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Time periodic flows of an incompressible viscous fluid
in perturbed channels
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1 The time periodic Poiseuille flow

In this section, for a straight channel in R™(n = 2, 3), which is parallel to the z;-axis, let
us consider a time periodic low of an incompressible viscous fluid which is also parallel
to the x;-axis.

In the case n = 2, for a > 0 we suppose ¥ := (—a,a). In the case n = 3, we suppose
that ¥ is a bounded smooth simply connected domain in R?. We write

w=Rx X.

3 is a cross section of the channel w.
In w, we consider the nonstationary Navier-Stokes equations

%;——uAu+(u~V)u+Vp=0 in R xuw, (1.1)
diveu=0 in RXxuw, (1.2)
u=0 on R XxOJw (1.3)

with the time periodic condition and the flux condition
u(t) =u(t+7T) in w (1.4)
/ u(t)-ndS = alt) (t€R), (1.5)
b

where u = u(t,z) and p = p(t, x) are the unknown velocity and the unknown pressure
of the fluid motion in w, respectively, v is the given viscosity constant, T'(> 0) is a given
. constant, n is the unit parallel vector to the z;-axis and «(t) is a given T-periodic real
function.
Since we look for a solution pallalel to the x;-axis, we may assume that

u(t,z) = (v(t,z),0) (n=2),
u(t,z) = (v(t,z),0,0) (n=3).
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Then it follows that v does not depend on z; from (1.2), (u - V)u = 0 and p depends
only on t and z; from (1.1). Therefore we obtain the equation

ov op .

— —vAv - RxX 1.6

ot Ty T (16)
where A = 9%2/0z3 (n = 2), A = §?/923 + 8%/0z3 (n = 3). It is easy to see that v does
not depend on z; and p depends only on ¢ and z,. Therefore it follows from the equation
(1.6) that dv/dt — vAv and dp/Odz, depends only on t. Integrating (1.6) on £, we obtain

p(t,z,) = <EI< /Av dS)

where |X| is the Lebesgue measure of ¥. Therefore there exists a time periodic solution u
of the Navier-Stokes equations (1.1)—(1.5) in w, with the form « = (v,0) or u = (v, 0,0),
if and only if v is a solution of the problem

!

a
v+ vAv — E(Av ,e)e = ﬁe (1.7)

with the time periodic condition and the flux condition

v(t) =v(t+T) (teR), (1.8)
(v(t),€) = a(t) (t €R), (1.9)
where e(y) =1 (y € £), A = —A with the domain D(A) = H%(Z) N HX(Z), (v,e) =

[5 vedS.
Before stating the time periodic result, we introduce the function space. Let X be a
Banach space. We set
H}XR) = {p e H.L (R);p(t) = o(t + T) a.e. t € R},
L2(R; X) ={pe L .(R; X);po(t) = p(t+T) in X for ae. t € R},
Cx(R; X) ={p e C(R; X); 9(t) = (t+T) in X for t € R}.

Beirdo da Veiga [4] proved that for n > 2 if a flux a € HX(R) is given, then there exists
a unique time periodic solution v* of this problem (1.7)—(1.9) satisfying

v* € LA(R; H(Z) N HA(Z)) N C.(R; HL(T)),
(v™)' € LE(R; L*(%)).

Set

Let us call V* “the time periodic Poiseuille flow”.



2 Problem in a perturbed channel

Let €2 be a smooth and unbounded domain in R™ (n = 2,3) and 90f2 be the boundary of
the domain 2. A domain {2 is called a perturbed channel if  satisfies

O\B(0, R) = w\B(0, R)(=: wp),

where B(0, R) = {z € R"; |z| < R}. wy is a perturbed and bounded part, wy, is channel
parts. The boundary 0f2 of €2 has connected components I'y, I';, ..., [y of C*°-surface
such that I'y, ..., I'y lie inside of I'g with I';NI'; = @ for i # j, and such that 0Q = Uj:o r;.
Let us call the domain Q “a perturbed channel”.

In the domain €2, we consider the nonstationary Navier-Stokes equations

du vAu+ (u-Viu+Vp=Ff in (0,7) x Q, (2.1)

ot
divu=0 in (0,7)x (2.2)
with the boundary condition

u=0B on (0,7) x990,

u—V?® as |z|— 00 in wp
and the time periodic condition
u(0) =u(T) in Q, (2.5)

where u = u(t, x) and p = p(t, x) are the unknown velocity and the unknown pressure of
an incompressible viscous fluid in €2 respectively, while v > 0 is the kinematic viscosity,
f = f(t,z) is the given external force and 3 = B(¢, z) is the given function on (0,7) x 9Q
with compact support. Since the solution wu(t) satisfies divu(t) = 0 in Q for a fixed
t € (0,7), the given boundary data B3(t) on 9 is required to fulfill the compatibility
condition which is called “General Outflow Condition” (GOC)

- B(t) -ndo =0, (2.6)
59
where n is the unit outer normal to 0€2. The purpose is that if the given boundary date
3 satisfies (GOC), we will seek a solution of (2.1)-(2.5).

We introduce some function spaces. C§%, () is the set of all real smooth vector func-
tions with compact support in Q and dive = 0. L2(Q) is the closure of C&, () for
the usual L?(Q2) norm. The L2 inner product and norm on {2 are denoted as (-,)q and
| - l2, respectively. HG(Q2) and Hj ,(Q) are the closures of C3°(Q2) and C{,(Q) for the
usual Dirichlet norm ||V - ||2,0, respectively. H2 () is the set of all H*(Q2) functions with
dive = 0. Let X be a Banach space. C([0,T];X) and HL((0,7); X) are the set of
all the C([0,T]; X) and H'((0,T); X) functions satisfying the time periodic condition
u(0) =u(T) in X.

3 Result

Our definition of a time periodic weak solution of the Navier-Stokes equations (2.1), (2.2),
(2.3), (2.4), (2.5) is as follows.
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Definition 3.1 A measurable function u = u(t, z) on (0,T) x Q is called a time periodic
weak solution of the Navier-Stokes equations (2.1), (2.2), (2.3), (2.4), (2.5) if u satisfies
the following condition.

(1) v:=u— V" —be L¥(0,T); H},(Q)) N L=((0, T); L2(2)).

(2) w satisfies = (u, ) + ¥V, V) + (- V), 0) = g (Fhmy, (30 € Ho(50).
(3) v(0) = v(T) € L2(Q),

where the function V® and b are to be such that

divV =0 in Q

V =0 on 09,
Va =V% in wy,,
and

divb=0 in @,
b=B8 on Q.

V< is “the extended time periodic Poiseuille flow” and b is “the boundary extension”.

Before stating our result, we define a constant concerning the time periodic Poiseuille
flow.

Definition 3.2 We set
((‘P : V)‘P’ Va(t))w

v*(t) = sup t €[0,7)), 3.1
) peH} (W) Vel (telo.T] (3-2)
¥* = sup ¥*(t). (3.2)

t€(0,T

We have the following result.

Theorem 3.1 (T. Kobayashi[13])
Suppose that ¥* < v, f € L*((0,T); (Hj,(Q))") and B = 0. Then there exists a time
periodic weak solution.

This result is not the problem of (GOC) because 3 = 0. We need the following assump-
tion.

Assumption 3.1 Q2 is a two dimensional symmetric domain with respect to the x;-azxis
and all the inner boundaries T';(1 < j < J) intersect the z1-azis.

Theorem 3.2 (T. Kobayashi[14])
We assume that the domain Q) satisfies Assumption 3.1. We suppose that 4> < v,
f € L*((0,T); (H; ,(2))), B € HX((O, T); Hz5(8%)) with compact support, (GOC) and

B-ndo=| B-ndo=0 on [0,T]
r$ Ty
0 0

Then there exists a time periodic weak solution of the Navier-Stokes equations.



We need an appropriate extension of the given boundary data 3.

Proposition 3.1 We assume that a domain 2 satisfies Assumption 3.1. Suppose that
[CRS H;((O,T);]HI%’S(GQ)) satisfies (GOC), the support of B is compact and

B-nda:/ B-ndo=0 on [0,T].
Ty Iy

Then for any € > 0 there exists an extension b, € H:((0,T); H25(Q)) of B such that
b. has compact support and the inequality

(v V)v,b.(t)| < €| Vol (v eHg(Q),t€[0,T)) (3.3)
holds true.

The estimate (3.3) is “Leray’s inequality”. The estimate (3.3) is its symmetric version in
an unbounded perturbed channel.

Remark 3.1 In this paper, the domain Q0 has two outlets. We can solve K (K > 3)
outlets problem. We consider a straight channel w; (i = 1,--- | K), where ¥; is a cross
section of w; as Section 1 and the center line of w; may not be parallel to the x,-axis. We
assume that a gwen flux function o; € HX(R) (i = 1,--- , K) satisfies Zf__l a;(t)=0(t €
R). For each o;, we have the time periodic Poiseuille flow V' in w;. We assume that
Q has K outlets wy; (1 = 1,--- , K) where wy; is a semi-infinite channel with the cross
section ;. In the domain ), we consider a time periodic problem with the time periodic
Poiseuille flow. V. We define constant ¥ = maxi<;<x{%"} as Definition 3.2. Suppose
that 4 < v. Then there exists a time periodic weak solution in @ with K outlets.
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