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Finite element methods for nearly incompressible
media

Fumio Kikuchi *
Professor Emeritus, The University of Tokyo

Abstract

We will summarize and analyze some finite element methods for analysis of nearly
or completely incompressible media including linearly elastic solids and viscous New-
tonian fluids. Numerical analysis of such problems is difficult especially in selecting ap-
propriate finite element models, and the mixed FEM and discontinuous Galerkin FEM
(DG FEM) are often effective to obtain reliable numerical solutions.

1 Introduction

We will present some finite element methods for analysis of nearly (or completely) incom-
pressible media including elastic solids and viscous fluids. Numerical analysis of such prob-
lems is difficult especially in selecting appropriate finite element models. Especially, the
genuine methods based on displacements or velocities only usually suffer from volumet-
ric locking in the nearly incompressible range, so that various attempts have been made.
Among them, the mixed and the stabilization methods are known to be effective in this re-
spect. Nowadays, the discontinuous Galerkin methods combined with the mixed methods
become to be realized to be more effective to obtain reliable numerical solutions. In this
note, we will summarize some known results as well as our own ones.

Acknowledgment : The present author expresses his sincere thanks to Dr. Daisuke Koyama
of University of Electro-Communications as a joint worker of this report for the section on
plain strain problems.

2 Nearly incompressible media

We will mainly discuss the solid cases below. Let x = {x,..., xy} (N = 2, 3) denote the
Cartesian coordinates, and Q2 ¢ R" be a bounded domain occupied by the solid. We will use
the notation of small displacements of solids as w = {u;};<;<y, and the associated small or
linearized strains as

eij(u) = (Gju; + Ou;)/2 (0; =0/0x;; 1 <i,j<N), nH
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which can be regarded as a second-order symmetric tensor. The diagonal components e;;
are normal stretching strains, while the off-diagonal ones e;; (i # j) are shearing strains.
Moreover, the volumetric strain is given by divau = Y~ | e;(u), which plays important roles
in nearly incompressible cases.

Remark 1 For N = 2, we assume that the functions do not depend on x3 and also that uz = 0
(in the 3D notations), so that ez = ez =e3=0( =1, 2).

The stresses s;; (1 < i, j < 3) are also treated as a second-order symmetric tensor, and we
assume the following generalized Hooke’s law for isotropic solids:

sij(w) = Adivu)d;; + 2ue;j(u) (4>0, u>0 : Lamé’s parameters) . 2)

Notice that s33 may not vanish under the above relation. We will assume in addition that the
solid is homogeneous, that is, 4 and u do not depend on x.
The static pressure is defined by the minus of mean normal stress, that is,

1 3

3

i=1

pl
-1+ —)dlvu = 8= —A—p+ 2uej(u) (Ag:=Aa+2u/3), (3)
B

where A3 is called the bulk modulus, and, as was noted, the term s3; is necessary. The above
suggests that divu — 0 as 4 — +oo. (Under appropriate settings, we can also show p — pe
for some po.) In some mathematical literatures, p is simply defined by p = —Adivu. Such
a nonphysical definition may be more convenient for pure mathematical analysis.

The static equilibrium of stresses is expressed by the following Cauchy equations :

N
=Y dsylox;=fi (1<i<N), 4)
j=1

where f = {f;}1<i<y is the distributed body force vector. Substituting (1) and (2) into (4), we
have Navier’s equations for isotropic homogeneous solids:

N
—Adidivu -y )| 9@+ du)) = fi 1 i< N), ()
j=1
p| 2
(by(3) = “—dip—p ) 0/0m+ou)=f 1<i<N). ©6)
15 <

3 Weak formulations

For simplicity, we will consider the pure homogeneous Dirichlet boundary conditions, and
use the usual Hilbertian Sobolev spaces H'(Q) and Hy(€). We will also denote the inner
products of L*(Q) or L*(Q)N by (-, ) and their associated norms by || - [lo. Below we will
present two fundamental formulations for the present problem.
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3.1 Displacement formulation in u only

The most fundamental weak formulation for finite 2 > 0 is the following one using the

displacement only.
[DF] Given f € L*(Q), find u € H(Q)" that satisfies

N
A(div u, div v)q + 2u Z(eij(u)9 ej()a = (f,v)a (Yo € Hy(Q)"Y). (N
ij=1
For mathematical analysis of the above formulation, Korn’s inequalities are essential,
and a typical example of them is: There exists a domain constant C > 0 such that

N
Z lleij)IIg + I, = Cllwlkuqn (Yo € H'(@QY). 8)
ij=1
The present result is generalized to the Sobolev space W!*(Q) with 1 < p < oo for N = 2
[17]. Forv € Hé(Q)N , the above becomes ZQ’FI lle; j('v)llf2 >C ||vl|§,[ @ with possible change
of C > 0, from which we can conclude the existence and uniqueness of the weak solution
of [DF]. Moreover, keeping u constant, we have 4||div u|[3 < CJ| fllf), so that divu — O in
L*() as A tends to +oo.

3.2 Mixed formulation in « and p

To deal with the nearly and completely incompressible cases, it is natural to add p as an

independent unknown function.
[MF] Given f € LX(Q), find {u, p} € Hy(Q)" x L*(Q) that satisfies

2u XY (eif(u), €(0))a - A(p,dive)a = (F,v)a (Yo € H(QY),
~+[(diva, 9o + 45' (2, @)l = 0 (Vg € L (Q)).
We can see formally that p is the Lagrange multiplier for the linear constraint p+Azdivu = 0.
Also, by the Gauss formula, we find that p € L3(Q) for LX) = {g € L*(Q); (g, 1)q = 0}.
To deal with [MF], it is essential to use the following inf-sup condition: There exists a
constant k > 0 such that

®

(divv, q9)q

in > (10
veHL QM\(0) geLAQ\(0) ”'U”H‘(Q)N -llglla
This condition is related to the solvability of divw = g € LX(Q) for v € H}(Q)".
Using the above, we can conclude the existence and uniqueness of {u, p} with
lullgy + lIplla < Cliflle uniformly in A > Ay = positive constant. an

Moreover, as A tends to oo, {u, p} converges strongly in H}{(Q)" x L*(Q) to a {tew, P} €
H} (" x L3(€), which satisfies [MF] formally with 2/1p = 1 and 45! = 0:

{2/1 2 (e (Ue), €j(0))a — (P div V) = (F, V)0 (Vv € H'Q@)Y),

12
~(diVUe, @) =0 (Vg e LX) +----- incompressibility condition . (12)

Notice that u, is unique but p,, € L%(Q) is not so when considered over the whole L?(Q).



For Frierdrichs-Keller meshes,
kernel of divl(vg)z for k =1 is {0}

Figure 1: Triangular meshes of Frierdrichs-Keller type for a square domain

4 FEM based on [DF]

The most standard FEM are based on the N—-simplexes and the piecewise polynomial spaces
P* (k € N). More specifically, we consider a (regular) family of triangulations {7 "} of Q
by N— simplexes (K’s), and introduce the finite element spaces

Vi={ve H(Q); IKe PF*(VK € Th)}, Vi =V"nHyQ). (13)

Then our discrete problem based on [DF] for each 7 is to find u;, € (V)" that satisfies

N
[DF] A(div uy, div vp)g + 2u Z(eij(uh), eijv)a = (F.oa (Yo, € (VOY). (14)

ij=1

Unfortunately, such finite element models usually behave very poorly when A becomes
larger (Locking). In fact, for some meshes such as the Friedrichs-Keller ones (Fig. 1), u,
obtained by the piecewise linear (P!) triangular elements tends to zero to keep the divergence
term small, since we have the estimation Aj|div w43 < ClIf Hé and the condition divu, = 0
implies u;, = 0 under the pure homogeneous Dirichlet condition.

5 FEM based on [MF]

This approach uses p besides u as independent unknown functions, so that we must also

prepare a finite element element space W" c L(Q) for each 7.

[MF], Given f € L*(Q), find {uy, ps} € (V)N x W" that satisfies

2u Zgljzl(eij(uh),eij(‘vh))ﬂ - ﬁ(Ph,diV va = (Ff,vna (Yo, € (VHY), (15)
— < [(div up, g + A5 (Pr, qr)al = 0 Vg, € Wh).

But for this approach to behave nicely, we should take full care of the combination of
uy, and py, to satisfy the discrete inf-sup condition. A typical approach is to use (V)" based
on P* for u; and also W" based on continuous or discontinuous P* for pj. Usually, we
choose k, to be smaller than k, but the validity of such approximations depends strongly on
the arrangement of nodes as well. For example, the pl—po triangle (continuous P! for u,
and discontinuous PP for p,) is not appropriate, while P> — P° triangle works. Moreover,
P?— cont. P! works, while P2— discont. P! behaves badly. See Fig.2 for a few typical combi-
nations, and Boffi-Brezzi-Fortin[6] for more examples.

31



32

/\M/\ /&“’“7\

P! for u P° for p P? for u PP for p

/\poor/\ /&eram/\

P?foru discont.P' forp  P!*foru  cont.P! for p

Figure 2: Some combinations of w and p for triangles

To analyze [MF],, it is essential to show the following discrete inf-sup condition: There
exists a constant k > O such that, Yh > 0,

div vy,
inf sup (div O gnla >K. (16)

vre(VEN\(0) ahEWE\(0) ”'vh”H(}(Q)N lignlla —

A typical approach to show the above is to construct a Fortin operator 11} : Hy(Q)N —
(VY Yv e Hy(Q)V,

I, vl @y < Cllvllm@p, (div (T - v), gra = 0; Vg, e W™ a7

A number of trials have been made to find such ITF[6], though it is not so easy a task.

6 Hybrid discontinuous Galerkin FEM

We can also use discontinuous, more flexible approximate displacements based on the hybrid
discontinuous Galerkin FEM (HDG FEM). In this case, we use discontinuous element-wise
polynomial functions for « (and p) and also the so-called fluxes @ (inter-element displace-
ments) as independent unknown functions [8, 13]. On the other hand, in the original discon-
tinuous Galerkin (DG) FEM, fluxes are calculated from v [2].

We will consider only the 2-D cases (N = 2), and assume that €2 is a bounded polygonal
domain with boundary Q2. Moreover, we will also use (possibly fractional) Sobolev spaces
W*P(Q) and W,”(Q) for 1 < p < o0, 5 > 0, whose norm and standard semi-norm are denoted
by Il - llsp.0 and | - [ ., respectively. Moreover, s is omitted when s = 0. When p = 2, they
are also written by H*(Q) and H3(€2), and the the subscript p in the norms and semi-norms is
omitted. We will essentially deal with the Hilbertian cases (p = 2), but sometimes consider
more general cases. To take the consistency between the case p = 2 and others (p # 2) for
(semi-)norms, we for example define ||Vul|,q by IIVuIIZ Q= 2, Ilau/ax,-lli’: qforl <p<oo
with the usual modification for p = oo.



6.1 Triangulations by finite elements

We will use {7"};50 as a “regular” family of triangulations of Q. The precise meaning of
“regular” is omitted here (see e.g.[3, 12]): roughly speaking, it means that the shapes of
finite elements (see below) are not too much distorted and their sizes are comparable. In
the present settings, each triangulation 7 consists of finite number of bounded m-polygonal
finite elements K’s, where m is an integer such that 3 < m < M (M > 3 is a constant) and
can differ with K. The boundary of K € 7" is a closed simple polygonal line and denoted by
O0K. Notice here that each finite element (or element, in short) K is not necessarily convex
and vertexes with the flat angle are allowed. The number Ak stands for the diameter of K,
and the mesh parameter 4 of the triangulation is defined by # = maxgcr» hx. An (open) edge
of K is designated by e, and its length by |e|. We define EX and E" as the sets of all edges in
K € 7" and T, respectively. Moreover, I = U,.gre is called the skeleton of 7"*. Almost
everywhere on 0Q and dK, we can define the unit outward normal vector n = {ny, ny}.

As duality pairings or inner products related to each element K € 7*, we will use:

(-, -)x: duality pairing between LP(K)¢ and LY(K)¢ (€ = 1,2, 1/p+1/q = 1) as the extension
of the inner product of L*(K)¢, i. e., for example for £=1, (u, v)g = fK uvdx (u € LP(K),
v € L1(K)),

[, ‘Joks ([, ]e> resp.) : duality pairing between LP(0K)¢ (L?(e)¢ for edge e € EX, resp.) and
LIOK) (L4(e)’, resp.) (€ = 1,2, 1/p+ 1/q = 1) as the extension of the inner product
of L2(K)¢ (L*(e)’, resp.).

Moreover, L? type norms related to K are denoted by:
Il - |l,x: norm of LP(K)! (€ = 1,2),
| “Ipok (|- e resp.) : norm of LP(OK)* (LP(e)’, resp.) (£ = 1,2).

We will often omit the suffix p of norms and inner products for p = 2.

e, il | K, ulg o vertex
K, K’ : elements
e: edge

Figure 3: K, K’, e, u and @i

6.2 Function spaces dependent on 7"

For our purposes, it is essential to use the broken (or piecewise) Sobolev space g+ W*?(K)
(1 £ p <00, s> 0)on 7", which is identified with

WSP(T™H) = {v e LP(Q); vig € W(K) (VK € TMY, HST™M =W2T". (18)
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Lis to be noted that, for v € WY/P*r?(T™) (y > 0), the trace v|sx of v|x (K € T") to 4K belongs
to L?(dK), and may be double-valued on an inter-element edge e shared by two elements K
and K’: (v|x)l. may not coincide with (v|¢)l..

In HDG FEM, we also use L? functions on the skeleton I'*, which are called numerical
fluxes. It is important that each # € LP(I"™) is single-valued on I'*, unlike the traces of
veH %”(‘T") (y > 0) to I'*. To account for the homogeneous Dirichlet condition, we also

introduce the following space on I'*:
L@ = {9 € LP(T"); $ = 0 on Q) (19)

In the HDG methods, the numerical flux ¥ is independent of the function v taken for
example from W'?(7*). On the other hand, in the original DG methods, the flux is rather
a subsidiary function, and, when necessary, it is derived from v. We will only consider the
most typical derivation of : if e € &" is shared by two elements K and K’, 9|e is given by

1
Ple = 5 (OOl + (lxle) (20

while if e C 6%, 9, is taken as either O or v|, in accordance with the homogeneous Dirichlet
condition is considered or not [2]. The spaces thus induced are also-denoted by 0" and U g.

Over WhP(T") x LP(T™), define W'P-type semi-norm and norm for {v, 9} € W'»(7") x
LP(I'*) respectively by

0,0, = IlE G+ D )

KeTh eeEX

where V,v € W'"P(7)? is characterized by (V,v)IK = V(IK) € LP(K) (VK € T"). The
last term in |{v, ¥} f,p'h is used as a measure of discontinuity of v along the inter-element
boundaries together with the discrepancy of v from the Dirichlet condition on Q. A similar
term with some coefficients will be used later as the interior penalty term.

1 ) )
T e M0 = 9 Mg, 21)

6.3 Finite element spaces for HDG FEM

For k € N, let us prepare the following finite dimensional spaces:

U" = Mg PHK) € WH(T), (22)
0" = egr PA(e) (or MeeenPi(e) N CAM)) c L@y, O = 0" L@, (23)

where P*(K) and P*(e) are polynomial spaces on K and e of degree < k, respectively. For
U", the case U, c C(I"™) (space of continuous numerical fluxes) is in a sense natural as the
space of traces from W'?(Q) to I'* at least when p > 2. However, U™ whose elements can be
discontinuous at vertexes is also used and may be sometimes superior to the continuous one.

Now typical examples of finite element spaces used for approximating scalar functions
in W?(Q) and W,"(Q) are, respectively,

VE=U"x 0" c WH(Thyx L>@"), VE=U"x0hcW*ThHxLyT"). (24

As was already noted, the approximate flux 9 is derived from v € U" in the original DG
FEM, so that 0* and U are not explicitly defined but determined from U* implicitly.



6.4 Lifting operators

In DG FEM, various functions on edges and I'* appear and play essential roles. To associate
them with some functions on K’s, we often use the so-called lifting operators, whose typical

examples are introduced below.
For K € 7" and the former k € N, let us introduce QX ¢ L*(K) as

0¥ = P*(K) or P1(K). (25)
Then the local lifting operators Rg; (i = 1,2) : g € LP(0K) — ¢; € QK are defined by

& M = [g,nnilax (Y € 05, (26)

where n = {n, ny} is the outward unit normal on dK. Clearly, & = Rg;g exists uniquely for
eachi (=1, 2).

The global lifting operators Ry; (i = 1, 2) are given, roughly speaking, by assembling the
local ones element by element. More precisely, with Q" := Ig+ QX c L*(Q), Ry; for each
i € {1, 2} is defined by

Rii: & = (g, kerr € Ugers LP(OK) — {Riig,xYker € Q" (27)

The lifting operators of the present form are used to approximate such a boundary integral
lg, n;0u/0x;]sx (i € {1,2}) by an integral over K. If u is approximated by a P* function u, in
K, Ouy,/0x;|x is a P! function, so that (&, 1) = [g, ninlsx (& = Rxig, 1 € P* or P¥1) gives

(Rkig, Oun/0x)g = [8, ni0u/0x;lox (i =1,2). (28)

Moreover, when k = 1 and QX = P°(K), any P! function v, in K satisfies (0v,/0x;, Mg =
[V, ninlsx by the Gauss formula, so that the relation (Rg;vi,, Mk = [vi, ninlsx recovers dvy,/0x;,

ie.,
Rii(valox) = 0vi/0x; (k =1, 0% = P°(K)). (29

It is to be noted that the present flux § € LP(I'") is single-valued on e € &, and is
considered an element of Ix.s+ LP?(AK). On the other hand, the trace of v € WI?(T#) to e
can be double-valued. To use Ry; to such v, let us introduce the operator:

Sp:ve Wl’p(Th) = (Vak)kern € MgernLF(0K) . (30)

By using S, we can apply Ry; (i = 1,2) to an element such as S,v — ¥, which belongs to
e LP(OK) (also to Mg+ L7(AK) in the present choice of V* in (24) and QX in (25)), the
domain of definition of Ry;.

7 Some theoretical results for DG FEM

In this section, we will present some theoretical results for DG FEM. In the former parts, the
functions are essentially scalar ones, while vector functions will be also considered later. We
will essentially consider the cases for 1 < p < oo, although some results may also hold for
p = 1 and/or p = oo.
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7.1 Regularization of discontinuous functions
7.1.1 Assumptions on the family of triangulations

To derive various theoretical results for HDG FEM, we must impose some assumptions on
{T"}150. We have already stated that the number of elements in 77 is finite, and the number
of edges of each bounded polygonal finite element K € 7" is bounded from above by a
positive integer M independently of 4 and K [3, 12].

We add a geometrical assumption called the chunkiness condition due to Deny-Lions and
Brenner-Scott [3]. That is, for any # > 0 and K € 77, there exists an open disk D of radius
px > 0inscribed to K such that K is star-shaped with respect to any points in Dg and

Pxlhc 21, (3D

where 7 is a positive constant common to all the elements in the family {7%}o.

For the above Dy of K, let us denote its center by CX. For each edge e € EX, define by
6, the interior angle at CX of the triangle composed of CX and e. Then, we further assume,
for a positive constant 6,

0,20, (Yh>0,VKeT" Veec&K). (32)

From this assumption, we can conclude the finiteness of number of edges of K but also that
the edge length |e| is bounded from below by a constant times Ak.

7.1.2 Evaluation of lifting operators by interior penalty terms

For analyzing the DG method using lifting operators, we must evaluate them in terms of the
interior penalty terms. To do this, we can use the duality operators from L?(K) to LI(K)
(1< p<oo,qg=p/(p-1))]5, 7], and then we have the following results.

Lemmal Forh>0,K€T"andi=1,2, it holds for g € LP(0K) that

1 1/p
IRkigllpx < Cpl D |—e|—,;_—,|g|z,e] : (33)

eeEK

where C, > 0 is dependent on p but independent of g, h, K and i.

7.1.3 Vertex averaging operator

Let us first consider the vertex averaging operator for the numerical fluxes. Essentially the
same idea was introduced by Brenner [4] for the original DG FEM, and has been used in
many literatures. In the HDG FEM, such averaging process is unnecessary if 0% ¢ C(I™),
while it is effective in general HDG and original DG FEM where numerical fluxes may be
discontinuous at vertexes.

Let us consider the numerical flux 9, € 0%, where 0" is either independent of U* in the
present HDG FEM or derived from U" in the original (non-hybrid) DG FEM. In any cases,
they are piecewise polynomials on I'*. Then for each vertex p € I'*, define (A,D,)(p) by

1
Apn)P) = — D lim dy(g), 34
(ArVr)(P) Tl 24 olm_ Vn(q) (34)



where T}, is the set of edges that have p as an endpoint, i.e., T, = {e € &"; pee},and [l
is the number of edges in T, which is finite and bounded from above by a positive constant
under appropriate regularity conditions on {7"},.,. For a continuous flux, it clearly holds
that (A,D,)(p) = P,(p) for any vertex p € I'".

As Lemma 2.1 of [4], the following lemma holds.

Lemma 2 There exists a positive constant common to {T "}, such that, for any {v,, ¥} €
U" x U, any vertex p € T" and any e € (',

| lim 9u(q) - (Ad@I < C Y, D | Tim wi(@) - lim (@, (35)
a<e=p ceXp kere TP Teemp

where T is the set of elements that have e € E" as their edge, i.e., T¢ = (K € T, e C 0K).

7.1.4 Discrete inverse trace theorems

We will introduce a 2D discrete inverse trace, or trace lifting, operator, which maps continu-
ous numerical fluxes in 0 c C(8K) to functions in W'?(K).

Let us state the trivial 1D discrete trace theorem, which is shown by using the linear
interpolation functions with two end-points used as the sampling points.

Lemma3 Let I =[0,L] for L > 0, and a, b € R. Then there exists a unique linear polyno-
mial function v € C(I) such that ¥(0) = a, ¥(L) = b, and

. 2Pt \!P y .
Plpr < PR (al” +bIP)""? (1 < p < ), Plws < max{lal, [bl} (p = ), (36)

where | - |, ; denotes the norm over LP(I).

The following lemma is a discrete analog of the inverse trace theorem, but in the orig-
inal inverse trace theorem, functions on 9K are taken from W!~VPP(3K), the trace space
of W'?(K). The assumption ¥ € C(6K) below is essential for ¥ to belong to W!=/»P(4K)
especially when p > 2.

Lemmad Leth>0,KeT" keN, 1< p < ooand? € ,gxP*(e) N COK). Then there
exists a function v € W'P(K) such that v|sx = ¥ and

-1 1/p—1a
Ivll,p,K + h]( ”v”p,K < Cthp lvlp,3K9 (37)

where hy is the diameter of K, and C), is a positive constant depending only on p under the
present regularity conditions on {T"};5o.

7.1.5 Regularization of discontinuous functions in U"

By Lemmas 2 and 3, we can construct a continuous flux from the original one, and the
difference between them is bounded by the interior penalty. Then using Lemma 4 and the
above continuous flux, we obtain a W?(Q) function, whose difference from the original
WL2(7) function is again evaluated by the interior penalty term.

The present process is essentially the same as the use of the reconstruction presented by
Brenner [4], and we have the following results.

37



38

Lemma 5 Let us consider {T"}y59 and {vy, 9} € U* x U" associated with a T". Then there
exists a function v € W'"P(Q) such that

1/p

1
(h = max hg), (38)
KeTh

|e|P~1

v — Olb

IV = Vavillpa + B IV = villpa S Cp| D Y

KeT* ecEX
where C, > 0 depends only on p under the present regularity conditions on (T} hs0.

Using the above results, we can derive the discrete versions of the Poincaré-Friedrichs
inequalities, the Rellich-Kondrashov theorem, the Korn inequalities etc., which are all im-
portant tools in numerical functional analysis.

7.2 2D discrete Rellich-Kondrashov theorem

Since W?(77") is much wider than W'?(Q), we must prove various discrete versions of the-
orems related to the Sobolev spaces such as the Rellich-Kondrashov compactness theorem.
The author derived the Rellich-type theorem (p = 2) [12, 14], and here give its extension
to more general cases, i.e., discrete Rellich-Kondrashov theorem by using the discrete trace
lifting theorem and Lemma 1. It is to be noted that the strong convergence in LP(Q) below
is generalized to more general values other than p depending on the value of p, although we
omit the detail here.

Theorem 1 Under the regularity conditions (3, 12] of {T "}1»0, consider any family {{u, it,} €
VP nso (({un, fin} € VB nso, respectively) associated to (T "}45 such that |{up, i}l p,h+”“h”£,n <

9,

1. Then there exist uy € W"P(Q) (uo € Wé”’ (Q), respectively) and a sub-family, again denoted
by {{up, iy} 0, Such that as h | 0

u, — ug strongly in LP(QQ), uplaq —0 strongly in LP(0Q) if {uy, i) € V{‘, , 39)
Vs, + Rty — S wun) = Vug weakly in LP(Q)* with Ry = {Ru1, Rin}. 40)

7.3 Approximate derivatives in DG FEM

In view of the former theorem, the lifting term in V,u, + Ry(ft, — Shup) is essential, and
is related to the jumps on the inter-element boundaries: even when this term is not used,
something more or less alike is necessary as an alternative.

As an approximation of usual derivative dv/dx; (i = 1,2) for v € H'(K2), we will use the
following 8y, ;{v, ¥} for {v, 9} € H'(T") x L*(T"*) based on the lifting operator Rg;:

(Oni{v, WDk = 8(vIk)/0x; + Rgi(Plox — (VKlox) (i = 1,2).

In the present HDG FEM, we will use such approximate derivatives instead of the usual ones
in the classical FEM.



8 2D plain strain problem
8.1 Preparations for HDG FEM

As the 2D displacement in our approach, we will use i = {u, @} € H/(7")* x LA(I™*)* with
u = {uy, up} and @ = {@1y, &i,}. Then, as approximate derivatives to be used for approximate
strains, we adopt dy{v,®} (i = 1,2) for {v,d} € H'(T™)? x L*[T")* as proposed in the
preceding subsection. Thus the approximate strains ep;;(@) (1 < i, j < 2) and divergence are
expressed by

2
enif( @k = 3O lui, 0} + Oni{u;, 07),  divy @ = Zeh,ﬁ(ﬁ) , (41)

i=1
while the stresses are derived from the strains by the generalized Hooke law:
Sh,ij(’fl,) = A0;j div, @ + 2u eh,l—j(ﬂ) (1 <i,j<2) with pp(@) = —Agdiv, @. 42)

We will essentially use the following bilinear form for @, & € H3**(7")? x L*([I™")? with
v>0:

2
ano(@ ) = ) {[ D (eistw), @) + i = s e1(0Inlox + [9: = vi ewnlo|
i,j=1 = KeT*

1
+ Z(th(ﬁi — Snity) + Ryi(B; — S pu;), Ryj(i — Spvi) + RV — Shvj))n}

2

XIS ‘—i—l[ui = @, i = e, 43)

KeTh ecEX i=1

2
dy(@, ) = ) [(divu, divo)g + D (8 - s, (div o)nilo + [0 — vi, (divwmilax)|
i=1

KeT™h

2
+ D Ruitt = S ), R = Svidda (44)

ij=1

where the assumption y > 0 is required to assure the existence of some traces, the last term
in ap (-, -) is the interior penalty one, and o > 0 is the penalty parameter which is usually
chosen to be O(1). Moreover, the terms involving R;;’s are omitted in some primitive DG
and HDG FEM [13], but then o must be chosen sufficiently large to assure the positivity of
the above bilinear forms.

8.2 Basic HDG FEM in i only

We will use the P* finite element spaces (22) and (23) for @ = {u, G}:

V' = (UM x (OM?, Vi = (U"? < (Oh). (45)
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Then a typical FE formulation is, for a given f € LX(Q)?, to find 4@, = {w;, @4} € V% s.t.
24t Gy o (Tn, By) + Ady(Thn, Br)a = (f, vi)a (YO, = {vg, Ou} € V], (46)

where we can rewrite the approximate bilinear forms by

2
1
ap o (U, Ty) = Z(eh ij(Wh), enij(Bp))a + o Z Z Z ? ~,vi —Vile, “47)

ij=1 KeTh €K i=
dy(tip, Up) =(divyGy, divydy)q . (48)

The unique solvability of the above problem is straightforward provided that the Korn-
type inequalities (see the subsequent subsection) are established together with some standard
requirements in DG FEM[2]. However, its behaviors as 4 — oo is not clear at present. More-
over, under appropriate regularity conditions on the exact solution, we can derive various
error estimates as routine works.

8.3 A discrete 2D Korn’s inequality

For the validity of the present approximation, it is again essential to show discrete versions
of Korn’s inequalities. We have shown, for P*/P* approximation (P*(K) for u;, P*(e) for
@1;) [15] for p = 2, which can be generalized for 1 < p < oco:

Lemma 6 There exists a constant C,q > 0 (dependent on p (1 < p < o) and Q), s.t., for
any small h (0 < h < hy) and any ¥y, = {vp, On} = ((Vi1, via), {1, Pn2}} € V2,

> ZHZ oun+ o) +Z 2 ZI o = Oulf + onl g > Gl (49)

KeTh i j=1 i=1 KeThecEX

p : =~ Tk
where the term ||v|| 0 €an be omitted for © € V7,

Remark 2 For the non-conforming P! triangle of Crouzeix-Raviart, Korn-type inequalities
do not hold. If the mesh contains the patch in Fig.4 and w, = {un1,un} is zero outside
it, this non-conforming displacement cannot satisfy Korn-type inequalities [11), although it
certainly does for the completely incompressible case where the divergence-free condition is
imposed element-wise, see [1]. Notice that this triangular finite element method is the most
elementary DG FEM.

8.4 Mixed type HDG FEM in @ and p

It is also possible to add p as an independent unknown function, and such an approach is an
mixed type HDG FEM. We introduce a space W” for p such as HKE7—;.P"P(K Ywith0 <k, <k,
and also use W} = W" n L3(2). Then a mixed HDG FEM is to find {@y, ps} € Vi x W" s.t.

{2# agp(tp, Bp) + ﬁ(l’h,divh Dn)a = (f,vn)a ; Vo, e Vi, (50)

f;[(dth @, gr)a + A5 (Pre gn)l = 0 ; Vge W,
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[4] 1+2y/h | 1-2x/h
(—h’ _h)

Figure 4: Example of patch of triangular elements

Remark 3 Since 1, € IAJ?), we can show that (divy, @y, 1)q = 0 by the Green formula. Thus
the present py necessarily belongs to We. If div, V& c W* and 2 is finite, we have p, =
—Ag divy, @y, so that the present formulation coincides with the one in w only. Such a situation
is realized if we choose k, = k — 1 (k > 1).

8.5 An inf-sup condition for mixed HDG FEM

For the validity of the present mixed HDG FEM, it is again essential to show some inf-sup
conditions such as: There exists a constantk > 0 s. t., for all h (0 < h < hy),

. div, D,
inf ——(~ 10, Do > k. (51)
BeVE\(D) gew\(0) 1811, - llglla

To show the above, it is again effective to construct a Fortin operator I17 : H(Q)> — V%,
which is characterized as follows: There exists a positive constant C such that, for all v €
Hy(),

I vllp <Cllvlimye, (divy I} - div) v, gaa = 0; Vg, € W". (52)

Although it is in general difficult to find a nice Fortin operator, it is now known that its
existence is assured in the arbitrary choice of 0 < k, < k for the polygonal 2D elements with
discontinuous numerical fluxes (0" = IL,gP*(e)) [9]. This is in a sense an amazing result
compared with the classical mixed FEM using u and p.

For some finite element spaces with (discontinuous) P*~! approximation for W*, the
present mixed HDG FEM give identical results to the displacement HDG FEM for finite
A by eliminating p using the relation p = —Ag div,, @, cf. Remark 3.

On the other hand, if we add the continuity condition on the numerical fluxes at vertexes
(0" c (™)), we can at present conclude the existence of the Fortin operators for 0 < k, <
k-2 (k=2).
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8.6 Reduced-order numerical fluxes

In [16], Oikawa proposed the use of P*~! discontinuous numerical fluxes together with the
P* interior functions. As for the interior penalty term, the trace (v|x)l. of v € PX(K) (K €
T*, e € EX) is replaced with its L?(e) projection to P*~!(e). He also pointed out its relation
with the Crouzeix-Raviart P! nonconforming triangular element when & = 1 and K’s are
triangles. Except for kK = 1 where Korn type inequalities may not hold, such approximations
work well for the finite element analysis of nearly incompressible media.

8.7 Initial stress problems

We have considered the case where the linear elastic media are free from the initial stresses
or strains. However, if the media are pre-stressed before further forces are applied, there may
remain initial stresses. In modeling such phenomena, we often add some linear forms to the
weak form (7). An example of such modified weak forms is given as follows:

[DF];s Given f € L*(Q) and {s?j} e XQ* (1<, j<2; 8% =53, findu € HJ(Q) s. 1.

N 2
A(divu, divo)a+2 ) (i), €5j()a = (F,v)a= D (s e®Na (Yv € HYQY). (53)

i,j=1 i,j=1

It is clear that the solution u exists uniquely in H}(2)%, but it may not be sufficiently smooth,
so that the usual error estimation in terms of 4 may be difficult to derive.

In DG FEM for the present problem, it is a serious problem to express the right-hand
side that is valid for ¥* or V. One possible remedy is to replace the strain terms e;;’s in
the right-hand side with their approximations e;;’s. Then (46) should modified as, for all
By = {vy, 04} € VP,

2
2p agp(Un, On) + Adivatin, divaDp)o = (f, vada - Z(S?j, enij(Tn)la (54
=1

We can show the strong L? convergence of u;, and i, respectively to the exact v and d,u
by using the discrete Rellich theorem, the discrete Korn-type inequalities as well as the lower
semi-continuity of the L? norm, cf. [12].

9 Numerical Examples

We show some numerical results for a test problem, where the domain € is a unit square
defined by {x = {x;, x2};0 < x; < 1, 0 < x, < 1} and the exact solution is given by

#(s) := s2(s — 1)?, O(x) = —%¢(x1)¢(x2), u=rot®+tA 'grad @, (55)

where ¢t > 0 is a parameter. In the present calculations, we take A, u and ¢ as 5000, 1 and
1, respectively. Then the boundary condition associated with the above is the homogeneous



Dirichlet one, and f is specified by applying the operator of the Navier equations to the
above u.

In the numerical calculations, we choose ¢ unity and consider four triangulations num-
bered as j = 1, 2, 3, 4, which are obtained by using Gmsh [10] and by dividing each side of
the square domain into 10 X 2/~! segments with equal length.

As finite element methods, we considered three types of P!-based ones:

1. CG: Classical conforming P! triangular element.

2. DG-D: Hybrid DG triangular element based on discontinuous P!-u and discontinuous
P'-4, where the pressure can be calculated element-wise by the relation p = —Apdiv u.

3. DG-C: Hybrid DG triangular element based on discontinuous P!-u and continuous
Pl-q.

The results are shown in Fig.5 through 8, and we can observe that the results may
strongly depend on element types. That is, when triangulations are coarser, the results based
on CG and DG-C are very poor: the displacements are much smaller than the exact one,
which is very close to the ones based on DG-D in graphical level. The results are improved
as the triangulations become finer, but we need much more computational costs than using
the DG-D method. On the contrary, the results based on DG-D are robust to the fineness of
triangulations as is expected theoretically. It is to be noted that, for smaller A (not shown
here), the difference is not so severe and sometimes CG may give better results.
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Figure 5: Triangulation 1 and computed displacements
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Figure 8: Triangulation 4 and computed displacements

10 Concluding remarks

We have surveyed fundamental finite element methods for nearly incompressible media. As
a whole, the mixed methods using the pressure p as well are superior to the methods in
displacements (or velocities) only, but it is not so easy to find nice finite element models.

As alternatives, the hybrid DG FEM and their mixed variants may be promising to de-
rive more flexible finite element models that behave nicely in nearly incompressible cases,
although their practical feasibility (cost, size of discretized problems, etc.) must be carefully
tested. Finally, we have essentially omit the proofs of theoretical results, which must be
completed as soon as possible.
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