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Abstract

In this paper, we consider the one dimensional initial value problem for strongly
degenerate parabolic equations with variable coefficients. This equation has both
properties of parabolic equation and those of hyperbolic equation. Moreover, the
convection and diffusion coefficients depend on the spatial variable z. In particu-
lar, we consider the case that convective coefficients are the functions of bounded
variation with respect to z. Then, we prove the strong precompactness of a family
of approximate solution to the problem and characterize the limit function as an
entropy solution. Moreover, we give a proof of the uniqueness of entropy solutions
to the problem using the methods of Karlsen-Ohlberger [6] and Karlsen-Risebro-
Towers [10].

1 Introduction
We consider the initial value problem for a degenerate parabolic equation of the form

p | us + 0, Az, u) = 82B(z,u), (z,t) € Ir =R x (0,T),
) u(z, 0) = up(z), =z €R, up € BV(R).

Here, [0,7] is a fixed time interval. A(z,¢) and B(z, €) are R-valued functions defined on
R x R. In particular, the function 3(z, €) is supposed to be monotone nondecreasing and
locally Lipschitz continuous with respect to ¢ for fixed . From the assumptions of 3, the
set of points £ where 0;3(x,€) = 0 may have a positive measure. In this sense, we say
that the equation posed in (P) is a strongly degenerate parabolic equation.

This equation is an one dimensional version of the following multi-dimensional equa-
tions:

(1) u + V- Az, u) = AB(z,u).

The equation (1) can be applied to several mathematical models; hyperbolic conservation
laws, porous medium, Stefan problem, filtration problem, sedimentation process, traffic
flow, blood flow, etc. Moreover, (1) is regarded as a linear combination of the time
dependent conservation laws (quasilinear hyperbolic equation) and the porous medium
equation (nonlinear degenerate parabolic equation). Thus, (1) has both properties of
hyperbolic equations and those of parabolic equations. Moreover, by the assumptions on
B, (1) has the following properties:
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. If B is strictly increasing, then “parabolicity” is majorant to “hyperbolicity”.

. If B is monotone nondecreasing, then “parabolicity” and “hyperbolicity” are not
necessarily comparable.

In our research, we consider (P) in the case that A(z,£) is discontinuous with respect
to z for £ € R. In particular, our aim is to prove the well-posedness of (P) in the case
that A(-,€) € BV(R). In this paper, we prove the strong precompactness of a family of
approximate solution to (P) and characterize the limit function as an entropy solution to
(P). Moreover, we show the uniqueness of entropy solutions.

The mathematical analysis of strongly degenerate parabolic equations was given by
Vol’pert-Hudjaev [16], Carrillo [3], Karlsen-Ohlberger [6] and Karlsen-Risebro [8]. In the
discontinuous convective coefficient case, it is difficult to show that approximate solutions
have bounded total variation. Hence, we may not directly apply the classical Kruzkov’s
theory [11]. One of the methods to overcome this difficulty is the compensated compact-
ness method which was introduced by Tartar [14]. To apply this method, we necessitate
the following estimates:

. |lu6('7t)||L°" < Ca
OeB(z, ue) + € Opue||2 < C.

In fact, Karlsen-Risebro-Towers [9] proved the existence of weak solutions and the unique-
ness of the constructed weak solutions to the one dimensional Cauchy problem with vari-
able separation flux:

Beu + B,(v(z) f () = B2B(u),

where v(z) € BV (R) and f(¢) € C?(R) is a genuinely nonlinear function satisfying several
conditions. Moreover, Karlsen-Risebro-Towers [10] proved L! stability and uniqueness of
entropy solutions to the similar problems, provided that the flux function satisfies a so
called crossing condition. On the other hand, Watanabe [18] proved the same results
of Karlsen-Risebro-Towers [9] under the more general form than [9] using the compact-
ness results of Panov [13]. Also, Watanabe [20, 21] considered the same setting for one
dimensional zero-flux boundary problems.

In the variable diffusion coefficient case, Chen-Karlsen [4] and Wang-Wang-Li [17]
obtained the well-posedness for the quasilinear anisotropic equations with time-space de-
pendent diffusion coefficients.

In this paper, we consider the one dimensional Cauchy problem (P) for strongly degen-
erate parabolic equations with discontinuous convective and variable diffusion coefficients.
At first, we prove the strong precompactness of a family of approximate solutions to (P)
in the case that A(-,£) € BV(R) for ¢ € R. Moreover, it is confirmed that the constructed
~ limit function is a distributional and an entropy solution to (P). We can obtain estimates
for approximate solutions along the same method of Karlsen-Risebro-Towers [9]. Advan-
tage of this paper is to apply the compactness result using H-measure (Panov [13]). Using
the compensated compactness method for the type of equation (1), compactness results
are only given in the case of N = 1,2. However, there are possibility to get results in
higher dimensional case using H-measure.



Secondly, it is shown that the uniqueness of entropy solutions to (P). Then, we draw
a direct line with the methods of Karlsen-Ohlberger [6] and Karlsen-Risebro-Towers [10].
In particular, we use the definition of entropy solution and the crossing condition for the
function A(z,¢) in Karlsen-Risebro-Towers [10].

Throughout this paper, we use the following notation:

Oza(z,u) = [0z0](z, u) + [0:a](z, u)dzu,

for a(-,¢) € WH(R) for £ € R, a(z,-) € Lip(R) for z € R, a(z,0) = 0 for z € R,
and u € WH(R) (see [2, 5]). Moreover, we suppose that u¢ vanishes sufficiently fast as
|z| = oo, if necessary.

2 Assumptions and the main results

In this section, we present some assumptions and the main results. At first, we assume
that the initial function uy € BV (R) satisfies:

L1<U0<L2,

where L; and L, are some real numbers with L; < Ly. In one dimensional case, it hold
that BV (R) C L*°(R). Thus, the assumption does not give a restriction to (P). Moreover,
we suppose the following conditions:
(A1} A(-,€) € BV(R) for € € R, and A(z,-) € Lip,,.(R) for z € R,
1
A(z,0) =0, for z € R.

[ B(,6) € CAR)NW(R), [:6](€) € C'(R) for § € R,

B(z,-), [0:P](=,-), [0Bl(z,) € Lippe(R) for z € R,

{A2} ¢ B(z,0) = [0.8](z,0) =0, for z € R,

[0¢8](,0) = 0 for z € R, or [0¢f](z,&) = const. for (z,&) € R x [Ly, Ly,

B(z,€) is nondecreasing with respect to ¢ for any z € R.

\

{A3} 8,A(z, Ly) — 828(z, L1) < 0, O,A(z,Ls) — 32B(z, L) >0 in R.

The conditions {A1} and {A2} are regularity assumptions for the functions A(z,¢) and
B(z,€). The condition {A3} is used to prove an uniform L™ estimate for approximate
solutions to (P). Moreover, we assume a nondegenerate condition for A(z, ) with respect
to ¢ in the sense of Aleksié-Mitrovic [1]:

{A4} There extsts a function h(z,€) € C*(Re; L2(R)) such that for a.e. = € R and for all
A € S', there is no interval on which Aoh(z, &) + A1 (A(z, &) — [8:8](x, £)) is constant

“in £.
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Throughout this paper, we usually assume the conditions {A1}-{A4}. On the other hand,
we impose the initial function uy to additional regularity assumption:

{A5} | — A(z, uo) + 0zB(z, wo) | Bv(w) < 0.

Under the assumptions, we formulate the regularized problem for (P) as follows:
Ol + 0, A%(x,u8) = 82Bc(x,u®), (z,t) € T,
0 { oy o
where A%(z,€) is mollification of A(z,&) with respect to z, that is, for £ € R,
A(@,€) = (1/8)w(e/8) » A=),

where w : R — R is an arbitrary smooth function such that w(z) = w(—z), w(z) = 0 for
|z| > 1, and [ w(z)dz = 1. Moreover, we set

up(2) = (1/8)w(z/0) * uo(2)-

Here, * stands for the convolution operator. In addition, we put S.(z,€) = B(z,&) + €€
for € > 0. Therefore, we use the following notation:

(2) 8:0,85(1:’“) = [8;5,3](17, U) + [afﬁe](wa u)azua
for u € BV (R), where [08¢](z,u) = [0¢B](z, u) +¢.

Remark 1. In the case that A(z,£) = v(z)f(€), the condition {A3} is closed to the
condition: f(L;) = f(Lz) =0 which is used in Karlsen-Risebro-Towers [9].

We may prove the strong convergence of ul in L}(Il7) as €, § — 0. In fact, we get the
following results:

Theorem 2.1. We assume the conditions {A1}-{A4}. If § = ce, for a constant ¢ > 0,
then the family of approzimate solutions {u.}eso = {us}c 550 to (P) is strongly precompact
in L (TIl7). Moreover, the limit function u is an entropy solution to (P).

Here, we define entropy solutions to (P) as follows:

Definition 2.2. Let uy € BV(R). A function v € LY(R x (0,7)) N L¥(R x (0,7)) is
called an entropy solution to the problem (P), if it satisfies the following conditions:

(1) 9:8(z,u) € L*(0,T; L*(R)).
(2) For p € C°(R x (0,T))* and k € R,

T
/o /]ngn(u — k){(u = k)p; — [0:8(x,u) — 0:8(x, k)]0 + [A(z, u) — A(z, k)]0 }dzdt
T T
N /0 /R\“S sgn(u — k)8:A(z, k)pdzdt + /0 /Q S 0| DL A(z, k)|dt

T .
+/ /sgn(u — k)02B(x, k)pdzdt +/ lug(x) — k|pdz > 0,
0o Jr R



where (g is an area where the measure Dy A(z,§) is singular with respect to z.

Our second purpose of this paper is to prove the uniqueness of entropy solutions. To
see this, we introduce the following additional assumptions:

{A6} | B(z,&) = v(2)B(w), ¥(z) >0 forz€R.
Notice that, the functions v(z) and B(¢) satisfy the conditions corresponding to {A2}.
{A7} [0:4](z,") € Lipioc(R) for z € R,

{A8} There exists a family of points {z;}}, such that A(-,£) is discontinuous at z = z;
for all ¢ € [Ly,Ls) and @ = 1,--- , M. Here, M is a positive constant. That is,
A(-,€) belongs to SBV(R) and has finitely many jumps for all { € [Ly, La].

{A9} For any jump point z € R,
A(z4,8) — Alz-,§) <0 < Alzs,m) — Ale-,n) =<7

The condition {A9} is called a crossing condition. The conditions {A8} and {A9} is used
in Karlsen-Risebro-Towers [10] to prove the uniqueness of entropy solutions for strongly
degenerate parabolic equations with discontinuous convective terms. Then, we get second
main result.

Theorem 2.3. We assume the conditions {A1}-{A4} and {A6}-{A9}, then an entropy

solution u to (P) is uniquely determind.

3 Estimates for the approximate solution u’

In this section, we prove several estimates for the approximate solution ul. Throughout
this section, we usually assume the conditions {A1}-{A4}. At first, we prove the following
L' and L*®-estimate:

Lemma 3.1 (L! bound). Fort > s >0, it follows that

(- )y < Ml 9wy < Mgl m)-
Proof. Let us give the following approximate equation posed in (RP):
(3) - Opul + 0, A% (z,ul) = D2B.(x,u?).

Multiplying both side on the above equality by the approximated signum function sgn, (u?),
p > 0, then it follows that

0uful] = — lim s, (u9) 2,210, (,u2) - A°(a, )]
= — lim sgm) (uE {00 (8.8 ,u2) — A°(a,u) + (98] a,uf) +)(Buu )

as p — 0 in the sense of distribution by A(-,€) € BV(R) C L'(R) and B(-, &) € WHY(R)
for all £ € R. The first term of right-hand side on the above equality is equal to zero by
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the property lim,_,o sgn’,(€)¢ = 0 for all £ € R and [0:8](z,0) = A(x,0) = 0 for all z € R.
The second term of it is nonnegative by the property sgn,(£) > 0 for all £ € R. Hence,

we have
/ (. 8)|dz < / 1 (z, 5)|dz < / lufda,
R R R
forallt > s> 0. O

Lemma 3.2 (L* bound). There exists a positive constant c;, independent of € and 9,
such that
[ul(s )|y < e,
fort > 0. In particular, Ly < u® < Ly hold in Ir.
Proof. For all v > 0, we consider the following auxiliary problem:

(RP), { d(z,t) + 9, 4°(z,v) = 82B.(x,v) + Yh(v),

v(z,0) = ug, Ly < ug < Lo,

where h(v) = Ly + L, — 2v. Then, there exists a unique C*! classical solution v to
(RP), with the initial function v(z,0) € (L1, Lz) for all z € R by the classical theory for
uniformly parabolic equations [12]. By Lemma 3.1 and ug € BV (R), the classical solution
v is L(II) N L®(IIr)-function for sufficiently small y. Moreover, v belongs to BV (R)
for a.e. t € (0,T) by the method of Vol'pert-Hudjaev [16].

We lead a contradiction to show the result. Here, we put a subset K C Ilr such that
v(z,t) > L, for all (z,t) € K. By v € BV(R)(NLY(R) N L°(R)), the set K is compact
(i-e. closed bounded). If K is nonempty, then we put

{=1inf{ t € (0,T) | there exists T € R such that v(Z,t) = Ls}.

By the inequality L; < ug < Lo,  is positive. By compactness of K and the smoothness
of v, there must be a point Z such that v(-,f) has a local maximum at Z and v(Z; t) = Ls.
Because, if v(z,) # L, for all z € R, then it must be that v(z,%) > L, or v(z,t) < L, for
all z € R. The former contradict the definition of ¢ by continuity of v with respect to ¢
and L; < v(z,0) < Lp. The latter also contradict compactness of K.

For T € R, we have the following properties:

9v(Z,1) =0, 0%(z,f) <0 and Ow(Z,t) > 0.
On the other hand, it holds that
h(v(Z,t)) = h(Lz2) < 0.
Therefore, we obtain

Bw(Z,1) + [0, 4°)(Z,v(Z, 1)) — [026](Z, v(Z, 1))

= [0¢Be)(z, v(T, 1)) (7, 1) + Yh(v(Z, 1)) < Yh(Ls) <0

by the equation in (RP), at (Z,%). By the condition {A3}, this is a contradiction.
Therefore, it follows that K is empty and v < L,. It is similar to prove in the case

that v _>_ L]_. :
Using the continuous dependence result in [4], we have v — u¢ pointwise as v | 0.

Hence, we get the claim of this Lemma. O



Secondly, we prove a Lipschitz regularity of u® with respect to t. To use the Panov’s
compactness result, this regularity estimate is necessary. In fact, Karlsen-Rascle-Tadmor
[7] and Aleksié-Mitrovic [1] used this regularity estimate to prove strongly precompactness
for a sequence of approximate solutions to a two dimensional hyperbolic scalar conserva-
tion laws using this regularity estimate.

Lemma 3.3 (Lipschitz regularity in time). We assume the condition {A5}. If § = ce,
for a constant ¢ > 0, then there exists a constant cy, independent of € and §, such that
forallt > 0,

/ [0l(-, 1) |dz < .
R

Proof. Differentiate both side on the above equality (3) in Lemma 3.1 with respect to ¢
and put w! = d;ul, then we have

Bl + B, (8 A”) (=, ub)uf) = O2((0eB.] (x, ud ).

Multiplying both side on the above equality by the approximated signum function sgn, (w?),
p > 0, then it satisfies the following equality:

Belwe| = 02([0eBe) (z, ud) wll) — lirn sgi, (w?) 8z ([0 Be] (, ug)w?) Bpw?

(4) \ g
~ 0, ([0eA°) (2, ud) [l ),

as p — 0 in the sense of distribution. Here, it is computed that

sgn, (w2) 05 ([06B:] (, ug)w?)dow? = sguy,(wl)([0:8¢8](x, u)w2Bpw?

5 3
® +[8§2ﬂs](xv uQ)Bpugwldpwg + [0e Be] (z, wd) (Bowg)?) = Z B;.
=1

Here, we see that
lim(By + By) = lim sam (w?)uf (10:0c6](, ud)dwwf + [628e)(w, ud)BuufBf) =

by lim,_,osgn;,(§)§ = 0 for all £ € R. Moreover, Bz > 0 hold using sgn)({) > 0 and
[0 Be](z, &) > 0 for all (z,€) € R% Therefore, we obtain the following estimate:

[ utte0ldz < [ jub(e. o)

for all ¢ > 0. Here, it follows that
[ 1wt 0lde = [ 1826, (0,u8) - 0.4% o, )z
R R
<C+ 6/ |02u|dz < C + %/ |0su5ldz < ¢,
R R

for some constant C and ¢, by the assumption {A5}, 6 = ce for a constant ¢ > 0 and
up € BV(R). Therefore, we get the desired estimate. a
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Lemma 3.4 (Entropy dissipation bound). There ezists a constant c3 > 0, independent
of € and &, such that for all t > 0,

/R 106 (2, u8) (Bl (- 1)?dz < e

Proof. We begin with the approximate equation (3). Multiplying (3) by «¢ and integrating
the result on R with respect to z implies

/R[ugatug + w0, A (2, u)]dzx = /Rugaz([azﬁ](m,ug) + [0eBe) (z, ud) O, ul)dzx.
We note that the second term of right-hand side in the above equation becomes
| 008w w10tz = — [ [Bep, ud) Gund)id
Then, we have the following equality:
© 18Ot ide =~ [ ot + 0,4z, 1) - 0,1006)(5, )l
The second and third terms of the right-hand side in (6) imply

- / U2 (8, A% (5, 08) — Ba[B) (z, ) )z = / Bl (A%(, u8) — (0,6) (2, ul))dz

-/ [az < / () - [axmu,g)]ds) -/ (04 (2, 6) - [35,3](%»6))%} dz.
R 0 0
Therefore, we have

[ocsite, w8y @uayae

=_ /Rugatugdx —-/R (/Oug([axAé](x,f) - [agﬂ](%ﬁ))dﬁ) dr,

by A(-,€) € BV(R) and B(-,€) € WLL(R) for all £ € R. Hence, we have the following
estimate:

/R [0 Be)(, ul) (Opug)*dz < ||ul]|zoo(up) |10eul| Lo 0,711 )

+max{|Ly|, |L2[}( sup [|A°(,&)|svw) + sup |02B(-8)lcwm)),
L1<¢<L, Li<¢<L>

by {Al} and {A2}. O

The method of compensated compactness and H-measure is usually used for hyper-
bolic conservation laws. In the case of degenerate parabolic equation, it is important to
get several estimates about the degenerate diffusion term. At first, we can obtain the
following regularity estimate.



Lemma 3.5. There ezists a positive constant C, depend on T but not on € and 6, such
that

1828, ul)| | L2®x(0,1)) < C,
and

IBC,ul(-,- + 7)) — B, ul(, Ne@x 1) < CVT,
for all T > 0. In particular, {B(z,u)}ecs0 18 strongly compact in LE (TIr).

Proof. The first assertion is satisfied as follows:

/ / |0:8(z, ul)dedt < / / [8:8](z, ul) dzdt

5 max ||[555] HL°°(R)/ /[c‘k,@] ud)|8pul*dzdt < C

2 €€[L1,Ly)

by the assumption {A2}, the equality (2) and Lemma 3.4.
On the other hand, we prove the second assertion as follows:

T-1
/o /R[ﬁ(:c,ug(m,t—i— 7)) = B(@, ul (z, 1)) dadt
< H»BHLip([Ll,Lz])/ _T/(/ Tatug(x,E)dﬁ)(ﬂ(w,ug(x,t+T)) — B(z, 4 (z, 1)))dzdt

— 1181l cip(n 2o / — / ( / oA (o0, ) + (e E)E

Bz, ué(x,t + 7)) — Bz, ul(z,t)))dzdt

= I8l [ [Fot ot o)+ . dte t+ 9)
(ﬂ(z,uﬁ(m,t+7)) Blz,u ( t)))dzdt]ds
~ Bllaneacan | [ 1@+ 5)(@u8(w, 3+ 7)) = BuB(e, vz )
8, (z, w3 (x, t + 8))(BuB(z, ul(@, t + 7)) — BB, U (z, 1)) )dzdt]ds
< 1Blusoen o [ 1AG U Baguagory + 068 ) 2oy

+2/1008: (2, ud)|| L2 0,11 10282, ud)| | L2@x 0,1 s < C,

by the assumptions {A1}, {A2} and the first assertion.
g

Lemma 3.6. A subsequence of {B(x,u)}cs0 converges strongly to B(z,u) in L}, (Il7),
where u is the L™(I) weak *-limit of {ul}e s50. Furthermore,

B(z,u) € L*(ll7) N L*(0,T; H'(R)).

31



32

Moreover, we prove strong compactness of the total flux to (3). This result is the main
idea of Karlsen-Risebro-Towers [9].

Lemma 3.7 (Compactness of the total flux). We assume the condition {A5}. Let the

total fluz to (3):

(7) v¥(z,t) = —A%(z,ul) + 8,8 (z,ul).

Then, there exists a constant C > 0, independent of € and 8, such that for allt € (0,T),
() g (-, )|y < C,
(1) [v¢ (- 8)lBvw) < C,

(ii) |[3(-t+7) = (- D@ < CVT for all > 0.

In particular, {v2}c 50 is strongly compact in L} (Il7).

Proof. By the definition of v{, it is clear that 8,v% = G;ul. From this equality and (7), we
have the following auxiliary problem:

Ovvg = Ox((0eBe] (x, ue)0av?) — [0 A”)(w, ug)Dove + Yh(2E),
{ Ve (2,0) = 0oz, up(2) — A°(x, up(x)).

Here, we put
h)=Li+La— 2!, L= esseiﬁf{vg(:v, 0)}, Lz = esssup{v}(z,0)}.
z z€R

The proof of (i) is similar to the proof of Lemma 3.2.
We next prove (ii). By the equality 8,v¢ = 8,u?, it is inferred that

oHlavy = [ [0:fldo = [ [6uudldz
R R

By Lemma 3.3, we get the desired estimate (ii).

The proof of (iii) is similar to one of Karlsen-Risebro-Towers [9]. Therefore, we use
the Frechét-Kolmogorov compactness theorem, then we obtain that {v8} s-¢ is strongly
compact in L}, _(IIr). O

4 Proof of Theorem 2.1.

In this section, we prove the first main result. At first, we introduce a general form of the
Panov compactness result to get strongly precompactness of {ul}c s»o in L}, (II7).

Theorem 4.1 (Panov [13]). Let Qr = Q x (0,T) € RN*! be an open set. Assume
that the vector ¢(z,€) € (C(Re; BV ()™ is non-degenerate with respect to €, i.e. for
a.e. £ € Q and for all A\ € RN*Y, X #£ 0, the map &€ —= (N, ¢(z,£)) # constant on any
nontrivial interval. Then, each bounded sequence (ug(z,t))r € L®(Qr), L1 < uk(z,t) <
L, satisfying, for the Heviside function H and k € R,

Ve - [H(uk(z,t) — k)(é(z, ur(z,1)) — d(x, k))] is precompact in H;}(Qr),

contains a subsequence which converges in L}, .(Qr).



Using Theorem 4.1, we prove the following result:

Theorem 4.2. We assume the conditions {A1}-{A5}. Ife = ¢b, for a constant ¢ > 0,
then a family of approzimate solutions {u.}eso = {ul}. 550 s strongly precompact in
Ljoe(Ilz).

Proof. Let h(z,£) € C*(Re; L°(R)). We rewrite the equation of (3) as follows:
(8) Osh(z,ul) + 8, A% (2, ul) = B,h(x, ul) — Byul + 026 (x, ul).
Here, we define the corresponding entropy fluxes:

po(z, &) = H(E — k)(M(z,£) — h(z, k),

pi(z,8) = H(E - k)(A(z,€) — Alz, k),

0i(z,€) = H(E - k)(A°(z,€) — A°(z, k),

pa2(z,€) = —H(E — k)([0:8](x, §) — [8:5](z, k),

where H stands for the Heaviside function and k is an arbitrarily fixed real number. We
multiply (8) by 7'(u¢) = H(ul — k) on both side of (8) to obtain the following equality:

(0, 3a) - (po(z,ul), o1(, ul) + pa(x, ul))
=17/ (ug) (=0 A° (2, ug) + Bih(z, ug) — Beul + 2B (2, u)) + Bu(r(z, ud) + a(z, )
=~ (u)8x A’ (2, ud) + 7' (ud)Bsh(x, ul) — 7' (ul) Byuf
1 ()02 (10a6] () + 0cBe) (@, uD)0s) + Bapr (2, + Bup(w, ),
in the sense of distribution by the calculation (2). Here, it is deduced that
8.7 (u2) BB (2, u?) Bt > 7 (u2)Ba (136 Be) (. 0) Byl
in a way similar to the calculation of (5). Moreover, we see that
1 (8)8,10:8)(2, 1) + Byspal u8) = 1 (u3) 03] (5, ).
Thus, it is obtained that
Brpo(m, ud) + Bzp1 (z, ul) + Bnpa(z, ul)
< 7 (u)(@eh(, u?) — (A% (s, k) + (026, k) — D)
0, (1 (1) BeBe) (2, u2)0d) + Buln — ) ().

By the Schwartz lemma on nonnegative distribution [15, Lemma 37.2], a nonnegative
distribution is a nonnegative measure. Therefore, there exists u$®(x,t) € M(Ilz) such
that

Brpo(z,ud) + Oz o1 (x, ul) + Bpipa(z, ud)
(9) = 1 (u2)(Bph(z, wd) — [0:A%)(2, k) + [0626](x, k) — Byul)

+0, (1 (ul)[0eB:) (=, ul) Bpul) + Ba o1 — @i)(z, ul) + 13 (=, 1).

33



34

Here, M(Il7) is a family of Radon measure on IIr. We verify the right-hand side of (9).
First, it holds that
0 (ud) (Beh(z,ug) — Bug) € My poc(Tlr),

by the Lipschitz continuity in time for u¢ (Lemma 3.3). Here, M o.(Il7) is a family of
locally bounded Radon measure. Moreover, it is observed that

7 (ue) (=104}, k) + [02B](, ) € M poe(TIr),
by the regularity assumptions {Al} and {A2}.
Next, we deal with the degenerate diffusion terms as follows:
0o (1 (ud) 106 Bel (2, u)Boud) = Oa (' (u) 0eB)(w, ug)Boug) + £0a (11 (ug) Big).-
By the entropy dissipation bound (Lemma 3.4), we get the following convergence:
/n e (u®) Dl |2dzdt < CE/H €|0,ul|2dzdt < Ce — 0,
T T

as € 4 0. On the other hand, we treat another part. To see this, we divide the domain
I11 as follows :

H :={(z,t) € It | l(z, B(z,u(z,t))) < L(z, B(z,u(z, 1))},
P:={(z,t) € Iz | Uz, B(z,u(z,1))) = L(z, Bz, u(z,1)))},
where I(z,€) = min{\ € [Ly, L] : B(z,A) = &}, L(z,&) = max{\ € [L1, L] : B(z,\) =
€}. We begin to consider the degenerate diffusion term on H. In fact, it follows that
[0eB](z,uS) = 0 é.e. on H ase 0.

By the L®-bound (Lemma 3.2) and the entropy dissipation bound (Lemma 3.4) of ul, we
see that _ .
n (u)[0¢B](z,u8)0pul — 0 ae. on H ase 0.

Secondly, we consider the degenerate diffusion term on P. By strong compactness
of the total flux and the convergence of {ul}. 50 a.e. on P (ref. [9, Lemma 3.3]), it is
deduced that

(10) {1 (%) [0eB) (z, ul)Bzul}e 550 converges a.e. on P.
On the other hand, by L®-bound and entropy dissipation bound, we have
(11) ' (uf) (9B (=, ud)dpul € L*(IIy).

By Lemma 3.7 (i), (10) and (11), the sequence {n'(ul)[0¢8](z,u?)0,ul}cs>0 converges
strongly in L2(Il7).
Finally, it holds that
o1 — i1z, ul) < 1A% (2, ) — Az, ud)| + |A(z, k) — A(z, k)|
5 _ o2
<2 max [4(z,6)~ A, 6] = 0 in Li.(R)

as § | 0. Hence, we have 8,{p; — @3] € H_;, (Il7) which is a family of functions that are

precompact in H;!(Ilr). Moreover, it follows that ui“s € Miioc(IlT). Therefore, we can
use Theorem 4.1 using Lemma 4.3 below. Hence, we get the desired result. O



Lemma 4.3 (Murat). Assume that a family (Q.) is bounded in LP(Q), p > 2, Q C RN
s an open set. Then,
(QE) cloc(Q)

if V- (Qe)e = pe + g with (gc)e € H, L () and (pe)e € Mioc(Q).

Moreover, it should be checked that the limit function u constructed in Theorem 4.2
is a generalized solution to (P). In fact, u satisfies (P) in the sense of distribution and
satisfies an entropy inequality in the sense of [4] and [10]. That is, it is inferred that there
exists an entropy solution to (P).

Corollary 4.4. Suppose that {A1}-{A5} hold. The function u is the limit function con-
structed as the strong limit of the sequence {uc}eso in Theorem 4.2. Let v be another
limit function as the strong limit of the sequence {v; }e>0, where ve solves the regularized
problem (RP) corresponding to initial data vy. Then, it holds the following properties:

(i) the limit function u satisfy (P) in the sense of distribution.
(i) the limit function u is an entropy solution to (P).
(i) ||u(z, t) — v(z, t)l 2wy < [Jvo(z) — vo(2)|| L (w)-
() |A(z,u(z,t)) — 0:8(z,u(z,t))|pvwy < C, forte (0,T).
(v) l|lu(,t+7) —u(-,t)||pw < Cr, forT>0.

Proof. By Theorem 4.2, we obtain the assertion (i) in a way similar to [9] and [21]. Using
the result for (RP) in 4] it holds that

(12) /Iug (z,t) — ve(z, t)|dz < / lu§(z) — v§(z)|dz.

As € | 0, it is observed that the assertion (iii) holds for ug, vy satisfying {A5}.
Moreover, the assertions (iv) and (v) are direct consequence of Lemma 3.7.
Finally, we prove the assertion (ii). Let u} be the approximate solutions to (P). We
set the following functions:

n(uf) = sgn(ul — k)(u — k),
¢ (z,ud) = sgn(ud — K)(A*(z,uf) — Az, k),
¢*(z,uf) = — sga(ul — k)([8:8)(z, ) — [8.5)(=, k),
for any z € R and k& € R. Then, we calculate that:
Ogn(ug) + 854" (z, ul) + Ooq®(, ul)
= sgn(ug — k)(926:(z, ug) — 0,A°(z,u))) + sgn(uf — k)(A°(z,u?) — A°(z,k))a
— sgn(ug — k)(10:5](z, ug) — [0:5](2, k)=
= sgn(ug — k)((06Be](z, wg) (wg)s — A° (2. k) + 0:8(z. K)o
= (sgn(ug — k)[0cBe](z, ud) (ug)s)e — sgn’(ug — k)[0eBel(z, ug) (ud):
—sgn(u; — k)(A’(z, k) — 8:8(z, k)=
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Therefore, it is deduced that
sgn(ul — k)[(w — k)¢ + (A°(z,u)) — A°(, k) — (B:B(, ul) — B:B(z, k)]
+sgn(ul — k)(A°(z,k) — BuB(2, k))e = — 50’ (v — k)[8eBc)(z, ul) (ul)2 <0,

in the sense of distribution. That is, we get the following inequality:
T
| [[sentud = Bl - Ko+ (4%(0,8) = 4@,k = OuBa,) - BuB(s, D)
o Jr
+ (0, 4%(z, k) — 02B(z, k))pldzdt + / [u§(z) — k|edz > 0,
R

for all ¢ € C(R x [0,T))* and k € R. We take § = ce, then we have the entropy

inequality in Definition 2.2 as £ — 0.
a

Proof of Theorem 2.1. We remove the assumption {A5} by using the assertion (ii) in
Corollary 4.4. If uy belongs to BV (R), there exists a sequence {uf'}%_, such that each
ul satisfies {A5} and uJ® — ug in L}(R) as m — oo. Let 4™ be a limit function of the
sequence {uc} with initial data u{'. Using the inequality (12), it holds that

[ @) = wietlde < [ (o) - uia)lds
R R
as m,n — oo. Therefore, {u™}%°_, is a Cauchy sequence in L!(II7). Hence, the limit

function u is constructed under the assumptions {A1}-{A4}. In addition, it is also seen
that the limit function u satisfies the assertions (i)-(v) in Corollary 4.4. O

5 Proof of Theorem 2.3.

In this section, it may be confirmed that the limit function u is an unique entropy solution
to (P). To see this, we prove the following assertion which is called Carrillo’s lemma.

Lemma 5.1. Let us assume {A1}-{A4} and {A6}. Let u be an entropy solution to (P).
Then, it follows that

/H sgn(u — k)[(u — k)@r + (A(z, u) — Az, k)¢
—(8:8(z,u) — 8:8(z, k) oz + (92B(z, k) — 8, A(z, k))‘P]df?dt

= tim [ sl (B(w) = BRI 6B Pt

forallp € C(Rx(0,T))* andk € R\E. Here, E = {¢ € R| 71(¢) is discontinuous at £}.



Proof. By the assertion (i) in Corollary 4.4, we have the following equality:
/ (upr + Az, w)gs — 0 B(z, u)p,)dzdt = 0,
Iy

for ¢ € C°(R x (0,7)). Here, we set ¢ = sgnn(ﬁ(u) — B(k))¢ for n > 0, k € R\E and
¢ € C°(R x (0,T)). Then, the first term of the above equality is calculated

| wtsem(Bw) = (k) nd =~ | uesgn, (3u) - B0k)ododt

T

_ /H [ /k s, (B(E) — B(k))deldedrdt — [ Ju— klgudadt,

as 1 — 0 by Lemma 3.3. Moreover, it is observed that

/HT (A(z,u) — 0(x, u))(sgn, (B(w) — B(K))@)zdzdt

-/ (AGww) = A, R) - 0u(o,0) + 0,500, ) sEm (3) — F1)8)udadt
’ /HT(A(”’ ) = 0:8(x, k))(sen, (B(u) ~ (k) ¢)adadt

- /HT(A(””’ u) = A(z, k) sguly(B(u) — B(k))Dup () pdrdt
[ s ) ~ BN ) ~ BB ot
- /HT sguy,(B(w) — B(k))Y(x)(8:5(u)) pdzdt
+/HT(A(x,u) — A(z, k) — 8,B(z, u) + 8,B(z, k)) sgn, (B(w) — B(k))¢rdzdt
B /HT(awA(% k) — 026(, k)) sgn, (B(u) — B(k))¢dudt

7T sgu, (B () — B(k))v(2)(9aB(w)* ¢ddt

+ /H sgn(u — k)(A(z, 1) — Az, k) — 08(z,w) + 0u(z, k))dudadt

~ [ sgnlu— B(@AG, k) - 026(s,K))odadt,
IIr
as 7 — 0. Hence, we get the desired result. Ol

Next, we prove a Kato’s type inequality. To see this, we introduce test functions. Let
a non-negative function d(o) € C§°(R) satisfying

5(0) = §(~0), 6(c) =0, for |o|>1, and /R 5(0)do = 1.
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For p > 0, we set

1t 1 |)?
(5p(t) = ;5 (;) y and wp(x) = '2';?(5 (7) .

For the above functions, we can see that

1 _,/t-s
Opd,(t — s) = ;—2—0 ( ; ) = —0,6,(t — s),

1 z—yl?
dun(a = 1) = ezt -8 (Eo) = a0 ).
Here, we define the function ¢ = ¢(z,t,y,s) € C&(lr x IIr) by

z+y t+s z— t—s
iﬁ(l',t»y»s):'%/"( zva)wP( 2y)6p( 2 )a

where ¢ = ¢(z,t) € Cg°(Ilr) is another non-negative test function. Having in mind the
above test function, we deal with the following assertion:

Proposition 5.2. Let us assume {A1}-{A4} and {A6}. Let u and v be entropy solutions
to (P). Moreover, it additionally assume that A(-,¢) € WY(R) for € € [Ly, Ly]. Then,
there exists a positive constant C such that

/ sgn(u — v)[(u — v)ge + (Alz,u) — Az, v))p
13

—(0:8(z,u) — 0,B(z,v))p|dzdt + C |lu — v|pdzdt > 0,
Iy

for all p € C°(R x (0,T))*.

Proof. By A(-,€) € WHH(R) for € € [Ly, Lo, the entropy inequality for u in Definition 2.2
can be written below:

(14) /n sgn(u — k)[(u — k)¢t + (A(z, u) — Az, k) pr — (0:8(z,u) — 8,8(z, k) s

+(0:A(z, k) — 82p(z, k))p)dzdt > 0,

for all ¢ € C°(R x (0,T))* and k € R. Let v(y, s) be another .entropy solution to (P)
in (y,s) € R x (0,7). We set k = v(y,s) in (14) and integrate both side with respect to
(y,s) € R x (0,T), then we get the following inequality:

/H . sgn(u — v)[(u — v)pr + (A(z, v) — A(z,v)) s — (8:8(2, u) — 8:0(2,v))px

+(8,A(z,v) — 02B(x,v))p]dzdtdyds > 0.

Here, we write the right hand-side in the above inequality by I(Ilr x IIr). By the entropy
inequality (14), it follows that

Iy x Or) = I(Il x (TIT\&,)) + [(IIT x &,) > I(IIT x (IIT\&,)).
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Here, we set

6o={(z,t) €Ir | Blu(z,1) € E}, & ={(y,5) € Ir | B(v(y,s)) € E}.

Taking into account Lemma 5.1, we see that

I(IIy x (II7\&,)) = lim sgn;(é(u) — B(v))y(z)(8:8(u))*cdzdidyds.

120 i x (Tip\&)

In view of this, the following inequality is valid:
/H sgn(u — v)[(v — v)gr + (A(z, u) — A(z,v))ps — (0:8(z,u) — 0:8(z,v))ps
7 xI
+(8, A(,v) — 82B(z,v))p|dzdtdyds

> lim sg(B(u) — B(v))y()(8:8(w)) pdudtdyds
1720 1 x (T \&)

= lim sgny, (B(v) — B(v))y(z)(8:8(u))*edzdidyds.
170 (M \&u) x (T \8y)

Similarly, we also get another inequality:

/H smnl =)o~ Wi + (A0) — A u)e, — B8 0) ~ 3,8 W)y

+(8yA(y, u) — 82B(y, w))pldzdtdyds

> lim sgn, (B(u) — B(v))1(y)(8,8(v))*pdzdtidyds

120 J ([1p\&,) xTI
= lir% sgn;,(,@(u) — B(v))fy(y)(ayB(v))zgod:cdtdyds.
1720 J (M \&u)x (r\&)

Summing up the above two inequalities, we see that
/H . sgn(u — v)[(u — v)(p: + ps) + (A(z,u) — A(z,v)) 0z + (Aly,v) — Ay, u))py
T X7

_(8zﬂ(m7 u) - aa:ﬁ(x7 /U))'ﬁpz — (By:B(yv U) - ayﬁ(yv u))goy

+(0sA(z,v) — BB(x,v))¢ + (8, Ay, w) — 82B(y, u))p)dzdtdyds
> i st (B(u) — B(0)) [y (2) (BuB())? + 1(3)(8,5(v)) pdedidyds
1739 J (I \8u) x (T \ &)
= IRHS~ .

We calculate the left-hand side in the above inequality, reSpectively. To see this, we
use the test function ¢ = ¥(%¥, H2)w,(554)6,(552), for p > 0. Then, the first term is
computed that

/ |u — v|(ps + @, )dzdtdyds = / [u — v| (¥ + s )w,d,dzdtdyds.
I xIlp

HTXHT
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Secondly, the convection terms are considered below:
/ sl )[(A ) - A ) + (Aw0) - Al ),
+(8: Az, v) + 8, A(y, u))p|dedtdyds
= [ sl = 0)l(A(e.1) = Al )es + [(Al) ~ Ao 0l
—(A.v) - Az,9))py — [(A(z, v) — Ay, v))ply)dedtdyds

= /H . sgn(u — v){(A(z,u) — A(y, U))(‘Pm + ¢y)

+{(A(y,v) — A(z,0))¢le — (A=, u) — Ay, v))glyldzdtdyds =) I}

i=1

Let us put ¢ = ¢(Z, 52)w,(552)8,(552), for p > 0, then I% + I3 is equal to
| senlu = o){[(Aw0) = Az )e - (A,0) - Al W)yl
T Xtlp

+[(A(y, v) - Az, v))¢z — (A2, v) — Aly, u)¥ylw,d,

6
+(A(y, v) — Az, 0)) (Wp)s ~ (A2, u) — Ay, w))(W,)y|96,}dzdtdyds = Iy,

=4

Letting p — 0, the convergence I3 — 0 hold. Moreover, it follows that

I4— sgn(u — v)[(0,A)(z,u) — (0, A)(z, v)|pdzdt.

Ir

In addition, we see that

;= /H . sgn(u — v)[(A(y, v) — A(z,v)) + (A(z,v) — Ay, u)))(w,)e¥5, }dedidyds

- /nTan sgn(u — V)[(A(z,w) = A@,v)) = (AW, w) — A, )] (wp)svd,}dadidyds,
by the property of w,. Thirdly, we investigate the diffusion terms as follows:
/rITan sgn(u — v)[—(8z8(x, w) — 8:8(z,v))pz — (8,8(y,v) — 8,B(y, w))p,
—82B(z,v))p — 82B(y, u)pldzdtdyds

= /H , sgn(u — v){[(~8:(2)B(u) + 8xy(2)B(v))¢z + (B Y()BW) — By (¥)B(u))py]

+H-7(2)3:B(w) ¢z + Y(y)8,B(v)py] + [827(2)B(v) — B2v(y)B(u)]p}dzdtdyds = Z 1.



We also consider each term in the above equality, respectively. We start by checking / é
below:

I = /  snu = v)[= (010 - 0,0)50)) (0 + 00)

+(az7(1'),3(u)§0y - y'7(y):§('v)90x + 8z7(-77)13~(v)‘10$ - y'Y(y)E(u)Qoy)]dxdtdyds = Z I;,i-

i=1

Especially, 1 5’2 is computed that

== [ sgnlu = 0)(01(e) - 9,0 (Blw) ~ B(0))eadodtdyds

= /  {@@)len(u— v)(B) - Ao
I xIlp

+(0xv(2) — 8,7(y))sgn(u — v)(B(u) — B(v))lep}drdtdyds.
Let us also put ¢ = o(ZFL, 2y, (£52)6,(552), for p > 0, then we obtain
lim 13 / Bry(z) sgn(u — v)(B(u) — B(v))wdadt,
P
by v € C%(R) and B(u) € H'(R) for a.e. t € (0,T). Meanwhile, we see that

tim 13 =~ [ 821(0)sgntu — ) (Btw) - )t

On the other hand, we deal with Ig. Taking into account the definition of &, and &, the
following calculation is valid:

B[ suu— olv@0Bwee +10)0,H0)e, dsdtdyds
HT XHT
_ / sgn(B(u) — B(v))y(2)8s5(w) g, dodtdyds
(I \&y)x 7
- sgn(A(w) — B(0))1()8,5(v)padadtdyds
I x (TI7\&») ‘

/ sent, (B(u) — B(0))(4(2) + 7(1))8:(w)8,B(v) pdzdidyds.
(O \&u) x(Tir\&)
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Therefore, it is observed that

Irns — I

= lim sgi (B(w) — B(v)[1(2)(3:8(u))* +7(3)(8,B(v))*

10 J(nip\ &) x (ir\&)

—(v(z) + Y())8:8(w)8,B(v)| pdzdtdyds

= lim sgn,, (B(u) — B))([v/37(2)8:8(x) — 1/8,7(y)8,B(w)]?
120 J(Mr\ &) x (T \ &)
~[v8u(z) - \/ By’Y(y)]?azB(u)ByB(v))<pdxdtdyds.

Consequently, we see that
/H sgn(u — v)[(u — v)0 + (Alz, u) — Ay, v))d.
T

—(827(z)B(w) — 8,7(y)B(v))8:¥)dzdt

+/ sgn(u — v)([0:4](z, w) — [0z ANz, v))dzdt + lim I

IIr p—0

> I\ x (r\&,) () = DIV B (o) =B
3:8(1)8,B(v)pdzdtdyds,

as p — 0. The right-hand side of the above inequality equal to zero using the method of
Kalrsen-Ohlberger [6, Proof of Theorem 2.1]. Furthermore, we compute that

Cl10"] L |z — yI Xje-
.16 (R) 4. YI" Xjz—yl<20,
})grg) I; < 1 fl’l‘%[hxm 7 N lu — v|ypé, dzdtdyds

_ Ol Iz~

lu — v|yYdzdt.
4 Ty

Meanwhile, we obtain

/H sgn(u — v) ([0 Al (z, u) — [0 A)(z,v))wdzdt

< HﬁgazA(w,{)HLm(]Rz)/ |u — v|ydzdt,
I

by {A7}. Hence, we conclude the desired inequality. d

Theorem 5.3. Let us assume {A1}-{A4} and {A6}-{A9}. Let u and v be entropy so-
lutions to (P) associated with initial functions up and vo. Then, there exists a positive
constant-C' such that

lu(-,t) = v(-, )l wy < €*lluo — vol |2 (e,
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for a.e. t € (0,T). In particular, for each initial value uy, an entropy solutzon 1s uniquely
determined.

Proof. By the assumption {A8} and Kato’s type inequality (13), it is seen that

‘/. sgn(u — v)[(u — v)p: + (A(z,u) — A(z,v)) e

as)

—(0:8(z,u) — 0:8(z,v))pz)ldzdt + C [ |u — v|pdzdt >0
Ir

for all p € C(TIr\{zm}X_))*. Here, {zm}M_, is a family of jump points for A(-,£) with
respect to z for & € [Ly, Ly]. For near the jump points, the second and third terms in the
above inequality make the following form: '

723 [ ot = (A = A0~ @alo) ~ Bl DHIET Bt

for ¢ € Cg°(Il7). Applying the crossing condition {A9} and the method of Karlsen-
Risebro-Towers [10], it is observed that J < 0. Therefore, we have the inequality (15) for
~all P € CO (HT)
In the inequality (15), we substitute the following test function:

t

or(x) = /]R(S(‘w - yI)le|<rdy and )‘p(t) = / (6;1(7 —t) - 6[)(7 — tp))dr,

—00

for 0 < t; < té < T and r > 1. Then, it follows that
Oppr(xz) =0, for |z| <r—1or|z|>r+1.
Let us put ¢(z,t) = @,(z)A,(t), then it is deduced that

lim sgn(u — v)[(A(z, u) — Az, v))¥, + (B(z,u) — B(z,v))y)dzdt

r—00 HT

< C lim / / (Ju] + |v|)dzdt = 0,
rroo [|lzf-r|<1

by u,v € L}(R) for a.e. t € (0,T). Hence we have

/ lu — v|(A\ ) )dzdt + C |u — v|A,dxdt > 0.
Ir

Iy
Letting p — 0, it is deduced that

/|u z,t1) — v(z,ty)|dzdt — / lu(z, t2) — v(z, t2)|dscdt+C/ |y, — v|dzdt > 0.

Using Gronwall’s 1nequahty, we can get
llu(-rt2) = v(-, 02 Iy < €@ fu(-, 1) = v(, 0l
Letting ¢t; — 0 and setting ¢, = T, we obtain the desired result.
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