Time periodic flows of an incompressible viscous fluid in perturbed channels

Teppei Kobayashi Department of Mathematics Meiji University

1 The time periodic Poiseuille flow

In this section, for a straight channel in \mathbb{R}^n (n = 2, 3), which is parallel to the x_1 -axis, let us consider a time periodic flow of an incompressible viscous fluid which is also parallel to the x_1 -axis.

In the case n=2, for a>0 we suppose $\Sigma:=(-a,a)$. In the case n=3, we suppose that Σ is a bounded smooth simply connected domain in \mathbb{R}^2 . We write

$$\omega = \mathbb{R} \times \Sigma$$

 Σ is a cross section of the channel ω .

In ω , we consider the nonstationary Navier-Stokes equations

$$\frac{\partial \boldsymbol{u}}{\partial t} - \nu \Delta \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla p = \boldsymbol{0} \quad \text{in} \quad \mathbb{R} \times \omega, \tag{1.1}$$

$$\operatorname{div} \mathbf{u} = 0 \quad \text{in} \quad \mathbb{R} \times \omega, \tag{1.2}$$

$$\mathbf{u} = \mathbf{0} \quad \text{on} \quad \mathbb{R} \times \partial \omega$$
 (1.3)

with the time periodic condition and the flux condition

$$\mathbf{u}(t) = \mathbf{u}(t+T) \quad \text{in} \quad \omega$$
 (1.4)

$$\int_{\Sigma} \boldsymbol{u}(t) \cdot \boldsymbol{n} dS = \alpha(t) \quad (t \in \mathbb{R}), \tag{1.5}$$

where $\boldsymbol{u} = \boldsymbol{u}(t,x)$ and p = p(t,x) are the unknown velocity and the unknown pressure of the fluid motion in ω , respectively, ν is the given viscosity constant, T(>0) is a given constant, \boldsymbol{n} is the unit parallel vector to the x_1 -axis and $\alpha(t)$ is a given T-periodic real function.

Since we look for a solution pallalel to the x_1 -axis, we may assume that

$$u(t, x) = (v(t, x), 0)$$
 $(n = 2),$
 $u(t, x) = (v(t, x), 0, 0)$ $(n = 3).$

²⁰¹⁰ Mathematics Subject Classification: 35Q30, 76D05.

Then it follows that v does not depend on x_1 from (1.2), $(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = \boldsymbol{0}$ and p depends only on t and x_1 from (1.1). Therefore we obtain the equation

$$\frac{\partial v}{\partial t} - \nu \Delta v = -\frac{\partial p}{\partial x_1} \quad \text{in} \quad \mathbb{R} \times \Sigma, \tag{1.6}$$

where $\Delta = \partial^2/\partial x_2^2$ (n=2), $\Delta = \partial^2/\partial x_2^2 + \partial^2/\partial x_3^2$ (n=3). It is easy to see that v does not depend on x_1 and p depends only on t and x_1 . Therefore it follows from the equation (1.6) that $\partial v/\partial t - \nu \Delta v$ and $\partial p/\partial x_1$ depends only on t. Integrating (1.6) on Σ , we obtain

$$p(t, x_1) = -\frac{1}{|\Sigma|} \left(\alpha'(t) - \nu \int_{\Sigma} \Delta v(t) dS \right),$$

where $|\Sigma|$ is the Lebesgue measure of Σ . Therefore there exists a time periodic solution \boldsymbol{u} of the Navier-Stokes equations (1.1)–(1.5) in ω , with the form $\boldsymbol{u}=(v,0)$ or $\boldsymbol{u}=(v,0,0)$, if and only if v is a solution of the problem

$$v' + \nu A v - \frac{\nu}{|\Sigma|} (A v, e) e = \frac{\alpha'}{|\Sigma|} e$$
 (1.7)

with the time periodic condition and the flux condition

$$v(t) = v(t+T) \quad (t \in \mathbb{R}), \tag{1.8}$$

$$(v(t), e) = \alpha(t) \qquad (t \in \mathbb{R}), \tag{1.9}$$

where e(y) = 1 $(y \in \Sigma)$, $A = -\Delta$ with the domain $D(A) = H^2(\Sigma) \cap H_0^1(\Sigma)$, $(v, e) = \int_{\Sigma} vedS$.

Before stating the time periodic result, we introduce the function space. Let X be a Banach space. We set

$$H^1_{\pi}(\mathbb{R}) = \{ \varphi \in H^1_{\text{loc}}(\mathbb{R}); \varphi(t) = \varphi(t+T) \text{ a.e. } t \in \mathbb{R} \},$$

$$L^2_{\pi}(\mathbb{R}; X) = \{ \varphi \in L^2_{\text{loc}}(\mathbb{R}; X); \varphi(t) = \varphi(t+T) \text{ in } X \text{ for a.e. } t \in \mathbb{R} \},$$

$$C_{\pi}(\mathbb{R}; X) = \{ \varphi \in C(\mathbb{R}; X); \varphi(t) = \varphi(t+T) \text{ in } X \text{ for } t \in \mathbb{R} \}.$$

Beirão da Veiga [4] proved that for $n \geq 2$ if a flux $\alpha \in H^1_{\pi}(\mathbb{R})$ is given, then there exists a unique time periodic solution v^{α} of this problem (1.7)–(1.9) satisfying

$$v^{\alpha} \in L^{2}_{\pi}(\mathbb{R}; H^{1}_{0}(\Sigma) \cap H^{2}(\Sigma)) \cap C_{\pi}(\mathbb{R}; H^{1}_{0}(\Sigma)),$$
$$(v^{\alpha})' \in L^{2}_{\pi}(\mathbb{R}; L^{2}(\Sigma)).$$

Set

$$V^{\alpha}(t,x) = (v^{\alpha}(t,x),0)$$
 $(n = 2),$
 $V^{\alpha}(t,x) = (v^{\alpha}(t,x),0,0)$ $(n = 3).$

Let us call V^{α} "the time periodic Poiseuille flow".

2 Problem in a perturbed channel

Let Ω be a smooth and unbounded domain in \mathbb{R}^n (n=2,3) and $\partial\Omega$ be the boundary of the domain Ω . A domain Ω is called a perturbed channel if Ω satisfies

$$\Omega \backslash B(0,R) = \omega \backslash B(0,R) (=: \omega_0),$$

where $B(0,R) = \{x \in \mathbb{R}^n; |x| < R\}$. ω_0 is a perturbed and bounded part, ω_L is channel parts. The boundary $\partial\Omega$ of Ω has connected components $\Gamma_0, \Gamma_1, \ldots, \Gamma_J$ of C^{∞} -surface such that $\Gamma_1, \ldots, \Gamma_J$ lie inside of Γ_0 with $\Gamma_i \cap \Gamma_j = \emptyset$ for $i \neq j$, and such that $\partial \Omega = \bigcup_{j=0}^J \Gamma_j$. Let us call the domain Ω "a perturbed channel".

In the domain Ω , we consider the nonstationary Navier-Stokes equations

$$\frac{\partial \boldsymbol{u}}{\partial t} - \nu \Delta \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \nabla p = \boldsymbol{f} \quad \text{in} \quad (0, T) \times \Omega,$$
(2.1)

$$\operatorname{div} \mathbf{u} = 0 \quad \text{in} \quad (0, T) \times \Omega \tag{2.2}$$

with the boundary condition

$$\mathbf{u} = \boldsymbol{\beta}$$
 on $(0, T) \times \partial \Omega$, (2.3)
 $\mathbf{u} \to \mathbf{V}^{\alpha}$ as $|x| \to \infty$ in ω_L

$$\mathbf{u} \to \mathbf{V}^{\alpha} \quad \text{as} \quad |x| \to \infty \quad \text{in} \quad \omega_L$$
 (2.4)

and the time periodic condition

$$\boldsymbol{u}(0) = \boldsymbol{u}(T) \quad \text{in} \quad \Omega, \tag{2.5}$$

where $\mathbf{u} = \mathbf{u}(t,x)$ and p = p(t,x) are the unknown velocity and the unknown pressure of an incompressible viscous fluid in Ω respectively, while $\nu > 0$ is the kinematic viscosity, $\mathbf{f} = \mathbf{f}(t, x)$ is the given external force and $\boldsymbol{\beta} = \boldsymbol{\beta}(t, x)$ is the given function on $(0, T) \times \partial \Omega$ with compact support. Since the solution u(t) satisfies div u(t) = 0 in Ω for a fixed $t \in (0,T)$, the given boundary data $\beta(t)$ on $\partial\Omega$ is required to fulfill the compatibility condition which is called "General Outflow Condition" (GOC)

$$\int_{\partial\Omega} \boldsymbol{\beta}(t) \cdot \boldsymbol{n} d\sigma = 0, \tag{2.6}$$

where n is the unit outer normal to $\partial\Omega$. The purpose is that if the given boundary date β satisfies (GOC), we will seek a solution of (2.1)-(2.5).

We introduce some function spaces. $\mathbb{C}^{\infty}_{0,\sigma}(\Omega)$ is the set of all real smooth vector functions with compact support in Ω and div $\varphi = 0$. $\mathbb{L}^2_{\sigma}(\Omega)$ is the closure of $\mathbb{C}^{\infty}_{0,\sigma}(\Omega)$ for the usual $\mathbb{L}^2(\Omega)$ norm. The \mathbb{L}^2 inner product and norm on Ω are denoted as $(\cdot,\cdot)_{\Omega}$ and $\|\cdot\|_{2,\Omega}$ respectively. $\mathbb{H}^1_0(\Omega)$ and $\mathbb{H}^1_{0,\sigma}(\Omega)$ are the closures of $\mathbb{C}^\infty_0(\Omega)$ and $\mathbb{C}^\infty_{0,\sigma}(\Omega)$ for the usual Dirichlet norm $\|\nabla\cdot\|_{2,\Omega}$, respectively. $\mathbb{H}^1_{\sigma}(\Omega)$ is the set of all $\mathbb{H}^1(\Omega)$ functions with $\operatorname{div} \varphi = 0$. Let X be a Banach space. $C_{\pi}([0,T];X)$ and $H^{1}_{\pi}((0,T);X)$ are the set of all the C([0,T];X) and $H^1((0,T);X)$ functions satisfying the time periodic condition $\boldsymbol{u}(0) = \boldsymbol{u}(T) \text{ in } X.$

3 Result

Our definition of a time periodic weak solution of the Navier-Stokes equations (2.1), (2.2), (2.3), (2.4), (2.5) is as follows.

Definition 3.1 A measurable function $\mathbf{u} = \mathbf{u}(t, x)$ on $(0, T) \times \Omega$ is called a time periodic weak solution of the Navier-Stokes equations (2.1), (2.2), (2.3), (2.4), (2.5) if \mathbf{u} satisfies the following condition.

(1) $\mathbf{v} := \mathbf{u} - \hat{\mathbf{V}}^{\alpha} - \mathbf{b} \in L^2((0,T); \mathbb{H}^1_{0,\sigma}(\Omega)) \cap L^{\infty}((0,T); \mathbb{L}^2_{\sigma}(\Omega)).$

(2)
$$\boldsymbol{u}$$
 satisfies $\frac{d}{dt}(\boldsymbol{u},\boldsymbol{\varphi}) + \nu(\nabla \boldsymbol{u},\nabla \boldsymbol{\varphi}) + ((\boldsymbol{u}\cdot\nabla)\boldsymbol{u},\boldsymbol{\varphi}) = \underset{(\mathbb{H}^1_{0,\sigma})'}{\mathbb{H}^1_{0,\sigma}} \quad (\boldsymbol{\varphi}\in\mathbb{H}^1_{0,\sigma}(\Omega)).$

(3) $\mathbf{v}(0) = \mathbf{v}(T) \in \mathbb{L}^2(\Omega),$

where the function $\hat{m{V}}^{\dot{\alpha}}$ and $m{b}$ are to be such that

$$\begin{aligned} \operatorname{div} \hat{\boldsymbol{V}}^{\alpha} &= 0 & \text{in} & \Omega \\ \hat{\boldsymbol{V}}^{\alpha} &= \mathbf{0} & \text{on} & \partial \Omega, \\ \hat{\boldsymbol{V}}^{\alpha} &= \boldsymbol{V}^{\alpha} & \text{in} & \omega_{L}, \end{aligned}$$

and

$$\mathbf{div}\,\boldsymbol{b} = 0 \qquad \text{in} \quad \Omega,$$
$$\boldsymbol{b} = \boldsymbol{\beta} \qquad \text{on} \quad \partial\Omega.$$

 V^{α} is "the extended time periodic Poiseuille flow" and **b** is "the boundary extension".

Before stating our result, we define a constant concerning the time periodic Poiseuille flow.

Definition 3.2 We set

$$\gamma^{\alpha}(t) = \sup_{\varphi \in \mathbb{H}^{1}_{0,\sigma}(\omega)} \frac{((\varphi \cdot \nabla)\varphi, \boldsymbol{V}^{\alpha}(t))_{\omega}}{\|\nabla \varphi\|_{2,\omega}^{2}} \quad (t \in [0, T]), \tag{3.1}$$

$$\hat{\gamma}^{\alpha} := \sup_{t \in [0,T]} \gamma^{\alpha}(t). \tag{3.2}$$

We have the following result.

Theorem 3.1 (T. Kobayashi/13])

Suppose that $\hat{\gamma}^{\alpha} < \nu$, $\mathbf{f} \in L^2((0,T); (\mathbb{H}^1_{0,\sigma}(\Omega))')$ and $\mathbf{\beta} = \mathbf{0}$. Then there exists a time periodic weak solution.

This result is not the problem of (GOC) because $\beta = 0$. We need the following assumption.

Assumption 3.1 Ω is a two dimensional symmetric domain with respect to the x_1 -axis and all the inner boundaries $\Gamma_j (1 \le j \le J)$ intersect the x_1 -axis.

Theorem 3.2 (T. Kobayashi/14))

We assume that the domain Ω satisfies Assumption 3.1. We suppose that $\hat{\gamma}^{\alpha} < \nu$, $\mathbf{f} \in L^2((0,T); (\mathbb{H}^1_{0,\sigma}(\Omega))'), \, \mathbf{\beta} \in H^1_{\pi}((0,T); \mathbb{H}^{\frac{1}{2},S}(\partial\Omega))$ with compact support, (GOC) and

$$\int_{\Gamma_0^+} \boldsymbol{\beta} \cdot \boldsymbol{n} d\sigma = \int_{\Gamma_0^-} \boldsymbol{\beta} \cdot \boldsymbol{n} d\sigma = 0 \quad \text{on} \quad [0, T].$$

Then there exists a time periodic weak solution of the Navier-Stokes equations.

We need an appropriate extension of the given boundary data β .

Proposition 3.1 We assume that a domain Ω satisfies Assumption 3.1. Suppose that $\beta \in H^1_{\pi}((0,T); \mathbb{H}^{\frac{1}{2},S}(\partial\Omega))$ satisfies (GOC), the support of β is compact and

$$\int_{\Gamma_0^+} \boldsymbol{\beta} \cdot \boldsymbol{n} d\sigma = \int_{\Gamma_0^-} \boldsymbol{\beta} \cdot \boldsymbol{n} d\sigma = 0 \quad \text{on} \quad [0, T].$$

Then for any $\varepsilon > 0$ there exists an extension $\mathbf{b}_{\varepsilon} \in H^1_{\pi}((0,T); \mathbb{H}^{1,S}_{\sigma}(\Omega))$ of $\boldsymbol{\beta}$ such that \mathbf{b}_{ε} has compact support and the inequality

$$|((\boldsymbol{v}\cdot\nabla)\boldsymbol{v},\boldsymbol{b}_{\varepsilon}(t))| < \varepsilon ||\nabla \boldsymbol{v}||_{2,\Omega}^{2} \quad (\boldsymbol{v}\in\mathbb{H}_{0,\sigma}^{1,S}(\Omega),t\in[0,T])$$
(3.3)

holds true.

The estimate (3.3) is "Leray's inequality". The estimate (3.3) is its symmetric version in an unbounded perturbed channel.

Remark 3.1 In this paper, the domain Ω has two outlets. We can solve K ($K \geq 3$) outlets problem. We consider a straight channel ω_i ($i=1,\cdots,K$), where Σ_i is a cross section of ω_i as Section 1 and the center line of ω_i may not be parallel to the x_1 -axis. We assume that a given flux function $\alpha_i \in H^1_{\pi}(\mathbb{R})$ ($i=1,\cdots,K$) satisfies $\sum_{i=1}^K \alpha_i(t) = 0$ ($t \in \mathbb{R}$). For each α_i , we have the time periodic Poiseuille flow \mathbf{V}_i^{α} in ω_i . We assume that Ω has K outlets ω_{0i} ($i=1,\cdots,K$) where ω_{0i} is a semi-infinite channel with the cross section Σ_i . In the domain Ω , we consider a time periodic problem with the time periodic Poiseuille flow \mathbf{V}_i^{α} . We define constant $\hat{\gamma} = \max_{1 \leq i \leq K} \{\hat{\gamma}_i^{\alpha}\}$ as Definition 3.2. Suppose that $\hat{\gamma} < \nu$. Then there exists a time periodic weak solution in Ω with K outlets.

References

- [1] C. J. Amick, Steady solutions of the Navier-Stokes equations in unbounded channels and pipes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), 473–513.
- [2] C. J. Amick, Properties of steady Navier-Stokes solutions for certain unbounded channels and pipes, Nonlinear Anal. 2 (1978), 689–720.
- [3] C. J. Amick, Existence of solutions to the nonhomogeneous steady Navier-Stokes equations, Indiana Univ. Math. Journal 33, 817-830 (1984)
- [4] H. Beirão da Veiga, Time-periodic solutions of the Navier-Stokes equations in unbounded cylindrical domains—Leray's problem for periodics flows, Arch. Ration. Mech. Anal. 178 (2005), 301–325.
- [5] H. Fujita, On stationary solutions to Navier-Stokes equation in symmetric plane domains under general outflow condition, Proceedings of International Conference on Navier-Stokes Equations, Theory and Numerical Methods, June 1997, Varenna Italy, Pitman Research Note in Mathmaticas, 388, pp.16-30
- [6] G. P. Galdi and A. M. Robertson, The relation between flow rate and axial pressure gradient for time-periodic Poiseuille Flow in a pipe, Mech. 7 (2005), suppl. 2, S215-S223.

- [7] D. D. Joseph and S. Carmi, Stability of Poiseuille flow in pipes, Annuli, and Channels, Quart. Appl. Math. 26 (1969), 575–599.
- [8] S. Kaniel and M. Shinbrot, A reproductive property of the Navier-Stokes equations, Arch. Rational Mech. Anal. 24 (1967), 363–369.
- [9] T. Kobayashi, Takeshita's examples for Leray's inequality, Hokkaido Math. J. Vol.42, No.1 (2013), pp113-120
- [10] T. Kobayashi, Time periodic solutions of the Navier-Stokes equations under general outflow condition, Tokyo J. Math. 32 (2009), no. 2, 409–424.
- [11] T. Kobayashi, The relation between stationary and periodic solutions of the Navier-Stokes equations in two or three dimensional channels, J. Math. Kyoto Univ. 49 (2009), no. 2, 307–323.
- [12] T. Kobayashi, Time periodic solutions of the Navier-Stokes equations under general outflow condition in a two dimensional symmetric channel, Hokkaido Math. J. 39 (2010), no. 3, 291–316.
- [13] T. Kobayashi, Time periodic solutions of the Navier-Stokes equations with the time periodic Poiseuille velocity in a two and three dimensional perturbed symmetric channels, Tôhoku Math. J., vol. 66 (2014), no.1, pp. 119-135
- [14] T. Kobayashi, Time periodic solutions of the Navier-Stokes equations with the time periodic Poiseuille velocity in a two and three dimensional perturbed symmetric channels, Journal of the Mathematical Society of Japan, to appears
- [15] K. Masuda, Weak solutions of Navier-Stokes equations, Tôhoku Math. J. 36 (1984), 623–646.
- [16] H. Morimoto and H. Fujita, A remark on the existence of steady Navier-Stokes flow in 2D semi-infinite channel involving the general outflow condition, Math. Bohem. 126 (2001), no. 2, 457–468.
- [17] H. Morimoto, Stationary Navier-Stokes flow in 2-D channels involving the general outflow condition, Handbook of differential equations, stationary partial differential equations. Vol. IV, 299–353, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2007.
- [18] A. Takeshita, A remark on Leray's Inequality, Pacific Journal of Mathmatics, Vol. 157, NO.1, (1993), 151-158
- [19] A. Takeshita, On the reproductive property of the 2-dimensional Navier-Stokes equations, J. Fac. Sci. Univ. Tokyo Sec. IA 16 (1970), 297–311.
- [20] K. Pileckas, On nonstationary two-dimensional Leray's problem for Poiseuille flow, Adv. Math. Sci. Appl. 16 (2006), no. 1, 141–174.
- [21] V. I. Yudovič, Soviet Math. Dokl. 1 (1960), 168–172.