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Hadamard variational formula for the Stokes equations
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Introduction.

Let Q@ C R*(n > 2) be a bounded domain with the smooth boundary 8. We consider the
eigenvalue problem for the Stokes equations on {2 with the Dirichlet boundary condition.

—~AV +VP =)V inQQ,
divV =0 in ©,
V=0 on 01,

where A is the eigenvalue of the Stokes equations, while V = V(z) = (V(z),--- ,V"(z))
and P = P(z) denote the corresponding eigenfunctions for the velocity and the pressure
at z = (z!,---,z") € Q, respectively. The purpose of this paper is to construct the
Hadamard variational formula for the multiple eigenvalue of the Stokes equations with
the Dirichlet boundary condition. For a small real parameter £, we regard €2, as the
smoothly perturbed domain from Q = €. We consider the eigenvalue problem for the
Stokes equations on (2. under the general smooth perturbation. For the eigenvalue A(¢)
of the Stokes equations on €, the eigenfunctions {V;, P.} satisfies

—AV,+ VP, = X)V. in Q,,
(0.1) divV, =0 in Q,
V:=0 on 0.

The spectral set of the Stokes operator in smoothly bounded domains consists of a de-
screte sequence of positive numbers (see, e.g., Courant-Hilbert [1], Ladyzhenskaya [12]
and Temam [16]). If we arrange them in increasing order with counting multiplicity, we
have

A(e) < Aze) < A3(e) <--- < Aje) £ -+ = o0,

and the j-th eigenvalue of (0.1) is denoted by A;(¢). Our aim is to establish the representa-
tion formula for the first variation of the eigenvalue A(g) with respect to €. More precisely,



abbreviating \;(0) = A, we investigate the asymptotic behavior of the convergence

(0.2) lin?) Ae(€) = Ax (continuous dependence on domain)
E—

and prove the representation formula for §y := lim. o7 (A\x(¢) — Ax). Furthermore, we
deal with not only a simple eigenvalue but also a general multiple eigenvalue.

The Hadamard variational formula for the first eigenvalue of the Laplace operator with
the Dirichlet boundary condition was first introduced by Hadamard [6]. For a smooth
function p on 0Q, we indicate Q. by the perturbed domain such that the boundary
0 = {x + ep(z)v, ; z € 8N}, where v, is the unit outer normal vector to Q and he
gave the representation formula as

== [ (o <x>)2p<x> o,

where u is the eigenfunction corresponding to the first eigenvalue \; of the Laplace op-
erator with |lu||z2(q) = 1, and then Garabedian-Schiffer [3] gave the rigorous proof for
that. Moreover, Ozawa [14] established the formula for multiple eigenvalues by investi-
gating the formula for the trace of the fundamental solutions of the heat equation with the
Dirichlet boundary condition. Such a perturbation problem for the usual Laplace opera-
tor had been analyzed for the another boundary condition or for a non-smooth domains
(cf. Ozawa [15], Grinfeld [4], [5], Kozlov [9], Kozlov-Nazarov [10]). On the other hand,
in the case of the Stokes equations, there are few results on the variation of eigenvalues
with multiplicity for the perturbed domain.

For the case of the Stokes equations, the difficulty occurs in treating the divergence
free condition. In the previous works for the Green function of the Stokes equations [11],
[17], [18], the Stokes equations (0.1) was transformed by the volume preserving diffeomor-
phism ®. : © — Q. as in Inoue-Wakimoto [7]. Here, we succeed to get rid of such a
restriction by making use of the piola transform (cf. Marsden-Hughes [13]).

For this paper, the essential problem is to investigate e-dependence of the eigenvalue
A(e) and the corresponding eigenfunction u.. The method of Garabedian-Schiffer [3] is to
expand the eigenfunction u. by the Fredholm theory. They made use of the analyticity of
the Green function G, with respect to the parameter €, whose method essentially depends
on the simplicity of the first eigenvalue for the Laplace equations. On the other hand, for
the case of the Stokes equations, since the simplicity of the first eigenvalue is still an open
problem, we need to study the variational formula not only for the simple eigenvalue but
also for the multiple ones. For that purpose, we analyze an e-dependence of the multiple
eigenvalues of the Stokes equations by means of the Min-Max principle. Approximating
the eigenfunction ux(e) analytically with respect to the parameter €, we are able to obtain
an detailed e-dependence of the eigenvalue A;(¢) even though ), is a multiple eigenvalue.

The paper is organized as follows. In Section 1, we introduce the assumption for the
diffeomorphism ®,, and then state our main result. Section 2 is devoted to the analysis of
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asymptotic behavior as € — 0 of the eigenvalue A(¢) and the corresponding eigenfunction
{V., P.}. For that purpose, we introduce the min-max principle for the Stokes equations.
We finally construct representation formula for the eigenvalue A() in Section 3.

1 Results.

To state our result, we first introduce an assumption on the perturbation Q. of domains
from 2.

Assumption. For a real parameter ¢, there is a diffeomorphism &, : O — Q. satisfy-
ing the following conditions.

(A1) @ =( ) ga 87 € Coo(ﬁ)n'
(A2) ®y(z) =z forallz €.

(A.3) There exists S = (51, 52,---,5") € C®(Q)" such that K (z;¢) := ®.(x) —z—S(z)e
satisfies
sup |K (z;€)| +sup [VK(z;¢)| = O(e®) ase — 0.
zefl zef

We next introduce some function spaces. The space L2(f2) is the closure of Cg2, ()
with respect to the L?-norm || - ||z, and the space Hj,(Q) is the closure of Cg2 () with
respect to the H'-norm | - || g1, i.e., [|¢l|m1 = [[V@|l2. Here, the space Cg2,(€2) denotes the
set of all C* divergence free vector fields with compact support in Q.

Let A;(g) < Ao(e) < --- be the set of eigenvalues of (0.1) counting the multiplicity. For
any natural number k € N, let {\¢(¢)}%2, be the set of the eigenvalues of (0.1) arranged
in the increasing order, and let {V., P.x}%2, be the corresponding eigenfunctions for
the velocity and the pressure, respectively, which is the complete orthogonal system in
L%(9.). Note that

1 (k=1),
(1.1) (Ver, Vey) = 6(k, 1) = {O El 2 l)), (Kronecker delta).
Moreover, for every k € N, we abbreviate
(1.2) A =X(0), Vi=Vor, Peo= Py,

and the multiplicity of the eigenvalue Ay is denoted by ng, i.e., ny = dim N(Xx), where
N(Ax) is the eigenspace corresponding to Ax. Without loss of generality, we may assume
that

(1.3) s S A1 <Ak = Mg = Ak = 0 = Apgmg—1 < Mgy, S0
We study the perturbation of the eigenvalues A, (k <! < k+ng —1).

Now we can state our result.



Theorem 1.1. Let A\y(e) < Ay(e) < ... be the eigenvalues of (0.1) counting the multi-
plicity. Then the following limit value

lig M) =X

o c (2= 5)\1)

ezists for every k <1 < k +ny, — 1, and agrees in increasing order to the eigenvalues of
the real symmetric matriz

[ 5k
o, ayx
Here {V}H"’“ ~! is a corresponding orthonormal system of the eigenspace of A\r,. The unit

outer normal vector to OS2 at x € OS) is denoted by v, = (v}, -+ ,12), and o is the surface
element of 0. In particular, if M\ is a simple eigenvalue, then it holds that

6N, = —/mé (g‘y/f (u’v))2 (5(z) - vo) do.

Remark 1.1. The case of € 1 0 can be handled in the same way. However, the limit value
e (M) = N) fore 10 and e | 0 may not coincide.

(z) vg) dcrx)

k<l1,l2<k+ni—1

Remark 1.2. The monotonicity of the eigenvalue for the domain perturbation follows,
i.e., we have that if S(z) - v, > 0 for all x € O, then it holds that 6\, < 0.

2 0-th Order approximation of the eigenvalue.

In this section, we consider the continuity of the eigenvalue A (¢) with respect to . Indeed,
it holds that;

Lemma 2.1. Let \(c) be the k-th eigenvalue of the Stokes equations (0.1) in Q.. Then
it holds that

(2.1) limAy(e) =X k€N,
e—=0
Remark 2.1. We take a limit of the left hand side of (2.1) as € — 0 both from below and
above.
The following Min-Max principle plays an important role to prove Lemma 2.1.

Proposition 2.1. For any natural number k € N, let Ay(¢) be the k-th eigenvalue of the
Stokes equations (0.1) in Q.. For each k € N,

Ae(e) = sup (inf{R.(u) ; u € Hy (), u#0, uec X},
dim X <k—1, XCL2(Q) ’
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where X+ := {u € L2() ; (¥,u)2(0,) =0, ¥ € X} and the functional R, is defined

(/ Zzw |2d:c) (/E;Wde)

5:] 1

with

i 1 /0u Ow .
eJ(u):=§(8mj+8xi)’ hwj=1,---,n.

Remark 2.2. The functional R, is well known as the Rayleigh quotient. (cf. Evans [2])

We next introduce the several useful identities about the expansion of the diffeomor-
phism &, in Assumption with respect to €.

Proposition 2.2. Let ®, be as in Assumption. Suppose that {ac;}ij=1.. n and {a¥}; jo1. n
are defined by

o = Z Oz' Oz’ . 07! 07

2.2 €4f +— i ert)
(22) 08 08 " T L2 9 o

za]=]~a ada

respectively. Then it holds that

oF _ . 08 o o 8st
.b? —5(7".7) axj € )’ 6 6(1’ .7) 6—- +O( )

G5 = 6(i, §) + €bay; + O(e), a¥ =6(i,5) +55a” +0(@?), ij=1,---,n,

as € — 0, where & = ®.(x) for x € O, {6ai;}ijo1,. n and {60V}, j=1.. n are defined by
95t 957 i 95t 9%
= [ - L —_— b1 =1.--+
da;j (axj—l-@x")’ da"” : (8z1+8mi)’ t,j=1,---,n.
Furthermore, the Jacobian J. as

(2.3) Je(z) := det <gi§( ))1<¢ o e

i also expressed by
J. =1+4¢e6J + O(e?),

as € = 0, where §J is defined by

0J = 83 )

i=1



The proof is immediate consequence of (A.3). So we omit it.
Remark 2.3. We immediately have by Proposition 2.2 that

o _ o O

(24) Oridrt (€), oxt

=0(e), 4,5,l=1,---,d, ase—0.

Furthermore, we introduce the piola identity, whose methods was based on Marsden-
Hughes [13].

Lemma 2.2. For a real parameter ¢ and any solenoidal vector function U, € C>(8,),
we define the vector function u. € C*(£2) by

u.(z) = J, ZETUg for z € Q,,

where T = ®.(x) and J, is the Jacobian as in (2.8). Then, it holds that
divy u.(z) =0 for all z € Q.
For the reference, see Marsden-Hughes [13, Chapter I, Sec.7.20].

We next consider the limit of the eigenfunction Ve for e — 0.

Lemma 2.3. For any natural number k € N and any arbitrary sequence {e(m)}>_,

satisfying e(m) — 0 as m — oo, there exist a subsequence {T(m)}%_; C {e(m)}>_, and
a function vox € Hy () such that Vr(m),k Strongly converges to vo in L2(Q) as m — oo,
and Vy(m) . weakly converges to vy in H0 »() as m — oo, where {Vrm) 6}, is defined

by
Vr(m) k() = Je Z VTJ(m)(x for T € Q..
Furthermore, there exists poy € H* (Q) such that
(2.5) —Azv0k(%) + Vapop(z) = Mvor(z)
forall x € Q.
For the proof, see Jimbo-Ushikoshi [§].

3 Construction of the representation formula.

In this section, we prove the main theorem 1.1.
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3.1 Expression by the integral form.

In this subsection, we assure the existence of d\;, and construct the expression for dA.
For that purpose, we introduce the following useful identity.

Lemma 3.1. Let {V,}k<p<kin,—1 e the eigenfunctions corresponding to the eigenvalue
X (see (1.2)). Then it holds that

(3.1) /Q <5F(V,,, V,)(z) + N Z(aau’ — 8(4, §)8J)Vi (z)V7 (x)) dx

/692 (Z‘,: ZZ w)) (S(z) - v,) do,

fork <l,p,q < k+ng— 1, where the bilinear operator dF is defined by

(3.2)
OF(u,w)(z)
- = 3u 8wi 0 85’ ow* Out & [9S'
6 ow* 0 ow* Ou* O
+5Ja J( 2) 57 (a:)+ — (0J6(2) 5= + 5555 (8Jw'(= ))}

with the variable coefficient {8a”}; j=1,... » and 8J as in Proposition 2.2. Moreover, v, =
(vL,---,vP) is the unit outer normal to OQ at z € OQ, o, denotes the surface element of

BQ and {S*}i=1,.. n is the vector functions introduced by (A.3).

Proof. For any k <l,p,q < k+ny — 1, we prove Lemma 3.1 by integration by parts and
applying Proposition 2.2 to the left hand side of (3.1). a

3.2 Proof of Theorem 1.1.

k-l—nk—l

Since the eigenfunction {V,, Ptz satisfies the Stokes equations, we see that for

any number k < l;,l, < k+ni — 1,

(33) ‘/Q ell Vxnelz d:l)—/\ll(é‘ / E el1 :E)’f]el?(.’ﬂ

ez— EZ_

for arbitrary function 7, € Hj ,(Q). By changing varables and by integration by parts
of (3.3), Lemma 2.3 and Lemma 3.1 completes the proof of Theorem 1.1. O
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