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1 Introduction

In this paper we shall study the following complex Ginzburg-Landau equation in a general

domain © C R¥ with smooth boundary 8Q:

Ou — (A +ic)Au+ (k+iB)ul?2u—yu =f in Q x (0, 00),
(CGL) u =0 on 9% x (0, c0),
u(z,0) =up(x), z € Q,

where A,k € Ry := (0,00), «, 8,7 € Rand q > 2 are constants; i = v/—1 is the imaginary unit;
up : 2 — Cis an initial function; f : @%(0,00) — C is an external force; u : {2 x [0,00) 5 Cisa
complex valued unknown function. In extreme cases, equation (CGL) includes two well-known
equations: heat equation (when a = 8 = 0) and Schrédinger equation (when A = k =0). Thus
we see that the equation (CGL) is “intermediate” between nonlinear heat and Schrédinger
equations. From A > 0, we can regard (CGL) as a parabolic type equation, and from k > 0,
we can fined that (CGL) has a negative feedback mechanism in the nonlinear term. By these

insights, we can expect “smoothing effect” and “global solvability”, respectively.

2 Notations and Preliminaries
In what follows, we identify C with R?: u = u;.+ dup € C = U = (u,u)T € R2.

L2(Q) = L2(Q) X L2(Q)’ (U7 ‘/)]L2 = ('u‘lavl)L2 + (UQ,UQ)LZ’,
LI(Q) :=LYQ) x LYQ), [U|fq = |[u1lfq + |uzlfa,
HG(Q) = Hy(Q) x Hy(Q), (U, V) = (u1,v1)my + (u2, v2)m1 -

We introduce the following matrix I, which is a linear operator in R? into itself:

1:(‘1) 01).



We use the nabla symbol V = (Dy,...,Dy) : Hi — (L2)N x (L) as VU = (Vuy, Vug)T.
Then, the following properties are fundamental:

(i) Skew-symmetric property of the matrix I:
(U -V)ge = —(U - IV)ge; (IU-U)ga =0 for each U,V € R%. (2.1)
(ii) Commutative property of the matrix I and the differential opperator D;:
ID;=D;I :H} - L% (i=1,---,N). (2.2)
(iii) Consequences from orthogonality of a vector V and IV:

(U-V)2a + (U-IV)2: = [U|Z:|V|32 for each U,V € R?; (2.3)
(U, V)22 + (U, IV)2, < |UJ:|VIZ:  for each U,V € L3(). (2.4)

Now we define two functionals ¢, ¢ : L2(Q) — (—o0, +00| by

o(U) = %/ﬂ |VU (2)|32dz (if U € Hy(2)), oo (otherwise), (2.5)
WU =1 / U@)|dz (f U€LIQ)NLAQ)), +oo (otherwise).  (2.6)
qJa

Then subdifferential of these functionals are, respectively, single valued and

dp(U)(-) = —AU() (where D(—A) := {U € H}(Q) | AU € L?(Q)}), 2.7
BY(U)(-) = |U()|%2U() (where D(| - |%;%) = L2@~D(Q) NL*(Q)). (2.8)

Proposition 2.1 (Brezis, H. [2] Theorem 9.). Let B be mazimal monotone and ¢ : H - Reo

be proper, convex and lower semi-continuous. Suppose

@((1+uB) 'u) < p(u), VYo >0, VueD(p) (2.9)
Then 0¢ + B is mazimal monotone.
Lemma 2.1. If ¢ = ¢ and B = 8% given by (2.5) and (2.8), then the inequality (2.9) holds.

Proof. Let U € C§() and V := (14+-udy)~'U. Fora.e. v € Q, V(x)+u|V(z) %V (z) = U(z).
Thus defining G : R2 — R? ;V = V + p|V|4,?V, we have G(V(z)) = U(x). Note that G is of

class C! and bijective from R? into itself, and its Jacobian determinant is given by
det DG(V) = (1 + pV|% {1 + (g — 1)|VIL?} #0  for each V € R%

Applying the inverse function theorem, we have G~! € C*(R?;R?). Hence V (z) = G~ (U(z)).
This shows (14 u0v¥)~1C}(Q2) C CH(Q). Let U € HY(Q), V := (1+pdy)~'U and U, € C3(?)
satisfying U, — U in H'(Q). Let V,, := (1 + pdy)~1U, € C§(R2). Since

(Vo = VL2 = |(1 4 pd¢) " Up — (14 pd%) U2 < [Up = Uz = 0 as n — oo,
we have V,, = V in L2(Q). Also defferentiating G(V,(z)) = Un(x) gives

(14 ulVa(@)|2 )V V(@) + plg — 2)|Va(@)|gs* (Va(2) - VVa(2))reValz) = VUn(2).  (2.10)
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Multiplying (2.10) by VV,,(z), we have |[VV,,(z)|2; < (VU (z)-VV,,(x))ge. Therefore we have

[VVole < |[VUg|ez — [VU|L2. Thus the boundedness of {VV,} gives V € H}(Q2), and we
have (1 + pd¢)~!D(p) C D(yp). In addition, by weak lower semi-continuity of the norm, we
have |VV|L2 < |[VU|Le. a

Now since the trivial inclusion A0y +k8Y C (Ap + k) holds, we have shown
A0p + kOY = O(Ap + kb))  for all A,k > 0. (2.11)
Here, we can reduce (CGL) to the following evolution equation:

FU O+ + sy) (U (1)) +aldp(U (1) +BI0%(U () -1U(t) = F(t), ¢ € (0,00),
(E) U©) =0
0-

We introduce the following region:

lzy| - 1 ‘
> < . 2.12
zy > 0 or EEa r ( )

Also, we use the constant ¢4 € [0,00) which denotes a strength of the nonlinearity:

(2.13)

3 Main Results

Theorem 1. Let Q@ C RN be a general domain with smooth boundary, F € L2(0,T;L2(Q))
for all T > 0 and ($,€) € CGL(c;?). If the initial value Uy € HE(2) NLI(Q), then there
ezists a solution U € C([0,00); L%(Q)) of the equation (E) satisfying

(i) U € WH2(0,T;L2(Q)) for all T > 0;

(ii) U(t) € D(0p) ND(8Y) for a.e. t € (0,00) and satisfies (E) for a.e. t € (0,00);

(iit) Op(U(+)), Oy(U(-)) € L2(0,T;L2(Q)) for all T > 0.

Theorem 2. Let Q@ C RN be a general domain with smooth boundary, F € L2(0,T;L2())
for all T > 0 and (%, é) € CGL(c;"). If the initial value Uy € L?(Q), then there ezists a
solution U € C([0,00);L2(Q)) of the equation (E) satisfying

(i) U € Wig2((0, 00); L2(Q));

(ii) U(t) € D(9p) ND(8Y) for a.e. t €(0,00) and satisfies (E) for a.e. t € (0,00);

(iil) e(U(-)), ¥ (U(-)) € LY(0,T) and tp(U(t)), ty(U(t)) € L*(0,T) for all T > 0;

(iv) VILU(t), VEdp(U(t)), Vioy(U(t)) € L*(0,T;L3(Q)) for all T > 0.

4 Key Inequalities
Lemma 4.1. The following inequalities hold for all U € D(8¢) ND(8Y):

1(@e(U), 109(U))12| < ¢q(8p(U), 0%(U))12, (4.1)
[(Bp(U), 184, (U))L2| < cq(8p(U), 8% (U))L2 < ¢q(8p(U), 0%(U))1z, (4.2)

where 8y, (U) = 0¢((1 + udy)~tU) is Yosida approzimation of dw(U).



Proof. Using the definition of Yosida approximation, and letting V := (1 + udy)~!U, we can
reduce (4.2) to (4.1). Thus it is enough to show (4.1).
Calculating the right-hand side of (4.1) by integration by parts, we have

o), 06W))es = [ {(a- DGV VOl + UEVU R} (43)
Also, by integration by parts with (2.1) and (2.2), the left-hand side of (4.1) becomes
(Bp(U), 183(U))12 = (YU, (g — 2)|UIg*(U - VU)geIU + U1 IV )z
= (-2 [ UG VO - (V- Ve (4.4

Thus by Young’s inequality, (2.3) and (4.3), we obtain the desired (4.1) as follows.
(), T0W(eal < (4=2) [ V(U - TV - (U - VOl
1
<(g-2 4 {(g-1)|(U-VU)ge|*+ (IU - VU )2 |?
< (02 [ Wi 5= @ DI(U-FV)ee P+ (10 TV )eol?}

s [ I (- 2I0 - VOl + U2 VU 2}
= cy(@p(U), BV, 0

5 Solvability of Approximate Equation

We treat the following equation:

(AB) { LU(8) + 0(xp + mp)(U (D) + addp(U (1) + BU) = F(t), € (0,00),
U@©) =U,

where B : L2(Q) — L?(Q) is Lipschitz with Lipschitz constant Lp.

Proposition 5.1. Let Q C RY be a general domain, F € L2(0,T;L2%(Q)) for all T > 0,
A\ k>0, a€R and B:L?(Q) - L2(Q) be Lipschitz. If Uy € H§(Q2) NLI(Q), then there exists
a unique solution U € C([0, oo);’]LZ(Q)) of (AE) satisfying

(i) U € Wh2(0,T;L2(Q)) for all T > 0;

(ii) U(t) € D(0p) ND(0Y) for a.e. t € (0,00) and satisfies (AE) for a.e. t € (0,00);

(iii) Op(U(+)), 8¢(U(+)) € L0, T;L%(Q)) for all T > 0.

In order to prove Proposition 5.1, we approximate monotone perturbation term aldp(U)
by aldyp, (U), where 8y, is Yosida approximation of dp: 8¢, (U) = dp((1 + vdp)~U).
A U@ +00p + ) (U (1) + aldp, (U(4)) + B(U(t)) = F(t), t€(0,00),
(AE), U@) =U,
0-
Since al8y, (-)+ B(-) is Lipschitz in .2(£2), approximate equation (AE), has a unique solution
U = U, € C([0,00);L2(2)) by the general theory of subdifferential operator (e.g. [2], [11]).
Note that this approximate solution U, has the same regularities as those of the desired

solution of Proposition 5.1. Then by the standard argument in the maximal monotone operator
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theory, we can show {U, }, 0 is Cauchy in C([0, T];L3(Q)), as well as { £U,, }, {0¢(U.,.)} and
{0¢(U,,,)} are bounded in L?(0, T; L2(£2)). Hence by the demiclosedness of &, 8¢ and 8%,
U,, —» U in C([0,T);L%(Q)),
v, daU . \
o im0, T;L2(@),
d¢(U,:) = 8p(U) in L?(0,T;L%(R)),

0y(Uy,) = 09(U)  in L2(0, T5L%(%2)),

for some sub sequence {V/, }nen C {Vn}nen. Then by the definition of Yosida approximation,

T
lUun - JVnUVnIiz(O,T;]LZ) = A |Uun (5) - JynUun(S)l]]Z_'zdS
T
= Vﬁ/ 10¢,, (U, (8))|F2ds < Cav2 -0 asn — oo.
0

This means Jyv, Uy, = U in L2(0,T;L2(Q2)). Now since 0y, (U,) = 8¢(J,U,), we have

‘fj—(tj + M0p(U) + £09(U) + aldo(U) + BU)=F in L2(0, T;L*(Q)),

in the limit of the approximate equation (AE),, . That is, U is a desired solution of (AE).

6 Proof of Theorem 1

For the first step to prove Theorem 1, we approximate the equation (E) by
ZUO)+00¢ + k) (U (1)) +addp(U (1)) +BI10¢,(U (1)) —yU(t) = F(t), t€ (0,00),
(B, U©) =U
0,
where 9v,,(U) := 89((1 + pdy)~tU) is Yosida approximation of dp(U). This approximate
equation (E), is exactly the same form as that of (AE), whence by Proposition 5.1, (E) ., has
a solution U = U, € C(]0, 00); L2(£2)). Note that U, has the regularities stated in Proposition

5.1. In order to prove Theorem 1, we first derive some a priori estimates.

Lemma 6.1. Let U be a solution of (E),. Fiz T > 0. Then there ezists a positive constant
C1 depending only on v, T, |Up|L2 and fOT |F|2. satisfying
T T
sup |U(t)|2: +/ cp(U(s))ds-f-/ Y(U(s))ds < C;. (6.1)
t€[0,T] 0 0
Proof. Multiplying (E)u by U(t), we have, for a.e. t € (0, 00),
1d 9
5 U + 220U (1) + asb(U (1)
+a(Ip(U(t)),U())L2 + BI8%,(U (1)), U(t))L
~NU®)IE2 = (F(t), U(t))Ls. (6.2)

Note that by integration by parts, (2.1) and (2.2), we have

(18¢(U), Uz =0,
(I04u(U),U)rz = (169(V), V + pdy(V))r2 =0,
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where V := (1 + udv¢)~'U. Hence by (6.2) with Young’s inequality, we have

2 dtlU( )z +220(U(2)) + asyp(U (1) < (v+ + 5 )IU(t)Im + —IF( )tz

where v, := max{v,0}. Thus the Gronwall’s inequality yields

t T
U2 +2 / (27p(U(s))+grp(U (5))} ds < e@r++Dt {IUoliz + /O |F|i2}

for all t € [0, T]. Therefore we obtain the desired estiamte (6.1). O

Lemma 6.2. Let U be a solution of (E),, and let (%, n) € CGL(c;1). Fizx T > 0. Then

there exist a positive constant Co depending only on \ k,, 8,7, T, p(Uo), ¥ (Us), |Uo|L2 and
T | (2 .

Jy |F132 satisfying

T dU
sup o(U(t)) + / >
te[0,T] 0

dat / 10p(U () Eads + / OG(U())fads < o (63)
Proof. Let V(t) := (1 + u@t/))—lU(t). Since
OV, 000 ))s = [IWEIVIE W Vi > [ VRS = 90,0l
(U, 06,(U)) = qé(V) + wlow (V)2 = 0 (0) ~ (&~ Duldw (V) < ap(©),
multiplying (E), by dp(U(t)) and 8, (U (t)) yields
Lo ®) + NORUO)Ea +KG() + BBA(D) = 2ypU (1) + (F, 8p(U (), (6.9

%wu(U(t)) + k|0Y, (U (1))|E2 + AGu(t) — aBu(t) < qvap(U(®)) + (F, 09 (U(#)e2,  (6.5)

where v, := max{v,0} and

= (0p(U), 09 (U))ez,
= (0p(U), Ia"/’p(U))Lz.

We add (6.4)x62 and (6.5) for some § > 0 to get

G := (0p(U), 09(U))vL2,
Gu
B

d
7 {8%0(U) + $u(U)} + 8°M0p(U) E2 + |04, (U)If2
+ 6%kG + MG, + (628 — @)B,,
< v+ {26%0(U) + qp(U) } + (F,6%00(U) + 89, (U))L2.  (6.6)

Let ¢ € (0, min{), x}) be a small parameter. By the inequality of arithmetic and geometric

means, and the fundamental property (2.4), we have

8 Adp(U)[z + k10w, (V)i
= e {82(0p(U) 2 + 18U} + (A = )8 100 (U)|Ez + (5 — €)|0, (V)i

> e {10p(U) 22 + |99, (U) 2} +20/ (A — €)(5 — 82100(V) |00 U) 2
> e {8210p(U) 2 + 100 (U) B2} + 20/ (A = €)(k — 8(G, + B2). 6.7)
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Note that by the key inequality Lemma 4.2
G>G, > c;' Byl (6.8)
Therefore combining (6.6), (6.7) and (6.8) yields
d
= {8%0(U) + ¥u(U)} + e {8100(U) [z + 104, (U)IE2} + J(6,€)| Bl
< 74 {28%(U) + q¥(U)} + (F,6°00(U) + 8 (U))iz.  (6.9)

where

J(5,¢) = 264/ (1 + cz*)(A = €)(x — €) + c7 (6% + A) — |28 — o

Now we show that ($, é) € CGL(c; ") gives J(J,€) > 0 for some 6 and €. By the continuity
of € — J(4,¢€) it suffices to show J((S, 0) > 0 for some §. When af > 0, it is enough to take
6 = \/a/B. When aff <0, we have |82 — a} = 62|8| + ||. Hence

J(8,0) = (c; 'k — |B)8 + 261/ (1 + 7 ) Ak + (c;* X — |at]).

Therefore if |8|/k < c;', we have J(6,0) > 0 for sufficiently large § > 0. If ¢;* < |B]/k, we

find that it is enough to see the descriminant is positive:
D/4:=(1+c;) Ak — (c;'x — |B|)(c;* A — |a]) > 0. (6.10)

Since

D/4>O®L§1%—l<c‘l(m+@),

1 A K

the condition (%, g) € CGL(c; ") yields D > 0, whence J(8,0) > 0 for some 4.
Now we take ¢ and e satisfying J(d,¢) > 0. By Lemma 6.1, integrating (6.9) gives

T

T
sup_ (U (1)) + / 0 (U (s))[22ds + / 10%,(U(s))Rads < C, (6.11)
tef0,T] 0 0

where C; depends on the constants stated in Lemma 6.2. We multiply (E) . by 09(U) to get

Z9(U) + KO s + XBpV), B9(0))es
= ~a(I99(U), Bz ~ BUBVLU), BH(U))z + ayi(U) + (F, (V)
< IOV + 180 + v V) + SO + 2P (612)

Hence by (4.1) and (6.11), integrating (6.12) yields

T
[ 10v0)ads < o (6.13)
0
Finally, combining (E), with (6.11) and (6.13), we obtain the desired estimate (6.3). (]

Now we prove Theorem 1.



Proof of Theorem 1. Let U, be a solution of (E) ,, and fix T > 0. By Lemma 6.1 and 6.2, we

have a sequence u, | 0 satisfying

U,, = U weakly in L?(0, T; H}()), (6.14)
i%;iﬁ = % weakly in L2(0,T;L2()), (6.15)
0pU,,) = G weakly in L*(0,T; HJ?(Q)), (6.16)
OY(U,,) —~ H weakly in L2(0,T;L%(Q)), (6.17)

for some function G, H € L?(0,T;L?(Q)). Note that we use the weak closedness of & in
L%(0,T;L2(Q)) to (6.15).

First we show G = 8¢(U) in L2(0, T;L2(2)). For each W € C(Q2) and w € C(0,T), we
have w(t)W € L?(0,T;L?(f2)). Hence in the limit of (6.14) and (6.16), we obtain

T

T
/ w(s)(G(s),W)des:/ w(s)(U(s), —AW)y2ds.
0 0

Then by the fandamental lemma of calculus of variations, (G(t), W)z = (U(t), —AW)g2 for
a.e. t € (0,T), so that —AU(t) = G(t) € L3(Q2). Also by (6.14), U(t) € Hy(Q) a.e. t € (0,T).
Therefore U(t) € D(9p) and dp(U(t)) = —AU(t) = G(t) for a.e. t € (0,T). |

Next in order to see H = 8¢(U) in L2(0, T;1L2(2)), we are showing

Uy — U  in C(0,T;L%(Q")) for each bounded @' C Q, (6.18)

for some subsequence {u,,} C {u.}. To confirm this, we use Ascoli’s theorem and a diagonal
argument. Let {Q}xen be bounded domains in RY with smooth boundaries satisfying (i)
Q. C Qpy1 C Q foreach k € N; (ii) for all bounded Q' C 2 there exists k. € N such that
Q' C Q. Fix k € N. By Lemma 6.1 and 6.2, we have

1 1

ta dU 2 [2] 2
U (t2) = Uy, (1) 2 (020) < {/ *‘d—;ﬁ ds {/ ds} <VCavitz —t1, (6.19)

ty L2(52) t '

Ui Ol 1) = Wn D220y + VU (B)1F2(0) < C1 +2C5. (6.20)

By (6.19), {U,.} is uniformly equicontinuous in C(0,T’;L?(Q%)), and by (6.20), {U,, ()} is

relatively compact in L2(2) for each t € (0,T). Hence by Ascoli’s theorem, we have
Uue = U*  in C([0,T];L?(%)) as n — oo,

for some function U* € C([0,T];L?(Q%)) and some subsequence {uX}nen C {tn}nen. Now
we take a subsequence successively from k = 1 to co: {ukt1},en C {1k }nen for each k € N.

Then the diagonal sequence {ul }nen =: {1, }nen satisfies
Uu — U in C([0,T};L?(%)) as n— oo for each k € N. (6.21)

On the other hand, by (6.14), we have

Uy, —U weakly in L?(0,T;L*(%)) asn — oo for each k € N. (6.22)
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Thus by the uniqueness of a weak limit, we have U*¥ = U in L?(0,T;L%(Q)). Finally since
Q' C Q for some k, we obtain the desired convergence (6.18) from (6.21).

Now we are show H = dy(U) in L2(0,T;1L2(2)). By the demiclosedness of U — |U|%,2U
in L2(0,T;L2(Y)), we have

U(t) e LX9~)(Q)  for ae. t € (0,T), (6.23)
H@) = [U®)I&2U®E) in L) for ae. t € (0,T). (6.24)

Since (6.24) holds for all bounded Q' C Q, we have |U(t)|& J2U(t) = H(t) for ae. = € Q, so
that U(t) € D(¢) and H(t) = 0y(U(t)) for a.e. t € (0,T).

Finally we are showing that the function U satisfies equation (E). Note that J,: Uy — U
in L2(0,7;L2(Q')) by Lemma 6.2 where J, := (1 + pdy)~!. By the demiclosedness of 9y
in L2(0, T;1.2(')), we fined that U satisfies (E) in L2(0,T;1L2(Q')) for all bounded Q' C 2.
Hence it also satisfies (E) in L2(0, T;L%(Q)). U(0) = Up in L%(2) can be obtained immediately
from (6.18), since Uy, (0) = Uy for each n € N. a

7 Proof of Theorem 2

Now we are proving Theorem 2. Let Up, € H§(Q) NL9(Q) satisfying Upn, — Up in L2(R).
By Theorem 1, we have a solution U, € C([0,T];L?(Q)) corresponding to the initial value

Uon. First we derive some a priori estimates for the solution of (E) with Uy € Hf N LY.

Lemma 7.1. Let U be a solution of (E), and fix T > 0. Then there exists a positive constant
C, depending only on v, T, |Up|L2 and fOT |F|2; satisfying

sup |U(t)|32 +/ e(U(s )ds+/ Y(U(s))ds < C. (7.1)
te[0,T) 0

Lemma 7.2. Let U be a solution of (E) with Uy € H§(2) NL4(Q) and (§, é) € CGL(c; ).
Fiz T > 0. Then there exist a positive constant Co depending only on Ak, 0o, 3,7, T, |Up|L2
and fOT |F|2; satisfying

2

R /O s|Op(U(8))|22ds + /0 S|OV(U (s))[2ads < Cs. (7.2)

sup tgo(U(t))+/0 s

te[0,T)

Since proofs are almost exactly the same as those of Lemma 6.1 and 6.2, we skip the details.

Proof of Theorem 2. Let U, be a solution of (E) with U, (0) = Uy, € H}(2) NL%(Q), where
Uon — Up in L?(Q). By Lemma 7.1 and 7.2, we have {my}nen C {n}nen satisfying

Um =U weakly m Lloc((07 OO); IHI(I)(Q))» (73)
Vi dzm" \f = weakly in L%(0, T;L%(Q)), (7.4)
Vidp(Un,) — \f G weakly in L%(0, T; 1L2(2)), (7.5)

Vioy(Um,) — VtH weakly in L2(0,T;L%(2)), (7.6)



for some function G, H. Note that we use the weak closedness of 4 in L2(4, T;L2((2)) for any
§ € (0,T) to (7.4). First by the same argument as those of Theorem 1, we have G = 0p(U) in
L2(6,T;L%(Q)) for any § € (0,T), so that G = 9p(U) a.e. t € (0,T). Next, also by the same

argument as those of Theorem 1, we have
Up: — U in C(5,T;L*(€)) for each bounded ' C © and 6 € (0,T), (7.7)

for some subsequence {m/,} < {my}. Therefore this yields H = dy(U) in L2(4, T;L?()) for
any 6 € (0,T), so that a.e. t € (0,T). Now we find that U satisfies equation (E) in the limit
(my, — 00) of the approximate equation of Uy, . Thus in order to finish the proof, it is enough

to check
Ut) > U inL%*Q) ast]O0. (7.8)

First we show U(t) — Uy weakly in L2(Q2). Multiplying the approximate equation of U, by
each W € C3°(R2), we have

& (Unlt), Wit = 21(Un(0), Wi + (F(1), W)
— (A -+ aDOR(UAE), W)z — (5 + BDBYUA(0), Wha.  (79)

Hence integrating (7.9) and taking the absolute value gives
' t t
|(Un(t) = Uon, Wr2| < I’YHWIV/ [Un(s)|r2ds + |W|1L2/ |F(s)|L2ds
0 0
t
+ (A + o) [VW]g2 / VU ()l2ds
0

t
4+ (4 181) /0 /Q Un(8)]83 " [W [gadads.

Thus using Hélder’s inequality with Lemma 7.1, we have the estimate

t 3
|(Un(t) = Uopn, W)p2| < Ile/ﬁwhpu{ /0 IF(s)[ist} |W |L2t?
+ (A + () V201 VW |iat? + (5 + 81)(¢C1) T |W|Lat7. (7.10)

Letting n = m], — oo, we have |(U(t) — Up, W)2| < Ct7 for sufficiently small ¢ > 0, so that
U(t) — Up in D'(). Since C=(Q) c L2(Q) is dense, we have U(t) — Up weakly in L?(1).

Then we show |U(t)[?, — |Ug|?,. By the argument of Lemma 7.1, we have

t
[Un ()22 < e@r++Dt {|Uonliz +/ IF(S)hizds}-
0

Hence letting n — oo gives |U(t)|2, < e27++Dt {|Up]2, +f0t |F(s)|22ds}. Then letting t | 0,
we have limo|U(¢)|? < |Uol?,. On the other hand, since U(t) — Uy, we have |Uplf. <

lim, ,|U (¢)|2. by the weak lower semicontinuity of the norm. Therefore |U(t)|f> — |Uolf.. O
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