consequence, even though formally being the same
as differential operators, the operator $L$ in $(3.3)_{1}$ acts on and ranges into
spaces different than those the operator $L$ in $(3.3)_{2}$ does. With this in mind,

(3.3) becomes

$L_{1}(v)=N_{1}(v, w, \mu)$ ; $\omega w_{\tau}+L_{2}(w)=N_{2}(v, w, \mu)$ .

The general abstract theory that we are about to describe stems exactly

from the above considerations.
To this end, let $\mathcal{X},$ $\mathcal{Y}$ , be Banach spaces with norms $\Vert$ $\Vert_{\mathcal{X}},$ $\Vert$ $\Vert_{\mathcal{Y}}$ , re-

spectively, and let $\mathcal{H}$ be a Hilbert space with norm $\Vert\cdot\Vert_{\mathcal{H}}$ and corresponding

scalar product $\rangle^{(4)}$ Moreover, denote by

$L_{1}:\mathcal{X}\mapsto \mathcal{Y},$

a bounded linear operator, and by

$L_{2}:D[L_{2}]\subset \mathcal{H}\mapsto \mathcal{H},$

a densely defined, closed linear operator, with a non-empty resolvent set
$P(L_{2})$ . For a fixed (once and for all) $\theta\in P(L_{2})$ we denote by $\mathcal{W}$ the linear
subspace of $\mathcal{H}$ closed under the norm $\Vert w\Vert_{\mathcal{W}}$ $:=\Vert(L_{2}+\theta I)w\Vert_{\mathcal{H}}$ , where $I$

stands for the identity operator. We then define the following spaces

$\mathcal{H}_{2\pi,0}$ $:=$ { $w\in L^{2}(-\pi, \pi;\mathcal{H}):2\pi$-periodic with $\overline{w}=0$ }

$\mathcal{W}_{2\pi,0}$ $:=$ { $w\in L^{2}(-\pi, \pi;\mathcal{W})$ , $w_{t}\in L^{2}(-\pi, \pi;\mathcal{H}):2\pi$-periodic with $\overline{w}=0$ },

(3)Here ‘regularity’ is meant in the sense of behavior at large spatial distances.
(4)Without any risk of confusion, we use here the same symbol as the $L^{2}$-scalar product

introduced earlier on.
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with corresponding norms

$\Vert w\Vert_{\mathcal{H}_{2\pi,0}}:=(\int_{-\pi}^{\pi}\Vert w(s)\Vert_{\mathcal{H}}^{2}ds)^{\frac{1}{2}}$

$\Vert w\Vert_{\mathcal{W}_{2\pi,0}}:=(\int_{-\pi}^{\pi}(\Vert w(s)\Vert_{\mathcal{W}}^{2}+\Vert w_{s}(s)\Vert_{\mathcal{H}}^{2})ds)^{\frac{1}{2}}$

The scalar product in $\mathcal{H}_{2\pi,0}$ is defined b$y^{}$

$(w_{1}|w_{2}):= \int_{-\pi}^{\pi}\langle w_{1}(s) , w_{2}(\mathcal{S})\rangle ds.$

Next, let
$N:\mathcal{X}\cross \mathcal{W}_{2\pi,0}\cross \mathbb{R}\mapsto \mathcal{Y}\oplus \mathcal{H}_{2\pi,0}$

be $a$ (nonlinear) map satisfying the following properties:

$N_{1}:(v, w, \mu)\in \mathcal{X}\cross \mathcal{W}_{2\pi,0}\cross \mathbb{R}\mapsto N(v, w, \mu)\in \mathcal{Y}$

(3.4)
$N_{2}:=N-N_{1}:\mathcal{X}\cross \mathcal{W}_{2\pi,0}\cross \mathbb{R}\mapsto \mathcal{H}_{2\pi,0}.$

We can then formulated the following.

Bifurcation Problem: Find a neighborhood of the origin $U(0,0,0)\subset$

$\mathcal{X}\cross \mathcal{W}_{2\pi,0}\cross \mathbb{R}$ such that the equations

$L_{1}(v)=N_{1}(v, w, \mu)$ , $in\mathcal{Y}$ ; $\omega w_{\tau}+L_{2}(w)=N_{2}(v, w, \mu)$ , $in\mathcal{H}_{2\pi,0}$ , (3.5)

possess there a family of non-trivial $2\pi$ -periodic solutions $(v(\mu), w(\mu;\tau))$ for
some $\omega=\omega(\mu)>0$ , such that $(v(\mu),$ $w(\mu$ ; $arrow 0$ in $\mathcal{X}\cross \mathcal{W}_{2\pi,0}$ as $\muarrow 0.$

Whenever the Bifurcation Problem admits a positive answer, we say
that $(u=0, \mu=0)$ is a bifurcation point. Moreover, the bifurcation is called
supercritical [resp. $subcritica\eta$ if the family of solutions $(v(\mu), w(\mu;\tau))$ exists
only for $\mu>0$ [resp. $\mu<0$].

With a view to solve the above problem, we begin to make the following
assumptions $(H1)-(H5)$ on the involved operators.

(H1) $L_{1}$ is a homeomorphism;

(H2) The spectrum $\sigma(L_{2})$ (computed with respect to $\mathcal{H}_{\mathbb{C}}$ ) contains a simple
eigenvalue $v_{0}$ $:=i\omega_{0},$ $\omega_{0}>0^{(6)}$ whereas $k\nu_{0}\not\in\sigma(L_{2})$ , for all $k\in$

$\mathbb{N}-\{0$ , 1 $\}$ ;

(5)Without any risk of confusion, we use here the same symbol as the $\mathscr{H}_{2\pi,0}$-scalar
product introduced earlier on.

(6)That is, $N_{C}[L_{2}-\nu_{0}I]\cap R_{C}[L_{2}-\nu_{0}I]=\{0\}.$
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(H3) The operator

$\mathscr{Q}:w\in \mathcal{W}_{2\pi},\‘{o}\mapsto\omega_{0}w_{\tau}+L_{2}(w)\in \mathcal{H}_{2\pi,0},$

is Fredholm of index $0$ ;

(H4) The nonlinear operators $N_{1},$ $N_{2}$ are analytic in the neighborhood $U_{1}(0,0,0)\subset$

$\mathcal{X}\cross \mathcal{W}_{2\pi_{)}0}\cross \mathbb{R}$ , namely, there exists $\delta>0$ such that for all $(v, w, \mu)$

with $1v\Vert_{\mathcal{X}}+\Vert w\Vert_{\mathcal{W}_{2\pi,0}}+|\mu|<\delta$ , the Taylor series

$N_{1}(v, w, \mu)=\sum_{k,l,m=0}^{\infty}R_{klm}v^{k}w^{l}\mu^{m},$

$N_{2}(v, w, \mu)=\sum_{k,l,m=0}^{\infty}S_{klm}v^{k}w^{l}\mu^{m},$

are absolutely convergent in $\mathcal{Y}$ and $\mathcal{H}_{2\pi,0}$ , respectively, for all $(v, w, \mu)\in$

$U_{1}$ . Moreover, we assume that the multi-linear operators $R_{klm}$ and
$S_{klm}$ satisfy $R_{klm}=S_{klm}=0$ whenever $k+l+m\leq 1$ , and $R_{011}=$

$R_{00m}=S_{00m}=0$ , all $m\geq 2.$

In order to prove our main Theorem 3.1, we begin to draw a number

of consequences from the above assumptions. In this regard, let $v_{0}$ be the

(unique) normalized eigenvector of $L_{2}$ corresponding to the eigenvalue $v_{0},$

and set
$v_{1}:=\Re[v_{0}e^{-i\tau}], v_{2}:=\Im[v_{0}e^{-i\tau}].$

Lemma 3.1 Under the assumption (H2), we have $\dim N[\mathscr{Q}]=2$ , and
$\{v_{1}, v_{2}\}$ is a basis in $N[\mathscr{Q}].$

Proof. Clearly, $S:=$ span { $v_{1}, v_{2}\}\subseteq N[\mathscr{Q}]$ . Conversely, take $w\in N[\mathscr{Q}]$ , and
expand it in Fourier series

$w= \sum_{\ell=-\infty}^{\infty}w_{\ell}e^{-i\ell\tau};w_{\ell}:=\frac{1}{2\pi}\int_{-\pi}^{\pi}w(\tau)e^{i\ell\tau}d\tau, w_{0}\equiv\overline{w}=0.$

Obviously, $w_{\ell}\in \mathcal{W}_{\mathbb{C}}\equiv D_{\mathbb{C}}[L_{2}]$ . From $\mathscr{Q}(w)=0$ we deduce

$-\ell\mu_{0}w_{l}+L_{2}(w_{\ell})=0, w\ell\in D_{\mathbb{C}}[L_{2}], \ell\in \mathbb{Z},$

which, by (H2) and the fact that $w_{0}=0$ , implies $w\ell=0$ for all $\ell\in \mathbb{Z}-\{\pm 1\}.$

Thus, recalling that $\mu_{0}$ is simple, we infer $w\in S$ and the lemma follows.

9



$\square$

Denote by $L_{2}^{*}$ the adjoint of $L_{2}$ . Since $\nu_{0}$ is simple (by (H2)), from
classical results on Fredholm operators (e.g. [20, Section 8.4]), it follows that
there exists at least one element $v_{0}^{*}\in N_{\mathbb{C}}[L_{2}^{*}-\nu_{0}I]$ such that $\langle v_{0}^{*},$ $v_{0}\rangle\neq 0.$

Without loss, we may take

$\langle v_{0}^{*}, v_{0}\rangle=\pi^{-1}$ (3.6)

We then define
$v_{1}^{*}:=\Re[v_{0}^{*}e^{i\tau}], v_{2}^{*}:=\Im[v_{0}^{*}e^{i\tau}],$

and set

$\hat{\mathcal{H}}_{2\pi,0}=\{w\in \mathcal{H}_{2\pi,0} : (w|v_{1}^{*})=(w|v_{2}^{*})=0\},$ $\hat{\mathcal{W}}_{2\pi,0}=\mathcal{W}_{2\pi,0}\cap\hat{\mathcal{H}}_{2\pi,0}.$

For future reference, we observe that with the normalization (3.6), it follows
that

$(v_{1}|v_{1}^{*})=(v_{2}|v_{2}^{*})=1, (v_{2}|v_{1}^{*})=(v_{1}|v_{2}^{*})=0,$

(3.7)
$((v_{1})_{\tau}|v_{1}^{*})=0, ((v_{1})_{\tau}|v_{2}^{*})=-1.$

Lemma 3.2 Let (H2) and (H3) hold. Then, the operator $\mathscr{Q}$ maps $\hat{\mathcal{W}}_{2\pi,0}$

onto $\hat{\mathcal{H}}_{2\pi,0}$ homeomorphically.

Proof. By (H3), $\mathscr{Q}$ is Fredholm of index $0$ , whereas by Lemma 3.1 $\dim N[\mathscr{Q}]=$

$2$ . From classical theory of Fredholm operators (e.g. [20, Proposition
$8.14(4)])$ it then follows that $\dim N[\mathscr{Q}^{*}]=2$ where

$\mathscr{Q}^{*}=\omega_{0}(\cdot)_{\tau}+L_{2}^{*}$

is the adjoint of $\mathscr{Q}$ . In view of the stated properties of $v_{0}^{*}$ , we infer that
span $\{v_{1}^{*}, v_{2}^{*}\}=N[\mathscr{Q}^{*}]$ , and the lemma follows from another classical result
on Fredholm operators $(e.g. [20,$ Proposition $8.14(2)]$ ).

$\square$

With this result in hand, we shall now follow a more or less standard
procedure to show that our Bifurcation Problem has in fact a solution. To
this end, in order to ensure the the solutions we are looking for are non-
trivial, we endow (3.5) with the side condition

$(w|v_{1}^{*})=\epsilon, (w|v_{1}^{*})=0$ , (3.8)

where $\epsilon$ is a real parameter ranging in a neighborhood of O.

We may then prove the main result of this section.
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Theorem 3.1 Suppose $(H1)-(H5)$ hold and, in addition

$(S_{011}(v_{1})|v_{1}^{*})\neq 0$ (H6)

Then, the following properties are valid.

(a) Existence. There are analytic families

$(v(\epsilon), w(\epsilon), \omega(\epsilon), \mu(\epsilon))\in \mathcal{X}\cross \mathcal{W}_{2\pi,0}\cross \mathbb{R}+\cross \mathbb{R}$ (3.9)

satisfying (3.5), (3.8), for all $\epsilon$ in a neighborhood $\mathcal{I}(O)$ and such that

$(v(\epsilon), w(\epsilon)-\epsilon v_{1}, \omega(\epsilon), \mu(\epsilon))arrow(0,0, \omega_{0},0)$ as $\epsilonarrow 0$ . (3.10)

(a) Uniqueness. There is a neighborhood

$U(0,0, \omega_{0},0)\subset \mathcal{X}\cross \mathcal{W}_{2\pi,0}\cross \mathbb{R}_{+}\cross \mathbb{R}$

such that every (nontrivial) $2\pi$-periodic solution to (3.5), $(z, s)$ , lying in $U$

must coincide, up to a phase shift, with that member of the family (3.9)

having $\epsilon\equiv(s|v_{1}^{*})$ .
(a) Parity. The functions $\omega(\epsilon)$ and $\mu(\epsilon)$ are even:

$\omega(\epsilon)=\omega(-\epsilon)$ , $\mu(\epsilon)=\mu(-\epsilon)$ , for all $\epsilon\in \mathcal{I}(0)$ .

Consequently, the bifurcation due to these solutions is either subcritical or
supercritical, a two-sided bifurcation being excluded.(7)

Proof. We scale $v$ and $w$ by setting $v=\epsilon v,$ $w=\epsilon w$ , so that problem (3.5),

(3.8) becomes

$L_{1}(v)=\mathcal{N}_{1}(\epsilon, v, w, \mu)$ , in $y_{1}$

$\omega_{0}w_{\tau}+L_{2}(w)=\mathcal{N}_{2}(\epsilon, \omega, v, w, \mu)$ , $in\mathcal{H}_{2\pi,0},$ $(w|v_{1}^{*})=1,$ $(w|v_{1}^{*})=0,$

(3.11)

where

$\mathcal{N}_{1}(\epsilon, v, w, \mu):=(1/\epsilon)N_{1}(\epsilon v, \epsilon w,\mu)$ ,

$\mathcal{N}_{2}(\epsilon, \omega, v, w, \mu):=(1/\epsilon)N_{2}(\epsilon v, \epsilon w, \mu)+(\omega_{0}-\omega)w_{\tau}.$

Define the map

$F$ : $(\epsilon, U)$ $:=(\epsilon, \mu, \omega, v, w)\in \mathcal{I}(O)\cross U(0)\cross V(\omega_{0})\cross \mathcal{X}\cross \mathcal{W}_{2\pi,0}$

$\mapsto(L_{1}(v)-\mathcal{N}_{1}(\epsilon, v, w, \mu),$ $\mathscr{Q}(w)-\mathcal{N}_{2}(\epsilon, \omega, v, w, \mu),$ $(w|v_{1}^{*})-1,$ $(w|v_{2}^{*}))$

$\in \mathcal{Y}\cross \mathcal{H}_{2\pi,0}\cross \mathbb{R}^{2},$

(7) Unless $\mu\equiv 0.$
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with $U(O)$ and $V(\omega_{0})$ neighborhoods of $0$ and $\omega_{0}$ . Since, by (H4), we have
in particular $\mathcal{N}_{1}(0,0, v_{1},0)=\mathcal{N}_{2}(0, \omega_{0}, v_{1},0)=0$ , using $(3.7)_{1}$ and Lemma
3.1 we deduce that, at $\epsilon=0$ , the equation $F(\epsilon, \cup)=0$ has the solution
$\bigcup_{0}=(0, \omega_{0},0, v_{1})$ . Therefore, since by (H4) we have that $F$ is analytic at
$(0, \bigcup_{0})$ , by the analytic version of the Implicit Function Theorem (e.g. [20,
Proposition 8.11]), to show the existence statement -including the validity
of $(3.10)-it$ suffices to show that the Fr\’echet derivative, $DF( O, \bigcup_{0})$ , of $F$

with respect to $U$ evaluated at $(0, \bigcup_{0})$ is a bijection. Now, in view of the
assumption (H4), it easy to see that the Fr\’echet derivative of $\mathcal{N}_{1}$ at $(\epsilon=$

$0,$ $v=0,$ $w=v_{1},$ $\mu=0)$ is equal to $0$ , while that $of\mathcal{N}_{2}$ at $(\epsilon=0,$ $\omega=\omega_{0},$ $v=$

$0,$ $w=v_{1},$ $\mu=0)$ is equal to $-\omega(v_{1})_{\tau}+\mu S_{011}(v_{1})$ . Therefore, $DF(O, U_{0})$

is a bijection if we prove that for any $(f_{1}, f_{2}, f_{3}, f_{4})\in \mathcal{Y}\cross \mathcal{H}_{2,\pi,0}\cross \mathbb{R}\cross \mathbb{R},$

the following set of equations has one and only one solution $(\mu, \omega, v, w)\in$

$\mathbb{R}\cross \mathbb{R}\cross \mathcal{X}\cross \mathcal{W}_{2\pi,0}$ :

$L_{1}(v)=f_{1}$ in $\mathcal{Y}$

$\mathscr{Q}(w)=-\omega(v_{1})_{\tau}+\mu S_{011}(v_{1})+f_{2}$ $in$ $\mathcal{H}_{2\pi,0}$ , (3.12)

$(w|v_{1}^{*})=f_{3},$ $(w|v_{2}^{*})=f_{4}$ in $\mathbb{R},$

In view of (H1), for any given $f_{1}\in \mathcal{Y}$ , equation $(3.12)_{1}$ has one and only one
solution $v\in \mathcal{X}$ . Therefore, it remains to prove the existence and uniqueness
property only for the system of equations $(3.12)_{2-4}$ To this aim, we observe
that, by Lemma 3.2, for a given $f_{2}\in.$ $\mathcal{H}_{2\pi,0}$ , equation $(3.12)_{2}$ possesses a
unique solution $w_{1}\in\hat{\mathcal{W}}_{2\pi,0}$ if and only if its right-hand side is in $\hat{\mathcal{H}}_{2\pi,0},$

namely,

$(-\omega(v_{1})_{\tau}+\mu S_{011}(v_{1})+f_{2}|v_{1}^{*})=(-\omega(v_{1})_{\tau}+\mu S_{011}(v_{1})+f_{2}|v_{2}^{*})=0.$

Taking into account $(3.7)_{2}$ the above conditions will be satisfied provided
we can find $\mu$ and $\omega$ satisfying the following algebraic system

$\mu(S_{011}(v_{1})|v_{1}^{*})=-(f_{2}|v_{1}^{*})$

(3.13)
$\omega+\mu(S_{011}(v_{1})|v_{2}^{*})=-(f_{2}|v_{2}^{*})$ .

However, by virtue of (H6), this system possesses a uniquely determined
solution $(\mu, \omega)$ , which ensures the existence of a unique solution $w_{1}\in\hat{\mathcal{W}}_{2\pi,0}$

to $(3.12)_{2}$ corresponding to the selected values of $\mu$ and $\omega$ . We now set

$w:=w_{1}+\alpha v_{1}+\beta v_{2}, \alpha, \beta\in \mathbb{R}.$

Clearly, by Lemma 3.1, $w$ is also a solution to $(3.12)_{2}$ . We then choose $\alpha$

and $\beta$ in such a way that $w$ satisfies both conditions $(3.12)_{3,4}$ for any given

12



$\mathfrak{f}_{i}\in \mathbb{R},$ $i=1$ , 2. This choice is made possible by virtue of $(3.7)_{1}$ . We have

thus shown that $DF(O, U_{0})$ is surjective. To show that it is also injective,

set $f_{i}=0$ in $(3.12)_{2-4}$ . From (3.13) and (H6) it then follows $\mu=\omega=0$

which in turn implies, by $(3.12)_{2}$ and Lemma 3.1, $w=\gamma_{1}v_{1}+\gamma_{2}v_{2}$ , for

some $\gamma_{i}\in \mathbb{R},$ $i=1$ , 2. Replacing this information back in $(3.12)_{3,4}$ with
$\mathfrak{f}_{3}=\mathfrak{f}_{4}=0$ , and using $(3.7)_{1}$ we conclude $\gamma_{1}=\gamma_{2}=0$ , which proves the

claimed injectivity property. Thus, $DF(O, U_{0})$ is a bijection, and the proof

of the existence statement in (a) is completed. We shall next show the

uniqueness statement in (b) by adapting to the present case the argument

of [20, Theorem 8. $B$]. Let $(z, s)\in \mathcal{X}\cross \mathcal{W}_{2\pi,0}$ be a $2\pi$-periodic solution to

(3.5) with $\omega\equiv\tilde{\omega}$ and $\mu\equiv\tilde{\mu}$ . By the uniqueness property associated with

the implicit function theorem, the proof of the claimed uniqueness amounts

to show that we can find a sufficiently small $\rho>0$ such that if

$\Vert z\Vert_{\mathcal{X}}+\Vert s\Vert_{\mathcal{W}_{2\pi,0}}+|\tilde{\omega}-\omega_{0}|+|\tilde{\mu}|<\rho$ , (3.14)

then there exists a neighborhood of $0,$ $\mathcal{I}(0)\subset \mathbb{R}$ , such that

$s=\eta v_{1}+\eta s,$ $z=\eta z$ , for all $\eta\in \mathcal{I}(0)$ ,
(3.15)

$|\tilde{\omega}-\omega_{0}|+|\tilde{\mu}|+\Vert z\Vert_{\mathcal{X}}+\Vert s\Vert_{\mathcal{W}_{2\pi,0}}arrow 0as\etaarrow 0.$

To this end, we notice that, by $(3.7)_{1}$ , we may write

$s=\sigma+\tilde{s}$ (3.16)

where $\sigma=(s|v_{1}^{*})v_{1}+(s|v_{2}^{*})v_{2}$ and

$(\tilde{s}|v_{i}^{*})=0, i=1, 2$ . (3.17)

We next make the simple but important observation that if we modify $\mathcal{S}$ by a

constant phase shift in time, $\delta$ , namely, $s(\tau)arrow \mathcal{S}(\tau+\delta)$ , the shifted function

is still a $2\pi$-periodic solution to $(3.5)_{2}$ and, moreover, by an appropriate

choice of $\delta,$

$\sigma=\eta v_{1}$ , (3.18)

with $\eta=\eta(\delta)\in \mathbb{R}$ . (The proof of (3.18) is straightforward, once we take into

account the definition of $v_{1}$ and $v_{2}.$ ) Notice that from (3.14), $(3.16)-(3.18)$

it follows that
$|\eta|+\Vert\tilde{s}\Vert_{\mathcal{W}_{2\pi,0}}arrow 0as\rhoarrow 0$ . (3.19)

From (3.5) we thus get

$L_{1}(z)=N_{1}(z, \eta v_{1}+\tilde{s},\tilde{\mu})$ (3.20)
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and, recalling Lemma 3.1,

$\mathscr{Q}(\gamma s=\eta(\omega_{0}-\omega)(v_{1})_{\tau}+(\omega_{0}-\omega)\tilde{s}_{\tau}+N_{2}(z, \eta v_{1}+\tilde{s},\tilde{\mu})$ . (3.21)

In view of (H4) and (3.14), we easily deduce deduce

$N_{1}(z, \eta v_{1}+\tilde{s},\tilde{\mu})=R_{110}z(\eta v_{1}+\overline{s})+R_{101}z\tilde{\mu}+R_{020}(\eta v_{1}+\tilde{s})^{2}+n_{1}(z, \eta,\tilde{s},\tilde{\mu})$ ,

where

$\Vert n_{1}(z, \eta,\tilde{s},\tilde{\mu})\Vert_{\mathcal{Y}}\leq\epsilon(\rho)(\Vert z\Vert_{\mathcal{X}}+\Vert\tilde{s}\Vert w_{2\pi,0}+\eta^{2})$ , $\epsilon(\rho)arrow 0$ as $\rhoarrow 0,$

so that, by (3.20) and (H1) we obtain by taking $\rho$ sufficiently small

$\Vert z\Vert_{\mathcal{X}}\leq c_{1}(|\eta|^{2}+\Vert\tilde{s}\Vert_{\mathcal{W}_{2\pi,0}}^{2}+\epsilon(\rho)\Vert\neg s|_{\mathcal{W}_{2\pi,0}})$ . (3.22)

Likewise,

$N_{2}(z, \eta v_{1}+\tilde{s}, \tilde{\mu})=S_{011}(\eta v_{1}+\tilde{s})\tilde{\mu}+S_{110}z(\eta v_{1}+\overline{s})+S_{101}z\tilde{\mu}$

(3.23)
$+S_{200}z^{2}+S_{020}(\eta v_{1}+\tilde{s})^{2}+n_{2}(z, \eta,\tilde{s},\tilde{\mu})$ ,

where $n_{2}$ enjoys the same property as $n_{1}$ . Rom (3.21), (3.23) and $(3.7)_{1}$ we
infer, according to Lemma 3.2, that the following (compatibility) conditions
must be satisfied

$-\eta\tilde{\mu}(S_{011}(v_{1})|v_{1}^{*})=((\omega_{0}-\omega)\tilde{s}_{\tau}+S_{011}\tilde{s}\tilde{\mu}+S_{110}z(\eta v_{1}+\gamma s|v_{1}^{*})$

$+(S_{200}z^{2}+S_{020}(\eta v_{1}+\gamma s^{2}|v_{1}^{*})+(n_{2}|v_{1}^{*})$

$\eta(\omega-\omega_{0})=((\omega_{0}-\omega)\tilde{s}_{\tau}+S_{011}\overline{s\mu}+S_{110}z(\eta v_{1}+\tilde{s})|v_{2}^{*})$

$+(S_{200}z^{2}+S_{020}(\eta v_{2}+\gamma s^{2}|v_{2}^{*})++(n_{2}|v_{2}^{*})$ ,

so that, from (H6) and the property of $n_{2}$ we show

$|\eta|(|\tilde{\mu}|+|\omega-\omega_{0}|)\leq c_{2}(|\omega-\omega_{0}|+|\tilde{\mu}|)\Vert\neg s|_{\mathcal{W}_{2\pi,0}}+|\eta|\Vert z\Vert_{\mathcal{X}}+\Vert z\Vert_{\mathcal{X}}^{2}$

$+\Vert\tilde{s}\Vert_{\mathcal{W}_{2\pi,0}}^{2}+\eta^{2})+\epsilon(\rho)(\Vert z\Vert_{\mathcal{H}}+\Vert\tilde{s}\Vert_{\mathcal{W}_{2\pi,0}})$ .
(3.24)

Also, applying Lemma 3.2 to (3.21) and using (3.23), (3.14) with $\rho$ suffi-
ciently small we get

$\Vert\neg s|_{\mathcal{W}_{2\pi,0}}\leq c_{3}(|\eta|(|\tilde{\mu}|+|\omega-\omega_{0}|)+(|\eta|+|\tilde{\mu}|+\epsilon(\rho))\Vert z\Vert_{\mathcal{X}}+\Vert z\Vert_{\mathcal{X}}^{2}+\eta^{2})$ . $(3.25)$
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Summing side by side (3.22), (3.24) and $(1/(2c_{3}))\cross(3.25)$ , and taking again
$\rho$ small enough, we thus arrive at

$|\eta|(|\tilde{\mu}|+|\omega-\omega_{0}|)+\Vert z\Vert_{\mathcal{X}}+\Vert\tilde{s}\Vert_{\mathcal{W}_{2\pi,0}}\leq c_{4}\eta^{2},$

from which we establish the validity of $(3.15)_{2}$ , thus concluding the proof of

the uniqueness property (b). Finally, in order to show the parity property
in (c), we notice that if $(v(-\epsilon), w(-\epsilon;\tau))$ is the solution corresponding to
$-\epsilon$ , we have $(w(-\epsilon;\tau+\pi)|v_{1}^{*})=\epsilon v_{1}$ , which, by part (b), implies that, up

to a phase shift, $(v(-\epsilon), w(-\epsilon\cdot\tau))=(v(\epsilon),$ $w(\epsilon;\tau$ This, in turn, furnishes
$\omega(-\epsilon)=\omega(\epsilon)$ and $\mu(-\epsilon)=\mu(\epsilon)$ . Rom the latter and the analyticity of $\mu$

we then obtain that either $\mu\equiv 0$ or else there is an integer $k\geq 1$ such that

$\mu(\epsilon)=\epsilon^{2k}\mu_{k}+O(\epsilon^{2k+2})\mu_{k}\in \mathbb{R}-\{0\}.$

Thus, $\mu(\epsilon)<0$ or $\mu(\epsilon)>0$ , according to whether $\mu_{k}$ is negative or positive.
The theorem is completely proved.

$\square$

Remark 3.1 By means of a classical result on eigenvalues perturbations,

we can give an equivalent (and more familiar) formulation of (H6). To this

end, let
$L_{2}(\mu):=L_{2}+\mu S_{011},$

and observe that, by (H2), $v_{0}$ is a simple eigenvalue of $L_{2}(0)\equiv L_{2}$ . There-

fore, denoting by $v(\mu)$ the eigenvalues of $L_{2}(\mu)$ , we know (e.g. [21, Propo-

sition 79.15 and Corollary 79.16]) that in a neighborhood of $\mu=0$ the map
$\mu\mapsto\nu(\mu)$ is well defined and of class $C^{\infty}$ , and that

$\nu’(0)=\langle v_{0}^{*}, S_{011}(v_{0})\rangle.$

With the help of the latter and a straightforward calculation we then show
that (H6) is equivalent to the condition

$\Re[\nu’(0)]\neq 0,$

which in turn tells us that the eigenvalue $v(\mu)$ must cross the imaginary

axes with “non-zero speed”’

Remark 3.2 The arguments used in the proof of Theorem 3.1 go through

in the more general case where the evolution equation $(3.5)_{2}$ is formulated
in a Banach space, provided we modify (H3) by adding the assumption that
$N[\mathscr{Q}]$ is two-dimensional. However, we preferred the Hilbert formulation
just to emphasize that, as shown in the next section, time-periodic bifurca-

tion of a Navier-Stokes steady-state flow past an obstacle can be safely and

successfully handled in the simpler Hilbert-space framework.
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Remark 3.3 The assumption of analyticity of $N_{1}$ and $N_{2}$ with respect to
$(v, w, \mu)$ is not necessary. Actually, a suitably modified version of Theorem
3.1 continues to hold if the nonlinear terms are of class $C^{k}$ in all variables,
for some $k\geq 2$ . In such a case, the family of branching solutions of Theorem
3.1 will be of class $C^{k-1}$ in the parameter $\epsilon.$

4 Time-periodic Bifurcation of Steady-State So-
lutions to the Navier-Stokes Equations Past an
Obstacle

In this section we will apply the general theory developed in the previous one
to the study of time-periodic bifurcation from a steady-state flow of a Navier-
Stokes liquid past a three-dimensional obstacle. To this end, assume that
an obstacle, $\mathscr{R}$ , of diameter $d$ is placed in the flow of a Navier-Stokes liquid
having an upstream velocity $v_{\infty}$ . Then, the bifurcation problem amounts
to study the following set of (dimensionless) equations

$V_{t}+\lambda(V-e_{1})\cdot\nabla V=\triangle V-\nabla P$

in $\Omega\cross \mathbb{R}$

$divV=0$ (4.1)

$V=e_{1}$ at $\partial\Omega\cross \mathbb{R},$

with the further condition

$\lim V(x, t)=0, t\in \mathbb{R}$ . (4.2)
$|x|arrow\infty$

Here $V$ and $P$ are velocity and pressure fields of the liquid, $\Omega$ is the region
of flow, namely, the entire three-dimensional space exterior to $\mathscr{R},$

$e_{1}$ is a
unit vector parallel to $v_{\infty}$ , and $\lambda$ $:=|v_{\infty}|/(\overline{v}d)$ , with $\overline{\nu}$ kinematic viscosity
of the liquid, is the Reynolds number. It will be shown (see Proposition
4.1) that, under suitable assumptions on $\lambda_{0}$ , the above equations possess a
unique steady-state solution branch $(u(\lambda),p(\lambda))$ , with $\lambda$ in a neighborhood
$U(\lambda_{0})$ . Writing $V=v(x, t;\lambda)+u(x;\lambda)$ , $P=p(x, t;\lambda)+p(x;\lambda)$ , equations
$(4.1)-(4.2)$ become

$v_{t}+\lambda[(v-e_{1})\cdot\nabla v+u(\lambda)\cdot\nabla v+v\cdot\nabla u(\lambda)]=\triangle v-\nabla p$

in $\Omega\cross \mathbb{R}$

$divv=0$

$v=0$ at $\partial\Omega\cross \mathbb{R},$

(4.3)
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with
$\lim v(x, t)=0, t\in \mathbb{R}$ . (4.4)

$|x|arrow\infty$

Our bifurcation problem consists then in finding sufficient conditions for the
existence of a non-trivial family of time-periodic solutions to $(4.3)-(4.4)$ ,
$(v(\lambda), p(\lambda))$ , $\lambda\in U(\lambda_{0})$ , of period $T=T(\lambda)$ (unknown as well), such that
$(v(t;\lambda), \nabla p(t;\lambda))arrow(0,0)$ as $\lambdaarrow\lambda_{0}.$

We shall show that $(4.3)-(4.4)$ can be put in the form (3.5), for an
appropriate choice of the involved operators and function spaces, and that if
conditions (H1), (H2) and (H6) hold, then the bifurcation result of Theorem
3.1 applies.

In this regard, for $u_{0}\in X^{2,\frac{4}{3}}(\Omega)$ and $\lambda_{0}>0$ define the operator

$\mathscr{L}_{1}:v\in X_{0}^{2,\frac{4}{3}}\mapsto P[\Delta v+\lambda_{0}(\partial_{1}v-u_{0}\cdot\nabla v-v\cdot\nabla u_{0})]\in H_{\frac{4}{3}}(\Omega)$ . (4.5)

By the properties of the X- and $H$-spaces and the H\"older inequality, we
easily show that $\mathscr{L}_{1}$ is well-defined. The following result holds.

Proposition 4.1 $\mathscr{L}_{1}$ is Fredholm ofindex O. Moreover, assume that $(u_{0},p_{0})\in$

$X^{2,\frac{4}{3}}\cross D^{1,\frac{4}{3}}$ is a steady-state solution to problem (4.1) $-(4.2)$ with $\lambda=\lambda_{0},$

namely, $(u_{0}, p_{0})$ solves

$\triangle u+\lambda\partial_{1}u=\lambda u\cdot\nabla u+\nabla p$

in $\Omega$

$divu=0$ (4.6)

$u=e_{1} at\partial\Omega, \lim u(x)=0,$
$|x|arrow\infty$

corresponding to $\lambda=\lambda_{0}$ . Then, if $N[\mathscr{L}_{1}]=\{0\}$ , problem (4.6) has a solution
that is (real) analytic at $\lambda=\lambda_{0}$ . Precisely, there is a neighborhood $U(\lambda_{0})$

of $\lambda_{0}$ and a solutions family to (4.6), $(u(\lambda),p(\lambda))\in X^{2,\frac{4}{3}}(\Omega)\cross D^{1,\frac{4}{3}}(\Omega)$ ,
$\lambda\in U(\lambda_{0})$ , such that the series

$u( \mu+\lambda_{0})=u_{0}+\sum_{k=1}^{\infty}\mu^{k}u_{k},$ $p( \mu+\lambda_{0})=p_{0}+\sum_{k=1}^{\infty}\mu^{k}p_{k},$ $\mu:=\lambda-\lambda_{0}$

are absolutely convergent in $X^{2,\frac{4}{3}}(\Omega)$ and $D^{1,\frac{4}{3}}(\Omega)$ , respectively.

Proof. The Fredholm property is shown in [9, TheoreIn 3.1]. Next, we
notice that setting $\tilde{u}:=u-u_{0},$ $\phi$ $:=p-p_{0}$ , from (4.6) we deduce that
$(\tilde{u}, \mu)$ satisfies

$\mathscr{F}(\tilde{u}, \mu):=\mathscr{L}_{1}(\tilde{u})-\mathscr{N}(\tilde{u}, \mu)=0$ (4.7)
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where

$\mathscr{N}(\tilde{u}, \mu):=P[-\mu(\partial_{1}\tilde{u}-u_{0}\cdot\nabla\tilde{u}-\tilde{u}\cdot\nabla u_{0})-(\mu+\lambda_{0})(u_{0}\cdot\nabla\tilde{u}+\tilde{u}\cdot\nabla u_{0})].$

By the H\"older inequality, we show at once that the bilinear form

$(u_{1}, u_{2})\in X^{2,\frac{4}{3}}(\Omega)\cross X^{2,\frac{4}{3}}(\Omega)\mapsto u_{1}\cdot\nabla u_{2}\in L^{\frac{4}{3}}(\Omega)$ ,

is continuous, and therefore the operator $\mathscr{N}$ : $(\tilde{u}, \mu)\in X_{0}^{2,\frac{4}{3}}\cross \mathbb{R}\mapsto \mathscr{N}\in H_{\frac{4}{3}}$

is analytic at any $(\tilde{u}, \mu)$ , and so is $\mathscr{F}$ : $(\tilde{u}, \mu)\in X_{0}^{2,\frac{4}{3}}\cross \mathbb{R}\mapsto \mathscr{L}_{1}-\mathscr{N}\in H_{\frac{4}{3}}.$

Now, $\mathscr{F}(0,0)=0$ , and, being $N[\mathscr{L}_{1}]=\{O\}$ by assumption, the Fr\’echet

derivative $D_{\tilde{u}}\mathscr{F}(0,0)\equiv \mathscr{L}_{1}$ is a homeomorphism. As a consequence the

lemma follows from the analytic version of the Implicit Function Theorem

(e.g. [20, Proposition 8.11]).
$\square$

We now introduce the operator

$\mathscr{L}_{2}:v\in D[\mathscr{L}_{2}]\subset H(\Omega)\mapsto-P[\triangle v+\lambda_{0}(\partial_{1}v-u_{0}\cdot\nabla v-v\cdot\nabla u_{0})]\in H(\Omega)$ ,

$D[\mathscr{L}_{2}]:=Z^{2,2}(\Omega)$ .
(4.8)

Since $Z^{2,2}(\Omega)$ is dense in $H(\Omega)$ , $\mathscr{L}_{2}$ is densely defined. Moreover, with the
help of H\"older inequality and the embedding $W^{2,2}\subset W^{1,4}\subset L^{12}$ it is easy to

check that $R[\mathscr{L}_{2}]\in H(\Omega)$ , provided $u_{0}\in X^{2,\frac{4}{3}}(\Omega)^{(8)}$ Our main objective is

to show that the intersection of the spectrum $\sigma(\mathscr{L}_{2})$ (computed with respect

to $H_{\mathbb{C}})$ with $\{i\mathbb{R}-\{O\}\}$ is constituted at most by a finite or countable number
of eigenvalues with finite multiplicity (see Proposition 4.1).

The proof of this property requires some preparatory results.

Lemma 4.1 Let $\omega\in \mathbb{R}-\{0\}$ . Then, for a given $f\in L_{\mathbb{C}}^{2}(\Omega)$ there is a

unique corresponding $(u,p)\in W_{\mathbb{C}}^{2,2}(\Omega)\cross D_{\mathbb{C}}^{1,2}(\Omega)$ such that

$\triangle u+\lambda_{0}\partial_{1}u-i\omega u=f+\nabla p$

in $\Omega,$

$divu=0$ (4.9)

$u=0$ at $\partial\Omega.$

Moreover, there are constants $c$ and $c_{0}$ depending only on $\Omega$ , such that $(u,p)$

satisfies the follow $ing$ inequality

$\Vert D^{2}u\Vert_{2}+|\omega|^{\frac{1}{2}}1\nabla u\Vert_{2}+|\omega|\Vert u\Vert_{2}+\Vert\nabla p\Vert_{2}\leq c\Vert f\Vert_{2},$ $| \omega|\geq\max\{\lambda_{0}^{2}$ , 1 $\}.$

(4.10)

(8) See also (4. 12), (4. 13).
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Proof. The proof is entirely analogous to that of [8, Lemma 4.1]) and will
be thus omitted.

$\square$

Lemma 4.2 The operator

$\mathscr{K}$ : $v\in Z^{2,2}(\Omega)\mapsto u_{0}\cdot\nabla v+v\cdot\nabla u_{0}\in L^{2}(\Omega)$

is compact.

Proof. We begin to recall the embeddings

$Z^{2,2}(\Omega)\subset W^{1,4}(\Omega)\subset L^{12}(\Omega)$ ,
(4.11)

$Z^{2,2}(\Omega)\subset W^{1,4}(\Omega_{R})\subset L^{12}(\Omega_{R})$ , compact, for all $R>R_{*}.$

Let $\{v_{n}\}\subset Z^{2,2}(\Omega)$ with $\Vert v_{n}\Vert_{2,2}=1$ , for all $n\in \mathbb{N}$ , and let $\overline{v}\in Z^{2,2}(\Omega)$ be
its weak limit. Without loss of generality, we may assume $\overline{v}=0$ , which gives
$\mathscr{K}(\overline{v})=0$ . For any $R>R_{*}$ we show, by H\"older inequality and $(4.11)_{1}$ , that

$\Vert u_{0}\cdot\nabla v_{n}\Vert_{2}\leq\Vert u_{0}\Vert_{4}\Vert\nabla v_{n}\Vert_{4,\Omega_{R}}+c_{1}\Vert u_{0}\Vert_{4,\Omega^{R}}\Vert v_{n}\Vert_{2,2}$ (4.12)

Likewise,

$\Vert v_{n}\cdot\nabla u_{0}\Vert_{2}\leq\Vert\nabla u_{0}\Vert_{\frac{12}{5}}\Vert v_{n}\Vert_{12,\Omega_{R}}+c_{2}\Vert\nabla u_{0}\Vert_{\frac{12}{6},\Omega^{R}}\Vert v_{n}\Vert_{2,2}$ . (4.13)

As a result, since $u_{0}\in X^{2,\frac{4}{3}}(\Omega)$ , by $(4.11)_{2}-(4.13)$ , and taking $R$ arbitrarily
large, we may conclude

$\lim_{narrow\infty}\Vert \mathscr{K}(v_{n})\Vert_{2}=$ O.

which proves the claimed compactness property of $\mathscr{K}$ , and completes the
proof of the proposition.

$\square$

Lemma 4.3 Let $u_{0}\in X^{2,\frac{4}{3}}(\Omega)$ , and let $\omega\in \mathbb{R}-\{0\}.$ The$n^{}$ the operator

$\mathscr{L}_{\omega}:=\mathscr{L}_{2}-i\omega I$ , (4.14)

is Fredholm of index $0.$

(9)
$By$ $I$ we mean the identity operator in $H_{\mathbb{C}}.$
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Proof. $\mathscr{L}_{\omega}$ is (graph) closed. In fact, this follows from [16, Theorem 1.11 in
Chapter IV], since $\mathscr{L}_{\omega}=\mathscr{L}_{1}+\mathscr{K}$ , where $\mathscr{L}_{1}$ is a homeomorphism (Lemma

4.1) and thus obviously closed, whereas by Lemma 4.2, $\mathscr{K}$ is $\mathscr{L}_{1}$-compact.

These two combined properties also show that (4.14) is Fredholm of index
$0$ (e.g. [10, Theorem XVII.4.3]). The lemma is proved.

$\square$

We are now in a position to show the first main result of this section.

Proposition 4.2 Let $u_{0}\in X^{2,\frac{4}{3}}(\Omega)$ . Then $\sigma(\mathscr{L}_{2})\cap\{i\mathbb{R}-\{O\}\}$ consists, $at$

most, of a finite or countable number ofeigenvalues, each ofwhich is isolated
and of finite (algebraic) multiplicity, that can only accumulate at $0.$

Proof. By Lemma 4.3 we know that $\mathscr{L}_{\omega}$ : $H_{\mathbb{C}}(\Omega)\mapsto H_{\mathbb{C}}(\Omega)$ is an (un-

bounded) Fredholm operator of index $0$ , for all $\omega\in \mathbb{R}-\{0\}$ . Thus, in view

of well-known results (e.g. [10, Theorem XVII.2.1]), in order to prove the

stated property it is enough to show that there is $\overline{\omega}>0$ such that for all
$|\omega|>\overline{\omega},$ $N[\mathscr{L}_{\omega}]=\{0\}$ . Now, the equation $\mathscr{L}_{\omega}(v)=0$ is equivalent to the
following problem

$\Delta v+\lambda_{0}\partial_{1}v-i\omega v=\lambda_{0}(u_{0}\cdot\nabla v+v\cdot\nabla u_{0})+\nabla p$

in $\Omega,$

$divv=0$ (4.15)

$v=0$ at $\partial\Omega,$

with $(v, p)\in Z_{\mathbb{C}}^{2,2}(\Omega)\cross D_{\mathbb{C}}^{1,2}(\Omega)$ . Using Lemma 4.1 and (4.10) in problem

(4.15), with the help of H\"older inequality we get, in$\cdot$ particular, for all $|\omega|\geq$

$\max\{\lambda_{0}^{2}$ , 1 $\},$

$\Vert D^{2}v\Vert_{2}+|\omega|^{\frac{1}{2}}\Vert\nabla v\Vert_{2}+|\omega|\Vert v\Vert_{2}\leq c\lambda_{0}\Vert u_{0}\cdot\nabla v+v\cdot\nabla u_{0}\Vert_{2}$

$\leq c\lambda_{0}(\Vert u_{0}\Vert_{4}\Vert\nabla v\Vert_{4}+\Vert\nabla u_{0}\Vert_{\frac{12}{5}}\Vert v\Vert_{12})$

Using in the latter the following Nirenberg-type inequalities (see [5, Theorem
2.1])

$\Vert\nabla v\Vert_{4}\leq c_{0}\Vert D^{2}v\Vert^{\frac{7}{2^{8}}}\Vert v\Vert^{\frac{1}{2^{8}}}, \Vert v\Vert_{12}\leq c_{0}\Vert D^{2}v\Vert^{\frac{8}{2^{9}}}\Vert v\Vert^{\frac{1}{2^{9}}},$

we infer, with the help of Young’s inequality, that

$\Vert D^{2}v\Vert_{2}+|\omega|^{\frac{1}{2}}\Vert\nabla v\Vert_{2}+|\omega|\Vert v\Vert_{2}\leq m\Vert v\Vert_{2}$ (4.16)

where
$m:=c_{1}(\lambda_{0}^{8}\Vert\nabla u_{0}\Vert_{4}^{8}+\lambda_{0}^{9}\Vert\nabla u_{0}\Vert_{\frac{912}{5}})$ ,
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and $c_{1}=c_{1}(\Omega)$ . The desired result follows from (4.16) by choosing $\overline{\omega}$ $:=$

$\max\{m, \lambda_{0}^{2}, 1\}.$

$\square$

We now turn our focus to the study of some properties of the time-

dependent operator

$\mathscr{Q}:=\omega_{0}(\cdot)_{\tau}+\mathscr{L}_{2}:\mathscr{W}_{2\pi,0}^{2}(\Omega)\mapsto \mathcal{H}_{2\pi,0}(\Omega) , \omega_{0}>0$ . (4.17)

We begin to recall the following result, proved in [7, Lemma 5] for the
two-dimensional case. However the proof carries over verbatim to the three-

dimensional case and, therefore, will be omitted.

Lemma 4.4 The operator

$\omega_{0}(\cdot)_{\tau}-P[\triangle+\lambda_{0}\partial_{1}]:\mathscr{W}_{2\pi,0}^{2}(\Omega)\mapsto \mathscr{H}_{2\pi,0}(\Omega)$

is a homeomorphism.

With the help of this result, we can prove the following one.

Proposition 4.3 Let $u_{0}\in X^{2,\frac{4}{3}}(\Omega)$ . Then, the operator $\mathscr{Q}$ defined in

(4.17) is Fredholm of index $0.$

Proof. In view of Lemma 4.4, it is enough to show that the operator

$\mathscr{C}:v\in \mathscr{W}_{2\pi,0}^{2}(\Omega)\mapsto u_{0}\cdot\nabla v+v\cdot\nabla u_{0}\in \mathscr{L}_{2\pi,0}^{2}(\Omega)$

is compact. Let $\{v_{k}\}\subset \mathscr{W}_{2\pi,0}^{2}(\Omega)$ with $\Vert v_{k}\Vert_{7//2}2\pi,0=1$ , for all $k\in \mathbb{N}$ . We may

then select a sequence (again denoted by $\{v_{k}\}$ ) and find $v_{*}\in \mathscr{W}_{2\pi,0}^{2}(\Omega)$ such

that
$v_{k}arrow v_{*}$ weakly in $\mathscr{W}_{2\pi,0}^{2}(\Omega)$ . (4.18)

Without loss of generality, we may take $v_{*}\equiv 0$ . From (4.18), $(4.11)_{2}$ , and

Lions-Aubin lemma we then have

$\int_{-\pi}^{\pi}(\Vert v_{k}(\tau)\Vert_{12,\Omega_{R}}^{2}+\Vert\nabla v_{k}(\tau)\Vert_{4,\Omega_{R}}^{2})arrow 0$ as $karrow\infty$ , for all $R>R_{*}.$

(4.19)

By the H\"older inequality,

$\int_{-\pi}^{\pi}\Vert u_{0}\cdot\nabla v_{k}(\tau)\Vert_{2}^{2}\leq\Vert u_{0}\Vert_{4}\int_{-\pi}^{\pi}\Vert\nabla v_{k}(\tau)\Vert_{4,\Omega_{R}}^{2}+\Vert u_{0}\Vert_{4,\Omega^{R}}^{2}\int_{-\pi}^{\pi}\Vert\nabla v_{k}(\tau)\Vert_{4}^{2},$

which, by $(4.11)_{1}$ , (4.18), (4.19) and the arbitrariness of $R$ furnishes

$\lim_{karrow\infty}\int_{-\pi}^{\pi}\Vert u_{0}\cdot\nabla v_{k}(\tau)\Vert_{2}^{2}=0$ . (4.20)
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Likewise, again by H\"older inequality,

$\int_{-\pi}^{\pi}\Vert v_{k}(\tau)\cdot\nabla u_{0}\Vert_{2}^{2}\leq\Vert\nabla u_{0}\Vert_{\frac{212}{5}}\int_{-\pi}^{\pi}\Vert v_{k}(\tau)\Vert_{12,\Omega_{R}}^{2}$

$+ \Vert\nabla u_{0}\Vert_{\frac{212}{5},\Omega^{R}}\int_{-\pi}^{\pi}\Vert v_{k}(\tau)\Vert_{12}^{2}.$

From the latter, and again $(4.11)_{1}$ , (4.18), and (4.19) we deduce

$\lim_{karrow\infty}\int_{-\pi}^{\pi}\Vert vk(\tau)\cdot\nabla u0\Vert_{2}^{2}=0$ . (4.21)

Combining (4.20) and (4.21) we thus conclude

$\lim_{karrow\infty}\Vert \mathscr{C}(v_{k})\Vert_{L^{2}(\Omega_{2\pi})}=0,$

which completes the proof of the lemma.
$\square$

Our next and final objective is to rewrite (4.15) in the abstract form
(3.5), so that under the appropriate assumptions, we may apply Theorem
3.1 and provide the desired bifurcation result.

To that purpose, we introduce the scaled time $\tau:=\omega t$ , split $v$ and
$p$ as the sum of their time average, $(\overline{v},p$ over the time interval $[-\pi, \pi],$

and their “purely periodic”’ component $(w:=v-v, \varphi :=\overline{p}-p)$ . In this
way, problem (4.15) can be equivalently rewritten as the following coupled
nonlinear elliptic-parabolic problem

$\triangle\overline{v}+\lambda_{0}(\partial_{1}\overline{v}-u_{0}\cdot\nabla\overline{v}-u_{0}\cdot\nabla\overline{v})=\nabla\overline{p}+N_{1}(\overline{v}, w, \mu)$

in $\Omega$

$div\overline{v}=0$

$\overline{v}=0$ at $\partial\Omega,$ $\lim\overline{v}(x)=0$

$|x|arrow\infty$

(4.22)

and

$\omega w_{\tau}-\triangle w-\lambda_{0}(\partial_{1}w-u_{0}\cdot\nabla w-w\cdot\nabla u_{0})$

$=\nabla\varphi+N_{2}(\overline{v}, w, \mu)$ in $\Omega_{2\pi}$

$divw=0$ (4.23)

$w=0 at\partial\Omega_{2\pi}, \lim w(x, t)=0,$
$|x|arrow\infty$
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where

$N_{1}:=-\mu[\partial_{1}\overline{v}-u(\mu+\lambda_{0})\cdot\nabla\overline{v}-\overline{v}\cdot\nabla u(\mu+\lambda_{0})]$

$+\lambda_{0}[(u(\mu+\lambda_{0})-u_{0})\cdot\nabla\overline{v}+\overline{v}\cdot\nabla(u(\mu+\lambda_{0})-u_{0})]$ (4.24)

$+(\mu+\lambda_{0})[\overline{v}\cdot\nabla\overline{v}+\overline{w\cdot\nabla w}],$

and

$N_{2}:=\mu[\partial_{1}w-u(\mu+\lambda_{0})\cdot\nabla w-w\cdot\nabla u(\mu+\lambda_{0})]$

$-\lambda_{0}[(u(\mu+\lambda_{0})-u_{0})\cdot\nabla w+w\cdot\nabla(u(\mu+\lambda_{0})-u_{0})]$ (4.25)

$+(\mu+\lambda_{0})[w\cdot\nabla\overline{v}+\overline{v}\cdot\nabla w+w\cdot\nabla w-\overline{w\cdot\nabla w}],$

where; we recall, $\mu$
$:=\lambda-\lambda_{0}$ , and $u_{0}\equiv u(\lambda_{0})$ .

We prove next some functional properties of the quantities $N_{i},$ $i=1$ , 2.

Lemma 4.5 The following bilinear maps are continuous

$\mathcal{M}_{1}:(v_{1}, v_{2})\in[X^{2,\frac{4}{3}}(\Omega)]^{2}\mapsto v_{1}\cdot\nabla v_{2}\in L^{\frac{4}{3}}(\Omega)$ ,

$\mathcal{M}_{2}:(w_{1}, w_{2})\in[\mathscr{W}_{2\pi,0}^{2}(\Omega)]^{2}\mapsto\int_{-\pi}^{\pi}w_{1}\cdot\nabla w_{2}\in L^{r}(\Omega)$ , $r= \frac{4}{3}$ , 2,

$\mathcal{M}_{3}:(v, w)\in X^{2,\frac{4}{3}}(\Omega)\cross \mathscr{W}_{2\pi,0}^{2}(\Omega)\mapsto v\cdot\nabla w\in \mathscr{L}_{2\pi,0}^{2}(\Omega)$ ,

$\mathcal{M}_{4}:(v, w)\in X^{2,\frac{4}{3}}(\Omega)\cross \mathscr{W}_{2\pi,0}^{2}(\Omega)\mapsto w\cdot\nabla v\in \mathscr{L}_{2\pi,0}^{2}(\Omega)$ ,

$\mathcal{M}_{5}:(w_{1}, w_{2})\in[\mathscr{W}_{2\pi,0}^{2}(\Omega)]^{2}\mapsto w_{1}\cdot\nabla w_{2}\in \mathscr{L}_{2\pi,0}^{2}(\Omega)$ .

Proof The continuity of $\mathcal{M}_{1}$ is shown in [9, Theorem 2.2]. In order to show

the remaining properties, we begin to observe that, by H\"older inequality

and (4.11),

$\Vert \mathcal{M}_{2}(w_{1}, w_{2})\Vert_{\frac{4}{3}}\leq\int_{-\pi}^{\pi}\Vert w_{1}\Vert_{4}\Vert\nabla w_{2}\Vert_{2}\leq c_{1}\Vert W_{1}\Vert_{7/f2}\Vert W_{2}\Vert_{7f\nearrow 2}2\pi,02\pi,0$

$\Vert \mathcal{M}_{2}(w_{1}, w_{2})\Vert_{2}\leq\int_{-\pi}^{\pi}W_{12\pi,02\pi,0}$

$\Vert \mathcal{M}_{3}(w, w)||_{\mathscr{L}_{2\pi,0}^{2}}\leq(2\pi)^{\frac{1}{2}}\Vert v\Vert_{4}(\int_{-\pi}^{\pi}\Vert\nabla w_{2}\Vert_{4}^{2})^{\frac{1}{2}}\leq c_{3}\Vert v\Vert_{X^{2}},\#\Vert w_{2}\Vert_{7\prime_{2\pi,0}^{\prime 2}}$

$\Vert \mathcal{M}_{4}(w, v)\Vert_{\mathscr{L}_{2\pi,O}^{2}}\leq(2\pi)^{\frac{1}{2}}\Vert\nabla v\Vert_{\frac{12}{5}}(\int_{-\pi}^{\pi}\Vert w\Vert_{12}^{2})^{\frac{1}{2}}\leq c4\Vert v\Vert_{x^{2}’\#}\Vert w\Vert_{7/_{2\pi,O}^{\prime 2}}$
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Furthermore,

$\Vert \mathcal{M}_{5}(w_{1}, w_{2})\Vert_{\mathscr{L}_{2\pi,0}^{2}}\leq(2\pi)^{\frac{1}{2}}ess\sup_{\tau\in[-\pi,\pi]}\Vert w_{1}(\tau)\Vert_{4}^{2}(\int_{-\pi}^{\pi}\Vert\nabla w_{2}\Vert_{4}^{2})^{\frac{1}{2}}$

$\leq c_{5}\Vert w_{1}\Vert_{\mathscr{W}_{2\pi,0}^{2}}\Vert w_{2}\Vert_{\mathscr{K}_{2\pi,0}^{\prime 2}},$

where, in the last step, we have used (4.11) and the embedding $\mathscr{W}_{2\pi,0}^{2}(\Omega)\subset$

$L^{\infty}(-\pi, \pi;L^{4}(\Omega))$ ; see [18, Theorem 2.1].
$\square$

Let

$\mathscr{N}_{1}$ : $(\overline{v}, w, \mu)\in X_{0}^{2,\frac{4}{3}}(\Omega)\cross \mathscr{W}_{2\pi,0}^{2}(\Omega)\cross U(0)\mapsto PN_{1}((\overline{v}, w, \mu)\in H(\Omega)$

$\mathscr{N}_{2}:(\overline{v}, w, \mu)\in X_{0}^{2,\frac{4}{3}}(\Omega)\cross \mathscr{W}_{2\pi,0}^{2}(\Omega)\cross U(O)$

$\mapsto PN_{2}(\overline{v}, w, \mu)\in \mathscr{H}_{2\pi,0}(\Omega)$ .

Rom Lemma 4.5 it follows that $\mathscr{N}_{i},$ $i=1$ , 2, are well defined, which allows
us to rewrite $(4.22)-(4.25)$ in the following abstract form entirely analogous
to (3.5), with the obvious interpretation of the function spaces involved:

$\mathscr{L}_{1}(\overline{v})=\mathscr{N}_{1}(\overline{v}, w, \mu)$ in $H(\Omega)$ ; $\omega w_{\tau}+\mathscr{L}_{2}(w)=\mathscr{N}_{2}(\overline{v}, w, \mu)$ in $\mathscr{H}_{2\pi,0}.$

(4.26)
Notice that the spatial asymptotic conditions on $\overline{v}$ and $w$ in $(4.22)_{4}$ and
(4.23) are interpreted in the sense of Remark 2.1 and Remark 3.2. More-
over, again by Lemma 4.5 and under the assumptions of Proposition 4.1,
we deduce that $\mathscr{N}_{i},$ $i=1$ , 2, are, in fact, analytic in a neighborhood of
$(0,0,0)\subset X^{2,\frac{4}{3}}(\Omega)\cross \mathscr{W}_{2\pi,0}^{2}(\Omega)\cross U(0)$ . We may then show that $\mathscr{N}_{i},$ $i=1$ , 2,
match the assumption (H5) of the abstract formulation, along with the
stated properties of the coefficients $R$ and $S$ . In particular, it is easy to
check that

$S_{011}(w)=P[\partial_{1}w-u_{0}\cdot\nabla w-w\cdot\nabla u_{0}-\lambda_{0}(u’(\lambda_{0})\cdot\nabla w+w\cdot\nabla u’(\lambda_{0}))]$ , (4.27)

where ’ means differentiation with respect to $\mu.$

We now turn to the linear operators $\mathscr{L}_{1}$ and $\mathscr{L}_{2}$ . We assume

$N[\mathscr{L}_{1}]=\{0\}. (\mathcal{H}1)$

Since, by Proposition 4.1, $\mathscr{L}_{1}$ is Redholm of index $0$ , condition $(\mathcal{H}1)$ im-
plies that (H1) is satisfied. Furthermore, supported by Proposition 4.2, we
assume

$\nu_{0}$ $:=i\omega_{0}$ is an eigenvalue of multiplicity 1 of $\mathscr{L}_{2},$

$(\mathcal{H}2)$

$k\nu_{0},$ $k\in \mathbb{N}-\{O$ , 1 $\}$ is not an eigenvalue of $\mathscr{L}_{2},$
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Let $v_{1}=\Re[v_{0}e^{i\tau}],$ $v_{1}^{*}=\Re[v_{0}e^{-i\tau}]$ , where $v_{0}$ and $v_{0}^{*}$ are eigenvectors of
$\mathscr{L}_{2}$ and its adjoint $\mathscr{L}_{2}^{*}$ normalized as in (3.6) and corresponding to the

eigenvalue $v_{0}$ . Denote by $v(\mu)$ the eigenvalue of $\mathscr{L}_{2}-\mu S_{011}$ with $S_{011}$

given in (4.27). By Remark 3.1 we know that $v(\mu)$ is a smooth well-defined
function and that

$\Re[\nu’(0)]=(S_{011}(v_{1})|v_{1}^{*})$ .

We then assume
$\Re[\nu’(0)]\neq 0. (\mathcal{H}3)$

Finally, we observe that, thanks to Proposition 4.3 the operator $\mathscr{Q}$ obeys

condition (H4).

The following bifurcation result for the steady-state flow of a Navier-
Stokes liquid past an obstacle is then an immediate consequence of Theorem
3.1.

Theorem 4.1 Suppose $(\mathcal{H}1)-(\mathcal{H}3)$ hold. Then, the followingproperties are
valid.

(a) Existence. There are analytic families

$(\overline{v}(\epsilon), w(\epsilon), \omega(\epsilon), \mu(\epsilon))\in X_{0}^{2,\frac{4}{3}}(\Omega)\cross \mathscr{W}_{2\pi,0}^{2}(\Omega)\cross \mathbb{R}+\cross \mathbb{R}$ (4.28)

satisfying (4.22)-(4.25), for all $\epsilon$ in a neighborhood $\mathcal{I}(O)$ and such that

$(\overline{v}(\epsilon), w(\epsilon)-\epsilon v_{1}, \omega(\epsilon), \mu(\epsilon))arrow(0,0, \omega_{0},0)$ as $\epsilonarrow 0.$

(a) Uniqueness. There is a neighborhood

$U(0,0, \omega_{0},0)\subset X_{0}^{2,\frac{4}{3}}(\Omega)\cross \mathscr{W}_{2\pi,0}^{2}(\Omega)\cross \mathbb{R}_{+}\cross \mathbb{R}$

such that every (nontrivial) $2\pi$-periodic solution to (4.22)-(4.25), $(z, s)$ ,

lying in $U$ must coincide, up to a phase shift, with that member of the
family (4.28) having $\epsilon\equiv(s|v_{1}^{*})$ .

(a) Parity. The functions $\omega(\epsilon)$ and $\mu(\epsilon)$ are even:

$\omega(\epsilon)=\omega(-\epsilon)$ , $\mu(\epsilon)=\mu(-\epsilon)$ , for all $\epsilon\in \mathcal{I}(0)$ .

Consequently the bifurcation due to these solutions is either subcritical or
supercritical a two-sided bifurcation being excluded.(10)

(10)Unless $\mu\equiv 0.$

25



References

[1] Babenko, K.I., On properties of steady viscous incompressible fluid
flows. Approximation methods for Navier-Stokes problems (Proc. Sym-
pos., Univ. Paderborn, Paderborn, 1979), pp. 12-42, Lecture Notes in
Math., Vol. 771, Springer, Berlin, 1980

[2] Babenko, K. I., On the spectrum of a linearized problem of flow of
a viscous incompressible fluid around a body (Russian), Dokl. Akad.
Nauk SSSR, 26264-68 (1982)

[3] Babenko, K.I., Periodic solutions of a problem of the flow of a viscous
fluid around a body, Soviet Math. Dokl. 25211-216 (1982)

[4] Chossat, P., and Iooss, G., The Couette-Taylor problem, Applied Math-
ematical Sciences, Vol. 102, Springer-Verlag, New York (1994)

[5] Crispo, F. and Maremonti, P., An interpolation inequality in exterior
domains, Rend. Sem. Mat. Univ. Padova, 11211-39 (2004)

[6] Galdi, G.P., An introduction to the mathematical theory of the Navier-
Stokes equations. Steady-state problems, Second edition. Springer
Monographs in Mathematics, Springer, New York (2011)

[7] Galdi, G.P., On time-periodic flow of a viscous liquid past a moving
cylinder, Arch. Ration. Mech. Anal., 210451-498 (2013)

[8] Galdi, G.P., On bifurcating time-periodic flow of a Navier-Stokes liquid
past a cylinder, arXiv:1506.02945

[9] Galdi, G.P., and Rabier, P.J., Sharp existence results for the station-
ary Navier-Stokes problem in three-dimensional exterior domains, Arch.
Rational Mech. Anal., 154343-368 (2000)

[10] Gohberg, I., Goldberg, S. and Kaashoek, M.A., Classes of linear opera-
$tor\mathcal{S}:I$. 0perator Theory, Advances and Applications, Vol.49, Birkh\"auser

Verlag, Basel (1990)

[11] Guyon, E., Hulin, J.-P., Petit, L., and Mitescu, C.D., Physical Hydro-
dynamics Oxford University Press (second Edition) (2015)

[12] Hopf, E., Abzweigung einer periodischen L\"osung von einer station\"aren

eines Differentialsystems, Ber. Verh. Schs. Akad. Wiss. Leipzig. Math.-
Nat. Kl. 95, 3-22 (1943)

26



[13] Iooss, G., Existence et stabilit\’e de la solution p\’eriodiques secondaire

intervenant dans les probl\’emes d’evolution du type Navier-Stokes, Arch.
Rational Mech. Analysis, 47, 301-329 (1972)

[14] Iudovich, V.I., The onset of auto-oscillations in a fluid, J. Appl. Math.
Mech. 35, , 587-603 (1971)

[15] Joseph, D.D., and Sattinger, D.H., Bifurcating time periodic solutions
and their stability. Arch. Rational Mech. Anal., 4579-109 (1972)

[16] Kato, T., Perturbation theory for linear operators, Springer Classics in

Mathematics (1995)

[17] Sazonov, L.I., The onset of auto-oscillations in a flow, Siberian Math.
J. 351202-1209 (1994)

[18] Solonnikov, V.A., Estimates of the solutions of the nonstationary

Navier-Stokes system, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst.
Steklov (LOMI), 38153-201 (1973)

[19] Ritton, D.J., Physical Fluid Dynamics, Second Edition, Clarendon
Press, Oxford (1988)

[20] Zeidler, E., Nonlinear Functional Analysis and Applications, Vol.1,

Fixed-Point Theorems, Springer-Verlag, New York (1986)

[21] Zeidler, E., Nonlinear Functional Analysis and Applications, Vol.4, Ap-
plication to Mathematical Physics, Springer-Verlag, New York (1988)

27


