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DECAY PROPERTIES OF SOLUTIONS TO THE STOKES EQUATIONS WITH
SURFACE TENSION AND GRAVITY; ITS APPLICATION

HIROKAZU SAITO AND YOSHIHIRO SHIBATA

ABSTRACT. The aim of this article is to show the existence of a unique strong solution global in
time for suitable initial data and large-time behavior of the solution for a free boundary problem
of the incompressible Navier-Stokes equations in half-space-like domains. Our approach is based
on the contraction mapping theorem combined with the maximal Ly-L regularity property of the
linearized system and decay properties of solutions to the Stokes equations with surface tension and
gravity.

1. INTRODUCTION
This article is a brief survey of [14] and [16], mainly.

1.1. Problem. We consider in this article the following free boundary problem of the incompressible
Navier-Stokes equations in R3:

( p(Opv + (v -V)v) = DivS(v,p) — pcgez in Q(t),t >0,

divv =0 in Q(t),t >0,
(11) < S(v,p)np = cokrnr onI'(¢),t>0,
Vr=v-nr on I'(¢), t > 0,
V]t=0 = Vo in Qo,
\ I'|¢=0 = Io.

Here I'p is a given initial surface defined by the graph of a scalar function hy = ho(z’) for
z’ = (z1,%;) € R?, that is, [g = {(,z3) | ¥’ = (x1,%2) € R?, 23 = ho(2)}; Qo = {(¢/,z3) | 2’ €
R?, z3 < ho(z")} is the initial domain occupied by some Newtonian fluid with viscosity coefficient
p > 0; vo = vo(x) = (vor(x), voz(x),vo3(z))TY is a given initial velocity field of the fluid. The
positive constants p, ¢4, and ¢, describe the density, gravitational acceleration, and surface tension
coefficient, respectively, and also ez = (0,0,1)7.

Let I'(t) and Q{t) be the position of 'y and the region occupied by the fluid at time ¢ > 0,
respectively. Note that both of them are unknown in the system (1.1). Furthermore, the unknowns
v =v(z,t) = (vi(z, t),v2(z,t),v3(z,t))T and p = p(x,t) denote the velocity filed and the pressure
field at = € Q(t) for t > 0, respectively. The stress tensor S(v,p) is then given by

S(v,p) = —pl+ uD(v), D(v) = Vv + (Vv)" = (G; + Ojuy),

where I is the 3 x 3 identity matrix and 8; = §/0xz; for i = 1,2,3.
We set, for any 3 x 3 matrix M = (M;;) and 3-vector v = (v1,v2,v3),
T

3 3 3 3
DivM = Z@MU, Z 0; Ma;, ZajMBj , divv = Zajvj;
j=1 j=1 j=1 j=1

DMT describes the transposed M.
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T

3 3 3
Z vjajvl, Z ’Ujaj’l)z, Z 'vjaj’vg

It then holds that
the ith component of DivS(v,p) = ~9i7 + u(Av; + 9; divv).

We suppose that the unknown free surface I'(t) and domain Q(t) are given by a scalar function
h = h(z',t) as follows:

T(t) = {(z/,z3) | 2’ € R?, x3=h(2,t)}, Qt)={(«',z3) | ' € R?, z3 < h(z',t)}.

In addition, we denote the unit outward normal vector on I'(t) by nr, the evolution velocity
of I'(t) with respect to np by Vr, and the mean curvature of I'(t) by &r, respectively. The unit
outward normal vector on Iy is analogously denoted by ng. It then holds, for V'h = (8,h, 8oh)T

and A’'h = E] -1 ]h that
1 —v%@ﬂn) Oth(z',t)
nr = y Vr= y
r ./—‘1+|th@'¢)|2( 1 T I VR DR

! /
kp =V VY = A'h — Gy(h),
1+ Vh(@, b2

where

|V'h(z, t)|2A'h(2, t) 2\ 8;h(c!,t)Bkh(z!, t)0;0kh(z, t)
Z

(1+VI+ VR, DP)VI+IVRE P 47 (1+|V'h(, tt)l2)3/2

Gi(h) =

Set m = p + pcgxz in (1.1), and we see, by e3 = V3, that the system (1.1) are reduced to

(p(Ov+ (V-V)V) - uAv+Vr =0 in (¢t), t > 0,

divv =0 in Q(t), t > 0,

S(v,m)nr + (pcgh — co A'h)np = —c,Gi(h)nr on L(¢), t > 0,

(1.2) Gh+Vv -Vh—v-e3=0 on I'(t), t > 0,
V]t=0 = vo in o,
hli=0 = ho on R?,

\

where v/ - V'h = Z?:l vj0;h.

1.2. Reduction to a fixed domain problem. The system (1.2) are reduced to a nonlinear prob-
lem on a fixed domain by the so-called Hanzawa transformation. To consider the transformation,
we introduce the following auxiliary problem:

{AH=0 inR3,t>0,

1.3
(1.3) H=h onRg,tZO,

where
R?® = {(«/,23) | 2’ € R?, 23 <0}, R3={(«',23) | € R?, z3=0}.



Let © be the transformation as follows:

©:R3 x (0,00)3 (§,7)— (mt) e |J Qs) x {s},
$€(0,00)

e(ﬁa T) = (61, 527&3 + H(£a T)’T)'
We then define, for f : (J;e(0,00) 2(8) X {5} = R and g: R? x (0,00) = R,
(1.4) 0" f(x,t) = f(O(§,7)), Oug(6;7) =9(07 (w,1)).
Remark 1.1. (1) Let f and g be functions defined on R2, and

Fud = [ eV rerdes Flale) = g [V o)y

Then the solution of (1.3) is given by
(1.5) H(E,7) = ERC,)E),  ELAE) = F [V FWIE) (6 <0).
(2) © define a C'-diffeomorphism if A and H have the regularity described in Theorem 2.1.

Set u = u(¢,7) = ©*v(z,t) and 6 = 6(§,7) = ©*n(z,t), and apply ©* to the 1st, 2nd, 3rd, and
4th line from the left-hand side. The system (1.2) are then reduced to

( d;u— Au+ V0 =F(u,H) inR3, 7> 0,
divu = Fy(u, H) = divFy(u,H) in R3, 7 >0,
< S(u,6)es + (cg — coA'Yhes = G(u, H) on Rg, T >0,

(16) i
Oyh —u-e3 = Gy(u, H) on Rg, 7 > 0,

u|t=0 = uO 1n RS.,

hlt=0 = ho on R?,

\

where we have set p = p = 1 without loss of generality.

Here up = ug(§) = Ofvo(z) = vo(©o()) with ©9(€) = (£1,&2,&3 + Ho(§)) for
(1.7) Ho(§) = Elho(8),

where £ are defined as (1.5), and the right members F, Fy, Fy, G, and G}, are nonlinear terms with
respect to u and H (cf. [14, Section 4.2] for the detail).

The goal of this article is to show the global well-posedness of (1.6) in the L, in time and L, in
space setting. Here and subsequently, such a setting is called the L,-L, framework, and the main
result is introduced in the next section. We suppose that exponents p, ¢ satisfy the condition:

16 2 3
(1.8) 2<p<oo, 3<g<—, -+-<1,
5° p ¢
which plays an important role when we solve (1.6) by using the contraction mapping theorem in
Section 5. Note that we can not take p = g satisfying (1.8). In fact, if we set p = g in (1.8), then
2 3 16

> + 2 < 1= 5 < ¢ = there is no intersection with 3 < g < 5

This tells us that the L, in time and Lg in space setting is essential in our approach.
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1.3. Historical remarks. Beale considered the incompressible Navier-Stokes equations in Q(t) =
{(',z3) | z’ € R?, —b < z3 < h(z',t)} for some b > 0 in [5]. More precisely, he showed the local
well-posedness in the Lo-Lo framework under the condition: ¢, = 0 and ¢4 > 0. Concerning the
same §2(t) as mentioned above, there are many results as follows: The global well-posedness was
proved in Beale [6] under the smallness condition for initial data by taking into account ¢, > 0,
and Beale and Nishida [7] showed polynomial decay of the solution obtained in [6]. Although [7] is
a survey article, we can see the detailed proof in Hataya [9]. Along with these studies, we also refer
e.g. to Allain [3], Tani and Tanaka [20], Tani [19], Hataya and Kawashima [10], and Bae [4]. We
note that all of these results were proved in the Ly-Lo framework. In the L,-L, framework, there
are results of the local well-posendness due to Abels [1] with p = ¢ and Shibata [17], whereas Saito
[15] showed the maximal Ly-L, regularity theorem of some linearized system.

In the case of (1.1) with ¢y > 0, Priiss and Simonett showed the local well-posedness in the Ly-L,
framework for both ¢, > 0 and ¢, = 0 in [11], [12], and [13]. They originally considered two-phase
free boundary problems of the incompressible Navier-Stokes equations, but (1.1) was contained in
their situations. In the L,-L, framework, Shibata and Shimizu [18] showed the maximal L,-Lq
regularity theorem for the linearized problem of (1.6).

On the other hand, we show in this article the global well-posedness of (1.6) in the L,-L, frame-
work, and also we want to emphasize that the Ly-L, framework is essential in our approach, as was
seen in the condition (1.8).

This article is organized as follows: The next section tells us notation and main results of this
article. Section 3 shows decay properties of solutions to the Stokes equations with surface tension
and gravity. In Section 4, we state some proposition, concerning the full linearized system of (1.6),
which is proved by the maximal L,-L, regularity property and the decay properties introduced in
Section 3. Section 5 proves our main result, i.e. the global well-poseness of (1.6) in the L,-Lg
framework.

2. NOTATION AND MAIN RESULTS

In this section, we first introduce notation used throughout this article. Next our main result is
stated.

2.1. Notation. Let X be a Banach space and || - || x its norm. In addition, let @ C R™ (n € N) be
a domain. The following notation is used throughout this article:
e For 1 <p < ooandme N, LR, X) and W;*(Q, X) denote the X-valued Lebesgue and
Sobolev spaces on (2, respectively, and Ly(Q) := Lp(22, R) and W(Q) := W' (2, R).
o W2(Q,X) := Lp(R, X) and W2() := Lp(R).
® Let 1 <p < oo and s € (0,00) \ N. Then W; (2, X) is the X-valued Sobolev-Slobodeckii
space on 2, that is, for [s] = max{l e NU{0} |l < s},

W30 = { £ € W03 |1 flwgia) = Whypo o

| D% f(z) — D f(y) % 1/p
+ Z (L Q Im _ y|n+(3—[8])p d:l:dy) < OO}’

e =[s]

where D f(z) = 87" ... 8% f(z) for multi-index a = (ay, ..., an) € (NU{0})™. In addition,
W2 (Q) = W3(Q,R).
o Let 1 <p,qg<ooand0 < sp,8; < oo with sg # s1. Then we set

BS () = (W, Wi )ep (0<8<1, s=(1-0)s0+8s1),
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where (-,-)gp is the real interpolation functor (cf. [21, Theorem 3.3.6], [8, Theorem 6.2.4]).

o Let 1 < p < oo, and we set WE(Q) = {8 € L110c() | VO € Lp(2)"}.
e Let Y be another Banach space. Then B(X,Y) denotes the Banach space of all bounded

linear operators from X to Y.

For any 3-vector f defined on Rg’,, we set [f]tan = f — (f - e3)es.

Let m € N and a-b = 377 a;b; for m-vectors a = (a1, ,am)T and b = (by,...,bm)7.
In addition, we set (f,g)a = J, f(z) - g(x) dz for m-vector functions f, g on .

e The letter C denotes a generic constant and C(a,b,c,...) a generic constant depending on

the quantities a, b, c,.... The value of C and C(a,b,c,...) may change from line to line.

2.2. Main results. Let I; and I be

(2.1)

_ 3
L= (BXYP(RS) N B, P (RY))

I, = Bg";l/P-l/Q(RZ) N Bg’_pl/p_l/Q(R?) N Lq/Q(R2),

which are functions spaces for the initial data ug and hg, respectively. Our main result is then
stated as follows:

Theorem 2.1. Let exponents p,q satisfy (1.8), cg > 0, and c; > 0. Suppose that (ug, ho) € I x I
and Hy is given by (1.7). Then there exist positive constants g and 0o sufficiently small, depending
only on p,q,cq, and c,, such that the equations (1.6) and (1.3) admits a unique solution (u,8,h, H)
in Xs,, where Xs, is defined as in Section 5, if the initial data (ug, ho) satisfies the smallness
condition: ||(wo, ho)||,x1, < €0 and the compatibility conditions:

div ug = Fd(uo,Ho) in Ri, [D(uo)eg]tan = [G(uO,Ho)]tan on Rg

Remark 2.2. If we set v = O,u and 7 = 6,0 by (1.4), where u and 6 is the solution obtained in
Theorem 2.1, then (v, 7, k) solves (1.1).

3. DECAY PROPERTIES OF SOLUTIONS TO THE STOKES EQUATIONS

In this section, we are concerned with decay properties of solutions to the following Stokes
equations with surface tension and gravity:

(3.1)

( du—Au+Ve=0 inR?,¢t>0,
divu=0 inR3,¢t>0,
S(u,0)es + (cg — coA')he3 =0 on RJ, t >0,

< Oth—u-e3=0 0nR8,t>0,
ulj—o=f inR3,t>0,

h|t=0 =g on Rg

\

ATO show the de/c\a\y properties, we introduce some function spaces here. Let 1 < ¢ < oo and
quO(R3_) ={6¢ qu(Ri) | 8)gs = 0}, and
) 0

Jo(R%) = {u € Ly(R2)? | (u,Vip)gs =0 for any p € Wy, 4(R2)},

where 1/g+ 1/¢’ = 1. For simplicity, we set

Xy = Jo(R2) x W2 VI(R?), X0 = Ly(R%) x Ly(R?), X?=Ly(R3)x W7 IR?),
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and, for 1 < s <2< 7 <00,

(3.2) | m(s,r) = (% - %) + % (% - %) ,

(emf(t16-9)

Then the following proposition holds (cf. {16, Theorem 1.1] and [14, Theorem 3.1.1 and Theorem
3.1.3)).

n(s,7)

Proposition 3.1. Let 1 < ¢ < 00,¢4 > 0, and c; > 0.
(1) For everyt > 0, there exists operators
S(t) € B(X2, W2(R2)%), I(t) € B(X2,WHR2)), T(t) € B(X2, W3 /9(R?))
such that, for any F = (f,g) € X,
S(-)F € C'((0,00), J4(R2)) N C((0, 00), W (R2)%),
II(-)F € C((0,0), W2 (R2)),
T(-)F € C'((0,00), Wy~ 9(R?)) N C((0, 00), W~ 4(R?)),
and (u,6,h) = (S@)F,I(¢)F, T(t)F) solves uniquely the system (3.1) with
Jm [[(u(®), h(®)) = (£, 9)llx, = 0.

(2) Let1<s<2<r<ooandF = (f,g) € X)NXZ2. The operators obtained in (1) are decomposed
wnto

S(t)F = So(t)F 4+ S (t)F + R(t)f,
H(t)F = I(t)F + o (¢)F + P()f,
Tt)F =To(t)F + Too(t)F,
which satisfy the following estimates: First, fork =1,2,1=0,1,2, andt > 1,
1(So(t)F, B (To(t)F))ll . ms ) < Ct+2) ™M |[Flixo if (r,5) # (2,2),
IV*S0(t)Fll 1, s ) < C(t+2)""D 8 ||F|l x,
18 S0 (t)F, VIIo(t)F)|| 1, (rs y < C(t + 2) ™74 |[F| o,
IV 0 (To(&)F) | 1, mey < C(t+ 2™ 5 |l xo,
IV EToOF) 1, m) < C(t+2)~™)573||F|| xo,
ITo(®)F ||z, Rz < Ct+2) G D|Fllxe if s #2

with some positive constant C, where £ is defined as (1.5). Secondly, there exist positive con-
stants v and C such that, for every t > 1,

196500 (D) Fll o (m3 ) + 1500 () Fllwzrs ) + Moo () Fllw (me2 )
+ [18:€ (Too ()F)) lwzme ) + 1€ Too (8)F)lws(ms ) < Ce™"||Flx;-



Thirdly, there is a positive constant C' such that, for everyt > 1 and 1 =0,1,2,
IV'R@)ElLyme) < O +2)72 I yqms ),
@R, VP, m3) < C(t+ 2) " IEll w3 )-
4. FULL LINEARIZED PROBLEM

We consider in this section the full linearized system of (1.6) as follows:

( du—-Au+Vo=f+f inR3, t>0,
divu=f;=divf; inR3,t>0,
1) ) S(u,0)es + (cg — coA')hes = g on R3, ¢t >0,
Oh—u-e3=gp onR3, t >0,
U= = ug in R2,
{ hli=0 = ho on RZ.

We here introduce some symbols to state main results of this section precisely.
First, let s > 0 and 1 < p < 0o, and let X be a Banach space and its norm || - || x. We then set

L3((0,00), X) = {f € Ly((0,00), X) | | fllz((0.000%) < 00},
I Lg (0,000, %) = N+ 2)° fll L, ((0,00),%)
WE2((0,00), X) = {£ € W2 ((0,00), X) | Il eo0y) < 20}
I llwze 0,000,3) = 106(( +2)° Pl L, ((0,00), %)
Secondly, we define a function space Wq_ L(R?). Let E be the extension operator given by [2,

Theorem 5.19], and we set
Wi (RE) = {f € Lijoc(R2) | (1= A)7V2Ef € Ly(RY))},
1 lpms sy = I = )7 V2B ),

where (1 — A)~1/2y = .7:5'1[(1 + 1€12)71/25(8)](x) for functions u = u(z) on R3.

Thirdly, we introduce function spaces for the right members of (4.1). Let exponents p, g satisfy
(1.8). We then set

Fi=Fy= () Lp((0,00), L (R3))® = () WA(R? x (0,00)),
re{e2} re{q,2}
Fa= [] We((0,00),Ly(R%))3,  Fap= [ Lp((0,00), W} (R2)),
re{q,2} re{a,2}
M W((0,00), W (R2)) N Ly((0, 00), WE(R?))?,
re{q,2}

where Wy (R3 x (0, 00)) = W((0, 00), L (R2)) N Ly((0, 00), W2(R?)), and furthermore, for § > 0
and € > 0

F1(8,€) = L3((0,00), Lg(R2))% N L5, ((0,00), Ly 2(R))3,
F2(8,€) = L3((0,00), Le(R2))% N LE((0, 00), Lq/z(R3 )2,
Gn(8,€) = L3((0,00), W2(R2)) N L5((0, 00), W, (R3 ),

91
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Fai(6,€) = W, ((0,00), L(R%))? N W, #((0, 00), Lo (R2))?,
Faz(6,€) = LE((0, 00), W (R2)) N L5((0, 00), W, o(R2)),
G(8,€) = Wp*((0,00), W (R))® N L((0, 00), W, (R2))?
N Wy=((0,00), W3 (R2))? N LE((0, 00), Wy (R2))2.
Moreover, we define additional function spaces as
Ay = L9/29((0,00), Lg(R2)) N LE9/>2)((0, 00), L2(R2)),
Ag = LT/29%1/2((0, 00), Le(R2)) N LTI/22H1/2((0, 00), Ly(R2)),
Ay = LZOPO2((0, 00), Wy (RD)) 0 L@ 2D4172((0, 00), W3 (R2)),
Az = LT/29%1/2((0, 00), WHRE)) N LP@/22H1/2((0, 00), W3 (R2)).
Finally, we introduce the following three norms: Let p, ¢ satisfy (1.8) and r € {g, 2}, and we set
D (u, b, Ouh, H) = 0l pmiarain (9,00),1,.m3 )y T 1V8l paarzrivis o o) 1,3 )
1Al 20177 (0,000, . 3y F 1O a2 (0,001, ()
HUIVH| marzn+/a g o0y wacme y) T IVOH | pmiarznia g o) 1 ms )y
which is used to control decay properties of the lower order terms. In addition,
M, p(u,8,h,8:h, H) = ||(Bpu, u, Vu, V?u, VO)|| . ((0,00),L.(R? ))
F IRl L, 0,000 w2277 Ry + IO (0,000, w2217 ()
+ IVH| 1, (0,00),w2®2 ) T IVOHI L, ((0,00), w2 (B2 ))

where M stands for mazimal regularity. For the highest order terms, we additionally set a weighted
norm:

qu(ll H 51a62) = Il(atu VQu)”L + ”(vzatH VBH)”L

2 ((0,00),Lq(R2)) 22((0,00),Lg(R3))’

The main result of this section is then stated as follows:

Proposition 4.1. Let exponents p, q satisfy (1.8), and cg > 0 and ¢, > 0. Let €1 > 1,69 > 1, and
€3 > 1, and also 0 < 61,82 < 1 satisfy the conditions:

. 1
(4.2) p(min{ej,e2,e3} — 1) >1, »p (m (%,q) + i 51) > 1,
p(minfer,ez,e3} = 82) > 1, p(m (%2) +1-8)>1

We set 0o = max{d1,d2} and suppose that the right members of the system (4.1) satisfy the following
conditions:

(1) f e Fy ﬂ]Fl(do,el)

(2) f2 € F2 NFy(do, 2);

(3) gh e Gp N Gh((so, e3) N Al N Ag,

(4) £1 € Fgy N Fyy (8o, £2) N Far (60, €3) N Ag;

(5) fu € Faz NFar(do,e2) NFan(8o,€3) N Ap N As;

(6) g € GNG(do, e2) N G((So,&g) N Ag;



(7) fa and g satisfy additionally
(F2:8) € (LG((0,0), W) (R2)) N (0, 00), Whp(R2)))
"~ with some positive numbers o and B satisfying
(4.3) p(l+a—138)>1, p(l+p— max{es,e3})>1;
(8) (ug, ho) € Ij x Iy satisfies the compatibility conditions:
falt=o =divue in R3, [glian = [D(uo)es]ian on RE.
Then there exists a unique solution (u,0, h, H) of the equations (4.1) and (1.3), which satisfies

3 (]DJr(u, h, 8h, H) + M p(u, 8, h, 8yh, H)) + W, (u, H; 81, 62)
re{q,2}

< C(p, Q)<”(uO: ho)lltyxtz + IEillg, ~#, (80,60 F 1211wy (860,62
+ ”gh”Ghﬁ@h(%,Ea)ﬂAlﬂxz + ”fd“Fdlﬂfdl(éo,Ez)ﬂFM (60,63)NA1

+ ”fd”]Fdzﬂﬁdz(50,62)0Fd2(50,€3)ﬂA2ﬁA3 + ”g”Gn@(éo,52)0@(60,53)0A3
+(fa, g)“L%((O,OO):W,} (RE‘_))ﬂLg((OVOO),qu/Z(R"_)))

with some positive constant C(p, q).

Proof. We can prove the proposition by using Proposition 3.1. See [14, Theorem 4.4.1] for the
detail. O

5. PROOF OF THEOREM 2.1

Our aim in this section is to show Theorem 2.1. To use the contraction mapping theorem, we
set, for R > 0,

Xp={z=(u0,hH)|llzlx:= Y (Dr(uhoh H)
re{q,2}

+ My (u,0, h, b, H) ) + Wop (u, H; 1/2,3/4) < R},
where D, M, and W, are defined in Section 4.

We remind, in [14, Section 4.2], that the nonlinear term F(u, H) is given by F(u, H) = F1(u, H)+
Fa(u, H) with

8tH63u _
14+ 03H

F1(u, H) = (I+ Ms(H)) ( (u-V) u) :

3
FQ(U,H) = (—0Oyusz + Auz) VH + (I + M3(H)) (Z}}](H)u + (_ul—z—g?—%—g) ,

j=1



94

where M(H) = (MU(H)) is a 3 x 3 matrix with Mil(H) =0, M;p(H) =0, and Mi3(H) = D;H
(i=1,2,3);

ForH) =gy {0k H) (1 + a1 = (OuH)(0,00H)(1 + BoH)

(1+03H
— (85H) (0504 H) (1 + B.H) + (3, H)(84H) (B3 H) } &5
OxH 0;H (6;H)(0kH)
— } 9,0 J SR i/ S
+ (1+63H) 005 + (1 +83H) Os0% (1+83H)? 3
Proof of Theorem 2.1 'To show Theorem 2.1, we apply Proposition 4.1 with

—m(d 4N+ 203 o
(5.1) 61—m(2,q)+n(2,q)+8—q+8, e2=€3=1,
1 3 1
51=§a 52“2: a_o’ ﬂ_z’
where m, n are defined as (3.2) and
q ) 3 q 372 1
. 1q)== 22)=S(2-2
(5:2) ”(2’q 2’ "(2) 2((1 2

under the assumption (1.8). We then note as follows: First the assumption 3 < g < 16/5 implies
that €; > 1. Secondly, we see, by (1.8), that

3
(5.3) p > 32, p(1+a—z)=p(l+5—1)=§>l,

which furnishes that the conditions (4.2) and (4.3) hold. Thirdly, (1.8) and Sobolev’s embedding
theorem yields that

(5.4) 0w, V)| 1 (0,00),w, (m3)) < Millz]lx,
1w, VI Loy ((0,00), w3 (RS )) < Millzl|x,
(a, VH)| L (0,000, Wi (r2 )) < MillZ]|x
for z = (u, 6, h, H) € X5, and some positive constant M; independent of u, H, and z. Here §p is a

positive number determined later.

Step 1 Our aim in this step is to show the following estimates:

(55 I D, o, 0/aserass) + P20 Bl aan) < O izl
IGr(w, H)llg, ng, 3/a10m10%, < C@:Dll2l%,
IEa(, Bl o, a/a00m, < OOzl
VFaw, Bl sy < O NIl
G, ) lgngaa,mms < CP2 DIzl
IFatut, ), GOt ), gy i ey 4 sy S OO0 Dzl

for z = (u, 0, h, H) € X5, with some positive constant C(p,q). We only show the first line of (5.5)
in the following. See [14, Theorem 4.5.1] for the other estimates.
We first consider F1(u, H). By (5.4) it is clear that, for r € {q, 2},

(5.6) ll(w- V)ullL, 0,00, Lr &2 )) < Lo (0,000, Lo ®E NIV UL (0,00, L. (R2 ) < Millzll,



and besides, Sobolev’s embedding theorem and Holder’s inequality yield that
[(u(®) - V)u@)llp,ms ) < lu@)ll L, @) IVa@)lL,ms)
< C@u®)llwy ws)IVa®)llz,me)
< C(g)(t +2)~*3 ),
[(u(t) - VIu@®)liz, @2y < a@)llL,me)IVa@)lL,ms)
< (¢ +2)" @)%

for every t > 0 with some positive constant C(g). Then, noting p(2/q + 3/8 —3/4) > p/4 > 1 by
3 < ¢ < 16/5 and (5.3), we have

2 2
”(ll ' v)u”Lg/‘l((O,oo),Lq(Ra_)) < C(pv Q)”z”X? ”(ll ' V)u“Lgéq+3/8((0,oo),Lq/2(R?_)) < ”z“X
for a positive constant C(p, g), which, combined with (5.6), furnishes that
(5.7) I V)l o, asarass) < O a)lalz
Concerning 0;Hd3u, we use Sobolev’s inequality (cf. [2, Theorem 4.31]):
(5.8) Ifllgme) < Ml V£llL,mse)

with a positive constant My. By (5.8), Holder’s inequality, and Sobolev’s embedding theorem, we
have for every t > 0

(5.9) 0:H (t)O3u(t)l L re ) < N1O:H )l Lome) VUL, msy (1/6+1/r=1/q)
< Ma||VOH ()| L, ms) IVu@)lwime )
10:H (t)03u(t)|| L, m2 ) < IO:H ()] Lome) VUl me)
< M2\|V3tH(t)||L2(R3_)||Vu(t)||?,2(ns_)HVu(t)HZEIRs_),
10:H ($)0zu)l,,,m2 ) S NOH )l Loms ) IVu®)lL,ms) (1/6+1/s=2/q)
< M2HV3tH(t)”L2(R3_)HVu(t)”Iiz(Rg)||Vu(t)HZ€R3),

where we note that 0 < a,b < 1 and

1 1 1 1 a 1—a 1 b 1-b
10 ) == z_2 10,10
(5.10) 3(q T) 5<L z=35+ , +

By (5.4) and (5.9), we obtain

(5.11) 10:HO3ul| 1, ((0,00),L4(R2))
< M| VO H| 1. (0,00 La(r ) IV L 0,00y w2 my) < Moallzl,
10:HO3ul| 1, (0,00, Lo (R2))
< M| VOH | 1, ((0,00), Lo I VAN (0,000, a2 IV ((0.00) Lo(R2 ))
< My Mp||z|[%-
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In addition, it follows from (5.9) that, for every ¢t > 0,
18 H (£)85u(t) ||, ms ) S Ma(t +2) ™22 7122
x ((64+2) 0P8 gl + (4 2)72{ (¢ + 22 TPu(O)ll 1m0}
16 H (£)dsu(t)ll L, ) < Ma(t+ 2) /212 g

b 1-b
x ((t + 2)—n(q/2,2)—1/8“z||x) ((t + 2)—n(q/2,q)—1/8||z||x)
= M(t+2)" /g%,
because m(q/2,2) + 1/2 = 2/q and, by (5.2) and (5.10),

3b/2 1 3(1-b
”"(5’2)”1—1’)”(%&)=7(a‘§>+ (2q )
3 3% (1 1 2\ _3 3 6-q g—2 1
=2_q_7(§ E_E>____'—_' 4
Since, by (5.2), (5.3), and ¢ < 16/5 < 4,

p(m(32)+5+n (G +i-9)=r(5-5) > (5-5) -1

q 1 1 3 2
To)sbel 3.2
m(z tot371

we see that
190 H B5all /40,009,y (m2 )
< Mylla|x ([t + 2) (@22 H/2n@2DRB=SID| o | x
+[|(t + 2)~(m(@/22+1/241/2-3/4) ||L°o((o,oo))||V2UHL;/z
< C(p,9)lzll%,
18: HOgul| 2/a+3/s

((0,00),Lq (Ri)))

< 2
((0,00),Lg/2(R2)) = Moz,

which, combined with (5.11), furnishes that
18 H Bsullg, i, (3/4,2/043/8) < C P Dllzlx-
By (5.4), (5.7), and the last inequality, we have

F1(a, H)llg, 7, (3/4,2/¢+3/8)

<Clog 10 HO3ullg, 7, (3/4.2/q+3/8)
- ’ 1= IVH||L. ((0,00), Lo (R2))

+ [|(u- V)“||1rlnﬁ1(3/4,2/q+3/8)>

1
<C(p,q) (1—_60—1\71 + 1) llI1%-

In what follows, we suppose that dq satisfies the condition: dpM; < 1/2, and we complete the
required estimate of F;(u, H) in (5.5) by the last inequality.
Next we consider Fa(u, H). By (5.4) it is clear that, for r € {q,2} and j =1,2,3,

(5.12) |(BsusVH, AusVH, Fy;(H)u, (u- VH)83u)|| . r, 1.®2) < C@ 9lzlk



with some positive constant C(p, q). In addition, it follows from Holder’s inequality and Sobolev’s
embedding theorem that, for every ¢ > 0 and j =1,2,3,

(5.13) Ouus(t)VH ()l L, m3y < 10l e ) IVH () Lo (m2)
< C@Gu®)l Ly IVH Ol m2 )
< C(g)(t +2) ™23 { (t + 2) 2| Ou(t) ]| m2 )}
|Aus()VH®) |z, s ) < IVu@)lr,we IVH®) 1o m2)
< C(q)“v2u(t)“Lq(R3_)“VH(t)“qu(Ra_)
< C(g)(t +2) ™24 2| x { (¢ + 2| VPu() | g, ms) }
|55 (H &)l L, @2 )
< C(g) (HVU(t)”Lw(m_)||V2H(t)||Lq(R§) + ”vzu(t)“Lq(Ri)”VH(t)”Lm(Ri))
< C(q) (Hvu(t)||W;(Ra_)||‘72H(t)|‘Lq(Ri) + ”V2u(t)HLq(Ri)”VH(t)“qu(Ri)>
< C(g)(t+2) ™20z x ((t +2) @208 g
+ (t+27V2{(t + DYV |, ms)} )
[(u(t) - VH®)dsu(t)llL,@ms) < u®llL. @) IVH®O L&) lIVa®)llL,rs)
< C(@lu@llwz we)IVHOlwp we)IVu®)liz,ms )
< C(g)(t + 2)~™/20)—m(a/2,9)=1/4-n(a/2.0)=1/8)||4) %,
with a positive constant C(q). We thus obtain, for j =1, 2, 3,
(514) 0.3V Hll 3740 112
< C, It +2) ™D (0,000 21 x18eull 172 6,000, 1, R2 )y
< C(p,q)lzl%,

IAusVHl a4 (0,000, Lq(m2 )
sC@AM@+ZY““MQhwmmmmmﬂvﬂwﬁg@mﬂﬂRg)
< C(p, 9)llzl%,

1755 ()Wl 374 0000,
< C9ll=zllx (||(t +2)~(m@/2H /AR RORE3D) L0 ooyl x

- ( /2$ ) 2
+ ”(t + 2) ™a/eq ”Loo((o,oo))”V uIILIl,/Z((O,OO),Lq(Ri)))

< C(p,9)l=l%,

- VH)gull /s (g, 00) 1, (2 ))
< C(p,q)||(t + 2)—(m(q/2yq)+m(q/2,q)+1/4+n(q/2,q)+1/8—3/4)“L (© oo))||Z“§<
— b 4 ¥

< C(p,9)llzl%
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with some positive constant C(p, q), because, by (5.1), (5.3), and 3 < ¢ < 16/5,
g g 1.8 1.3
p(m (E’q) +m(2’q) tgtr (2"1) *3 4)

o n (3 Loy rh2) o 2D) o1
Analogously it holds that, for j = 1,2, 3,
(515 [(OwsVH, AusVH, Fyy(H)u, (- VH)O50) | 10,000 Ly acr2)) < OB Dl
by the following inequalities and relations: For every ¢t > 0 and j = 1, 2,3,
10eus(t)VH ()l L, ,(r3)
< C(g)(t +2) "™ W/2D=34 )| x { (¢ + 2)/2||Bru(t) |, (r2 ) }»
|Aus@®)VH ()L, ,R3)
< C(g)(t+2) ™20 3] x { (¢ + 22| V*u(t)l| ., m3) }
I F55 (H@)u)l L, ,r2)
< C(g)(t+2) @204z ((t +2) @201 5 x

+(t+2) 72+ 292V ) }),
I(u() - VH))dsu@)ll., ,r3)
< C(q)(t + 2)~™9/2.0)-m(a/2:9)=1/4-n(9/2:0)=1/8)| )3 |

which are obtained in the same manner as (5.13); m(g/2,9)+3/4—1=1/(2¢q) > 0; By (5.1), (5.3),
and 3 < ¢ < 16/5,

P(m(%,q)+m(g,q)+i+n(g,q)+%_1)

q 1 q 1 _ 2 3 P
>p(m(2,q)+4+n(2,q)+8 1)—-p<q 3 >4>1.
Thus, by (5.4), (5.12), (5.14), and (5.15), we obtain the required inequality of Fo(u, H) in (5.5).

Step 2 We set, for z = (u, 6, h, H) € X5,
f =F1(U,H), f2=F2(u7H)) gh:Gh(uvH)a
fd=Fd(u7H)) fd=Fd(uvH)7 g=G(u,H)

in (4.1), and we denote the solution of (4.1) with the initial data (uo, ko) by ®(z).
By (5.5) and Proposition 4.1, we have

I2(2)llx < M ((u0, ho)llnyxt, + llzll%) < M (€0 + 6F)

with some positive constant M. We here choose positive numbers &g, dp satisfying Mdy < 1/2 and
Meg < 8p/2, and then ® is a mapping from X5, to itself. We similarly have, for z1,22 € X5,

1
[|®(z1) — ®(z2)[[x < Mdollz1 — z2|lx < §HZ1 — Zo|x

by taking a smaller dg > 0 if necessary.



We thus see that @ is a contraction mapping on Xs,, so that ® has a unique fixed point z* =
(u*,6*,h*, H*) € X;5, by the contraction mapping theorem. The z* is a unique solution to (1.6)
and (1.3). This completes the proof of theorem.
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