Solvability of complex Ginzburg-Landau equation in a general domain

Shoji Shimizu

Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University

Mitsuharu Ôtani

Department of Applied Physics,

School of Science and Engineering, Waseda University

1 Introduction

In this paper we shall study the following complex Ginzburg-Landau equation in a general domain $\Omega \subset \mathbb{R}^N$ with smooth boundary $\partial \Omega$:

(CGL)
$$\begin{cases} \partial_t u - (\lambda + i\alpha)\Delta u + (\kappa + i\beta)|u|^{q-2}u - \gamma u &= f & \text{in } \Omega \times (0, \infty), \\ u &= 0 & \text{on } \partial\Omega \times (0, \infty), \\ u(x, 0) &= u_0(x), & x \in \Omega, \end{cases}$$

where $\lambda, \kappa \in \mathbb{R}_+ := (0, \infty), \alpha, \beta, \gamma \in \mathbb{R}$ and $q \geq 2$ are constants; $i = \sqrt{-1}$ is the imaginary unit; $u_0 : \Omega \to \mathbb{C}$ is an initial function; $f : \Omega \times (0, \infty) \to \mathbb{C}$ is an external force; $u : \overline{\Omega} \times [0, \infty) \to \mathbb{C}$ is a complex valued unknown function. In extreme cases, equation (CGL) includes two well-known equations: heat equation (when $\alpha = \beta = 0$) and Schrödinger equation (when $\lambda = \kappa = 0$). Thus we see that the equation (CGL) is "intermediate" between nonlinear heat and Schrödinger equations. From $\lambda > 0$, we can regard (CGL) as a parabolic type equation, and from $\kappa > 0$, we can fined that (CGL) has a negative feedback mechanism in the nonlinear term. By these insights, we can expect "smoothing effect" and "global solvability", respectively.

2 Notations and Preliminaries

In what follows, we identify \mathbb{C} with \mathbb{R}^2 : $u = u_1 + iu_2 \in \mathbb{C} \mapsto U = (u_1, u_2)^T \in \mathbb{R}^2$.

$$\begin{split} \mathbb{L}^2(\Omega) &:= \mathbb{L}^2(\Omega) \times \mathbb{L}^2(\Omega), \quad (U,V)_{\mathbb{L}^2} := (u_1,v_1)_{\mathbb{L}^2} + (u_2,v_2)_{\mathbb{L}^2}, \\ \mathbb{L}^q(\Omega) &:= \mathbb{L}^q(\Omega) \times \mathbb{L}^q(\Omega), \quad |U|_{\mathbb{L}^q}^q := |u_1|_{\mathbb{L}^q}^q + |u_2|_{\mathbb{L}^q}^q, \\ \mathbb{H}^1_0(\Omega) &:= \mathbb{H}^1_0(\Omega) \times \mathbb{H}^1_0(\Omega), \quad (U,V)_{\mathbb{H}^1_0} := (u_1,v_1)_{\mathbb{H}^1_0} + (u_2,v_2)_{\mathbb{H}^1_0}. \end{split}$$

We introduce the following matrix I, which is a linear operator in \mathbb{R}^2 into itself:

$$I = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

We use the nabla symbol $\nabla = (D_1, \dots, D_N) : \mathbb{H}_0^1 \to (L^2)^N \times (L^2)^N$ as $\nabla U = (\nabla u_1, \nabla u_2)^T$. Then, the following properties are fundamental:

(i) Skew-symmetric property of the matrix I:

$$(IU \cdot V)_{\mathbb{R}^2} = -(U \cdot IV)_{\mathbb{R}^2}; \quad (IU \cdot U)_{\mathbb{R}^2} = 0 \quad \text{for each } U, V \in \mathbb{R}^2.$$
 (2.1)

(ii) Commutative property of the matrix I and the differential opperator D_i :

$$ID_i = D_i I : \mathbb{H}^1_0 \to \mathbb{L}^2 \ (i = 1, \dots, N).$$
 (2.2)

(iii) Consequences from orthogonality of a vector V and IV:

$$(U \cdot V)_{\mathbb{P}^2}^2 + (U \cdot IV)_{\mathbb{P}^2}^2 = |U|_{\mathbb{P}^2}^2 |V|_{\mathbb{P}^2}^2 \quad \text{for each } U, V \in \mathbb{R}^2;$$
 (2.3)

$$(U, V)_{\mathbb{L}^2}^2 + (U, IV)_{\mathbb{L}^2}^2 \le |U|_{\mathbb{L}^2}^2 |V|_{\mathbb{L}^2}^2 \quad \text{for each } U, V \in \mathbb{L}^2(\Omega).$$
 (2.4)

Now we define two functionals $\varphi, \psi : \mathbb{L}^2(\Omega) \to (-\infty, +\infty]$ by

$$\varphi(U) := \frac{1}{2} \int_{\Omega} |\nabla U(x)|_{\mathbb{R}^2}^2 dx \quad (\text{if } U \in \mathbb{H}_0^1(\Omega)), \quad +\infty \quad (\text{otherwise}), \tag{2.5}$$

$$\psi(U) := \frac{1}{q} \int_{\Omega} |U(x)|_{\mathbb{R}^2}^q dx \quad (\text{if } U \in \mathbb{L}^q(\Omega) \cap \mathbb{L}^2(\Omega)), \quad +\infty \quad (\text{otherwise}). \tag{2.6}$$

Then subdifferential of these functionals are, respectively, single valued and

$$\partial \varphi(U)(\cdot) = -\Delta U(\cdot) \quad \text{(where D(-\Delta) := } \{ U \in \mathbb{H}_0^1(\Omega) \mid \Delta U \in \mathbb{L}^2(\Omega) \}), \tag{2.7}$$

$$\partial \psi(U)(\cdot) = |U(\cdot)|_{\mathbb{R}^2}^{q-2} U(\cdot) \quad \text{(where D(|\cdot|_{\mathbb{R}^2}^{q-2} \cdot)) := \mathbb{L}^{2(q-1)}(\Omega) \cap \mathbb{L}^2(\Omega)).}$$

Proposition 2.1 (Brezis, H. [2] Theorem 9.). Let B be maximal monotone and $\phi: H \to \mathbb{R}_{\infty}$ be proper, convex and lower semi-continuous. Suppose

$$\varphi((1+\mu B)^{-1}u) \le \varphi(u), \quad \forall \mu > 0, \quad \forall u \in D(\varphi). \tag{2.9}$$

Then $\partial \phi + B$ is maximal monotone.

Lemma 2.1. If $\phi = \varphi$ and $B = \partial \psi$ given by (2.5) and (2.8), then the inequality (2.9) holds.

Proof. Let $U \in \mathbb{C}^1_0(\Omega)$ and $V := (1+\mu\partial\psi)^{-1}U$. For a.e. $x \in \Omega$, $V(x)+\mu|V(x)|_{\mathbb{R}^2}^{q-2}V(x) = U(x)$. Thus defining $G : \mathbb{R}^2 \to \mathbb{R}^2$; $V \mapsto V + \mu|V|_{\mathbb{R}^2}^{q-2}V$, we have G(V(x)) = U(x). Note that G is of class \mathbb{C}^1 and bijective from \mathbb{R}^2 into itself, and its Jacobian determinant is given by

$$\det DG(V) = (1 + \mu |V|_{\mathbb{R}^2}^{q-2}) \{ 1 + \mu (q-1) |V|_{\mathbb{R}^2}^{q-2} \} \neq 0 \quad \text{ for each } V \in \mathbb{R}^2.$$

Applying the inverse function theorem, we have $G^{-1} \in C^1(\mathbb{R}^2; \mathbb{R}^2)$. Hence $V(x) = G^{-1}(U(x))$. This shows $(1 + \mu \partial \psi)^{-1} \mathbb{C}^1_0(\Omega) \subset \mathbb{C}^1_0(\Omega)$. Let $U \in \mathbb{H}^1_0(\Omega)$, $V := (1 + \mu \partial \psi)^{-1} U$ and $U_n \in \mathbb{C}^1_0(\Omega)$ satisfying $U_n \to U$ in $\mathbb{H}^1(\Omega)$. Let $V_n := (1 + \mu \partial \psi)^{-1} U_n \in \mathbb{C}^1_0(\Omega)$. Since

$$|V_n - V|_{\mathbb{L}^2} = |(1 + \mu \partial \psi)^{-1} U_n - (1 + \mu \partial \psi)^{-1} U|_{\mathbb{L}^2} \le |U_n - U|_{\mathbb{L}^2} \to 0 \quad \text{as } n \to \infty,$$

we have $V_n \to V$ in $\mathbb{L}^2(\Omega)$. Also defferentiating $G(V_n(x)) = U_n(x)$ gives

$$(1 + \mu |V_n(x)|_{\mathbb{R}^2}^{q-2}) \nabla V_n(x) + \mu (q-2) |V_n(x)|_{\mathbb{R}^2}^{q-4} (V_n(x) \cdot \nabla V_n(x))_{\mathbb{R}^2} V_n(x) = \nabla U_n(x). \quad (2.10)$$

Multiplying (2.10) by $\nabla V_n(x)$, we have $|\nabla V_n(x)|_{\mathbb{R}^2}^2 \leq (\nabla U_n(x) \cdot \nabla V_n(x))_{\mathbb{R}^2}$. Therefore we have $|\nabla V_n|_{\mathbb{L}^2} \leq |\nabla U_n|_{\mathbb{L}^2} \to |\nabla U|_{\mathbb{L}^2}$. Thus the boundedness of $\{\nabla V_n\}$ gives $V \in \mathbb{H}_0^1(\Omega)$, and we have $(1 + \mu \partial \psi)^{-1} D(\varphi) \subset D(\varphi)$. In addition, by weak lower semi-continuity of the norm, we have $|\nabla V|_{\mathbb{L}^2} \leq |\nabla U|_{\mathbb{L}^2}$.

Now since the trivial inclusion $\lambda \partial \varphi + \kappa \partial \psi \subset \partial (\lambda \varphi + \kappa \psi)$ holds, we have shown

$$\lambda \partial \varphi + \kappa \partial \psi = \partial (\lambda \varphi + \kappa \psi) \quad \text{for all } \lambda, \kappa > 0.$$
 (2.11)

Here, we can reduce (CGL) to the following evolution equation:

$$(\mathbf{E}) \left\{ \begin{array}{ll} \frac{d}{dt} U(t) + \partial (\lambda \varphi + \kappa \psi)(U(t)) + \alpha I \partial \varphi(U(t)) + \beta I \partial \psi(U(t)) - \gamma U(t) & = F(t), \ \ t \in (0, \infty), \\ U(0) & = U_0. \end{array} \right.$$

We introduce the following region:

$$CGL(r) := \left\{ (x, y) \in \mathbb{R}^2 \mid xy \ge 0 \text{ or } \frac{|xy| - 1}{|x| + |y|} < r \right\}.$$
 (2.12)

Also, we use the constant $c_q \in [0, \infty)$ which denotes a strength of the nonlinearity:

$$c_q := \frac{q-2}{2\sqrt{q-1}} \tag{2.13}$$

3 Main Results

Theorem 1. Let $\Omega \subset \mathbb{R}^N$ be a general domain with smooth boundary, $F \in L^2(0,T;\mathbb{L}^2(\Omega))$ for all T > 0 and $(\frac{\alpha}{\lambda}, \frac{\beta}{\kappa}) \in \mathrm{CGL}(c_q^{-1})$. If the initial value $U_0 \in \mathbb{H}_0^1(\Omega) \cap \mathbb{L}^q(\Omega)$, then there exists a solution $U \in \mathrm{C}([0,\infty);\mathbb{L}^2(\Omega))$ of the equation (E) satisfying

- (i) $U \in W^{1,2}(0,T; \mathbb{L}^2(\Omega))$ for all T > 0;
- (ii) $U(t) \in D(\partial \varphi) \cap D(\partial \psi)$ for a.e. $t \in (0, \infty)$ and satisfies (E) for a.e. $t \in (0, \infty)$;
- (iii) $\partial \varphi(U(\cdot)), \ \partial \psi(U(\cdot)) \in L^2(0,T;\mathbb{L}^2(\Omega)) \text{ for all } T > 0.$

Theorem 2. Let $\Omega \subset \mathbb{R}^N$ be a general domain with smooth boundary, $F \in L^2(0,T;\mathbb{L}^2(\Omega))$ for all T > 0 and $(\frac{\alpha}{\lambda}, \frac{\beta}{\kappa}) \in \mathrm{CGL}(c_q^{-1})$. If the initial value $U_0 \in \mathbb{L}^2(\Omega)$, then there exists a solution $U \in \mathrm{C}([0,\infty);\mathbb{L}^2(\Omega))$ of the equation (E) satisfying

- (i) $U \in W^{1,2}_{loc}((0,\infty); \mathbb{L}^2(\Omega));$
- (ii) $U(t) \in D(\partial \varphi) \cap D(\partial \psi)$ for a.e. $t \in (0, \infty)$ and satisfies (E) for a.e. $t \in (0, \infty)$;
- (iii) $\varphi(U(\cdot)), \psi(U(\cdot)) \in L^1(0,T)$ and $t\varphi(U(t)), t\psi(U(t)) \in L^\infty(0,T)$ for all T > 0;
- (iv) $\sqrt{t} \frac{d}{dt} U(t)$, $\sqrt{t} \partial \varphi(U(t))$, $\sqrt{t} \partial \psi(U(t)) \in L^2(0,T; \mathbb{L}^2(\Omega))$ for all T > 0.

4 Key Inequalities

Lemma 4.1. The following inequalities hold for all $U \in D(\partial \varphi) \cap D(\partial \psi)$:

$$|(\partial \varphi(U), I \partial \psi(U))_{\mathbb{L}^2}| \le c_q(\partial \varphi(U), \partial \psi(U))_{\mathbb{L}^2}, \tag{4.1}$$

$$|(\partial \varphi(U), I \partial \psi_{\mu}(U))_{\mathbb{L}^2}| \le c_q(\partial \varphi(U), \partial \psi_{\mu}(U))_{\mathbb{L}^2} \le c_q(\partial \varphi(U), \partial \psi(U))_{\mathbb{L}^2}, \tag{4.2}$$

where $\partial \psi_{\mu}(U) = \partial \psi((1 + \mu \partial \psi)^{-1}U)$ is Yosida approximation of $\partial \psi(U)$.

Proof. Using the definition of Yosida approximation, and letting $V := (1 + \mu \partial \psi)^{-1}U$, we can reduce (4.2) to (4.1). Thus it is enough to show (4.1).

Calculating the right-hand side of (4.1) by integration by parts, we have

$$(\partial \varphi(U), \partial \psi(U))_{\mathbb{L}^2} = \int_{\Omega} \left\{ (q-2)|U|_{\mathbb{R}^2}^{q-4} |(U \cdot \nabla U)_{\mathbb{R}^2}|^2 + |U|_{\mathbb{R}^2}^{q-2} |\nabla U|_{\mathbb{R}^2}^2 \right\}. \tag{4.3}$$

Also, by integration by parts with (2.1) and (2.2), the left-hand side of (4.1) becomes

$$(\partial \varphi(U), I \partial \psi(U))_{\mathbb{L}^{2}} = (\nabla U, (q-2)|U|_{\mathbb{R}^{2}}^{q-4} (U \cdot \nabla U)_{\mathbb{R}^{2}} IU + |U|_{\mathbb{R}^{2}}^{q-2} I \nabla U)_{\mathbb{L}^{2}}$$

$$= (q-2) \int_{\Omega} |U|_{\mathbb{R}^{2}}^{q-4} (U \cdot \nabla U)_{\mathbb{R}^{2}} \cdot (IU \cdot \nabla U)_{\mathbb{R}^{2}}. \tag{4.4}$$

Thus by Young's inequality, (2.3) and (4.3), we obtain the desired (4.1) as follows.

$$\begin{split} |(\partial \varphi(U), I \partial \psi(U))_{\mathbb{L}^{2}}| &\leq (q-2) \int_{\Omega} |U|_{\mathbb{R}^{2}}^{q-4} |(U \cdot \nabla U)_{\mathbb{R}^{2}} \cdot (IU \cdot \nabla U)_{\mathbb{R}^{2}}| \\ &\leq (q-2) \int_{\Omega} |U|_{\mathbb{R}^{2}}^{q-4} \frac{1}{2\sqrt{q-1}} \left\{ (q-1)|(U \cdot \nabla U)_{\mathbb{R}^{2}}|^{2} + (IU \cdot \nabla U)_{\mathbb{R}^{2}}|^{2} \right\} \\ &= c_{q} \int_{\Omega} |U|_{\mathbb{R}^{2}}^{q-4} \left\{ (q-2)|(U \cdot \nabla U)_{\mathbb{R}^{2}}|^{2} + |U|_{\mathbb{R}^{2}}^{2} |\nabla U|_{\mathbb{R}^{2}}^{2} \right\} \\ &= c_{q} (\partial \varphi(U), \partial \psi(U))_{\mathbb{L}^{2}}. \end{split}$$

5 Solvability of Approximate Equation

We treat the following equation:

$$(\mathrm{AE}) \left\{ \begin{array}{ll} \frac{d}{dt} U(t) + \partial (\lambda \varphi + \kappa \psi)(U(t)) + \alpha I \partial \varphi(U(t)) + B(U(t)) &= F(t), \quad t \in (0, \infty), \\ U(0) &= U_0, \end{array} \right.$$

where $B: \mathbb{L}^2(\Omega) \to \mathbb{L}^2(\Omega)$ is Lipschitz with Lipschitz constant L_B .

Proposition 5.1. Let $\Omega \subset \mathbb{R}^N$ be a general domain, $F \in L^2(0,T;\mathbb{L}^2(\Omega))$ for all T > 0, $\lambda, \kappa > 0$, $\alpha \in \mathbb{R}$ and $B : \mathbb{L}^2(\Omega) \to \mathbb{L}^2(\Omega)$ be Lipschitz. If $U_0 \in \mathbb{H}^1_0(\Omega) \cap \mathbb{L}^q(\Omega)$, then there exists a unique solution $U \in C([0,\infty);\mathbb{L}^2(\Omega))$ of (AE) satisfying

- (i) $U \in W^{1,2}(0,T; \mathbb{L}^2(\Omega))$ for all T > 0:
- (ii) $U(t) \in D(\partial \varphi) \cap D(\partial \psi)$ for a.e. $t \in (0, \infty)$ and satisfies (AE) for a.e. $t \in (0, \infty)$;
- (iii) $\partial \varphi(U(\cdot))$, $\partial \psi(U(\cdot)) \in L^2(0,T; \mathbb{L}^2(\Omega))$ for all T > 0.

In order to prove Proposition 5.1, we approximate monotone perturbation term $\alpha I \partial \varphi(U)$ by $\alpha I \partial \varphi_{\nu}(U)$, where $\partial \varphi_{\nu}$ is Yosida approximation of $\partial \varphi$: $\partial \varphi_{\nu}(U) = \partial \varphi((1 + \nu \partial \varphi)^{-1}U)$.

$$\left(\mathrm{AE}\right)_{\nu} \left\{ \begin{array}{ll} \frac{d}{dt}U(t) + \partial(\lambda\varphi + \kappa\psi)(U(t)) + \alpha I\partial\varphi_{\nu}(U(t)) + B(U(t)) &= F(t), \ \ t \in (0,\infty), \\ U(0) &= U_{0}. \end{array} \right.$$

Since $\alpha I \partial \varphi_{\nu}(\cdot) + B(\cdot)$ is Lipschitz in $\mathbb{L}^{2}(\Omega)$, approximate equation $(AE)_{\nu}$ has a unique solution $U = U_{\nu} \in C([0, \infty); \mathbb{L}^{2}(\Omega))$ by the general theory of subdifferential operator (e.g. [2], [11]). Note that this approximate solution U_{ν} has the same regularities as those of the desired solution of Proposition 5.1. Then by the standard argument in the maximal monotone operator

theory, we can show $\{U_{\nu}\}_{\nu\downarrow 0}$ is Cauchy in $C([0,T];\mathbb{L}^2(\Omega))$, as well as $\{\frac{d}{dt}U_{\nu_n}\}$, $\{\partial\varphi(U_{\nu_n})\}$ and $\{\partial\psi(U_{\nu_n})\}$ are bounded in $L^2(0,T;\mathbb{L}^2(\Omega))$. Hence by the demiclosedness of $\frac{d}{dt}$, $\partial\varphi$ and $\partial\psi$,

$$U_{\nu_n} \to U \quad \text{in } C([0,T]; \mathbb{L}^2(\Omega));$$

$$\frac{dU_{\nu'_n}}{dt} \rightharpoonup \frac{dU}{dt} \quad \text{in } L^2(0,T; \mathbb{L}^2(\Omega)),$$

$$\partial \varphi(U_{\nu'_n}) \rightharpoonup \partial \varphi(U) \quad \text{in } L^2(0,T; \mathbb{L}^2(\Omega)),$$

$$\partial \psi(U_{\nu'_n}) \rightharpoonup \partial \psi(U) \quad \text{in } L^2(0,T; \mathbb{L}^2(\Omega)),$$

for some sub sequence $\{\nu'_n\}_{n\in\mathbb{N}}\subset\{\nu_n\}_{n\in\mathbb{N}}$. Then by the definition of Yosida approximation,

$$\begin{split} |U_{\nu_n} - J_{\nu_n} U_{\nu_n}|_{\mathbb{L}^2(0,T;\mathbb{L}^2)}^2 &= \int_0^T |U_{\nu_n}(s) - J_{\nu_n} U_{\nu_n}(s)|_{\mathbb{L}^2}^2 ds \\ &= \nu_n^2 \int_0^T |\partial \varphi_{\nu_n}(U_{\nu_n}(s))|_{\mathbb{L}^2}^2 ds \leq C_2 \nu_n^2 \to 0 \quad \text{as } n \to \infty. \end{split}$$

This means $J_{\nu_n}U_{\nu_n} \to U$ in $L^2(0,T;\mathbb{L}^2(\Omega))$. Now since $\partial \varphi_{\nu}(U_{\nu}) = \partial \varphi(J_{\nu}U_{\nu})$, we have

$$\frac{dU}{dt} + \lambda \partial \varphi(U) + \kappa \partial \psi(U) + \alpha I \partial \varphi(U) + B(U) = F \quad \text{in } L^{2}(0, T; \mathbb{L}^{2}(\Omega)),$$

in the limit of the approximate equation $(AE)_{\nu'_n}$. That is, U is a desired solution of (AE).

6 Proof of Theorem 1

For the first step to prove Theorem 1, we approximate the equation (E) by

$$(\mathbf{E})_{\mu} \left\{ \begin{array}{ll} \frac{d}{dt} U(t) + \partial (\lambda \varphi + \kappa \psi)(U(t)) + \alpha I \partial \varphi(U(t)) + \beta I \partial \psi_{\mu}(U(t)) - \gamma U(t) & = F(t), \ t \in (0, \infty), \\ U(0) & = U_0, \end{array} \right.$$

where $\partial \psi_{\mu}(U) := \partial \psi((1 + \mu \partial \psi)^{-1}U)$ is Yosida approximation of $\partial \varphi(U)$. This approximate equation $(E)_{\mu}$ is exactly the same form as that of (AE), whence by Proposition 5.1, $(E)_{\mu}$ has a solution $U = U_{\mu} \in C([0, \infty); \mathbb{L}^2(\Omega))$. Note that U_{μ} has the regularities stated in Proposition 5.1. In order to prove Theorem 1, we first derive some a priori estimates.

Lemma 6.1. Let U be a solution of $(E)_{\mu}$. Fix T > 0. Then there exists a positive constant C_1 depending only on γ , T, $|U_0|_{\mathbb{L}^2}$ and $\int_0^T |F|_{\mathbb{L}^2}^2$ satisfying

$$\sup_{t \in [0,T]} |U(t)|_{\mathbb{L}^2}^2 + \int_0^T \varphi(U(s))ds + \int_0^T \psi(U(s))ds \le C_1.$$
 (6.1)

Proof. Multiplying $(E)_{\mu}$ by U(t), we have, for a.e. $t \in (0, \infty)$,

$$\frac{1}{2} \frac{d}{dt} |U(t)|_{\mathbb{L}^{2}}^{2} + 2\lambda \varphi(U(t)) + q\kappa \psi(U(t))
+ \alpha (I\partial \varphi(U(t)), U(t))_{\mathbb{L}^{2}} + \beta (I\partial \psi_{\mu}(U(t)), U(t))_{\mathbb{L}^{2}}
- \gamma |U(t)|_{\mathbb{L}^{2}}^{2} = (F(t), U(t))_{\mathbb{L}^{2}}.$$
(6.2)

Note that by integration by parts, (2.1) and (2.2), we have

$$(I\partial\varphi(U), U)_{\mathbb{L}^2} = 0,$$

 $(I\partial\psi_{\mu}(U), U)_{\mathbb{L}^2} = (I\partial\psi(V), V + \mu\partial\psi(V))_{\mathbb{L}^2} = 0,$

where $V := (1 + \mu \partial \psi)^{-1}U$. Hence by (6.2) with Young's inequality, we have

$$\frac{1}{2}\frac{d}{dt}|U(t)|_{\mathbb{L}^2}^2 + 2\lambda\varphi(U(t)) + q\kappa\psi(U(t)) \le (\gamma_+ + \frac{1}{2})|U(t)|_{\mathbb{L}^2}^2 + \frac{1}{2}|F(t)|_{\mathbb{L}^2}^2$$

where $\gamma_{+} := \max\{\gamma, 0\}$. Thus the Gronwall's inequality yields

$$|U(t)|_{\mathbb{L}^2}^2 + 2\int_0^t \left\{ 2\lambda \varphi(U(s)) + q\kappa \psi(U(s)) \right\} ds \leq e^{(2\gamma_+ + 1)t} \left\{ |U_0|_{\mathbb{L}^2}^2 + \int_0^T |F|_{\mathbb{L}^2}^2 \right\}$$

for all $t \in [0, T]$. Therefore we obtain the desired estiamte (6.1).

Lemma 6.2. Let U be a solution of $(E)_{\mu}$, and let $(\frac{\alpha}{\lambda}, \frac{\beta}{\kappa}) \in CGL(c_q^{-1})$. Fix T > 0. Then there exist a positive constant C_2 depending only on $\lambda, \kappa, \alpha, \beta, \gamma, T, \varphi(U_0), \psi(U_0), |U_0|_{\mathbb{L}^2}$ and $\int_0^T |F|_{\mathbb{L}^2}^2$ satisfying

$$\sup_{t \in [0,T]} \varphi(U(t)) + \int_0^T \left| \frac{dU}{ds} \right|_{\mathbb{L}^2}^2 ds + \int_0^T |\partial \varphi(U(s))|_{\mathbb{L}^2}^2 ds + \int_0^T |\partial \psi(U(s))|_{\mathbb{L}^2}^2 ds \le C_2.$$
 (6.3)

Proof. Let $V(t) := (1 + \mu \partial \psi)^{-1} U(t)$. Since

$$\begin{split} (\partial \psi(U), \partial \psi_{\mu}(U))_{\mathbb{L}^{2}} &= \int_{\Omega} |U|_{\mathbb{R}^{2}}^{q-2} |V|_{\mathbb{R}^{2}}^{q-2} (U \cdot V)_{\mathbb{R}^{2}} \geq \int_{\Omega} |V|_{\mathbb{R}^{2}}^{2(q-1)} = |\partial \psi_{\mu}(U)|_{\mathbb{L}^{2}}^{2}; \\ (U, \partial \psi_{\mu}(U)) &= q \psi(V) + \mu |\partial \psi(V)|_{\mathbb{L}^{2}}^{2} = q \psi_{\mu}(U) - (\frac{q}{2} - 1) \mu |\partial \psi(V)|_{\mathbb{L}^{2}}^{2} \leq q \psi(U), \end{split}$$

multiplying (E) $_{\mu}$ by $\partial \varphi(U(t))$ and $\partial \psi_{\mu}(U(t))$ yields

$$\frac{d}{dt}\varphi(U(t)) + \lambda |\partial\varphi(U(t))|_{\mathbb{L}^2}^2 + \kappa G(t) + \beta B_{\mu}(t) = 2\gamma\varphi(U(t)) + (F, \partial\varphi(U(t)))_{\mathbb{L}^2}, \tag{6.4}$$

$$\frac{d}{dt}\psi_{\mu}(U(t)) + \kappa |\partial\psi_{\mu}(U(t))|_{\mathbb{L}^{2}}^{2} + \lambda G_{\mu}(t) - \alpha B_{\mu}(t) \leq q\gamma_{+}\psi(U(t)) + (F, \partial\psi_{\mu}(U(t)))_{\mathbb{L}^{2}}, \quad (6.5)$$

where $\gamma_{+} := \max\{\gamma, 0\}$ and

$$\begin{cases}
G := (\partial \varphi(U), \partial \psi(U))_{\mathbb{L}^2}, \\
G_{\mu} := (\partial \varphi(U), \partial \psi_{\mu}(U))_{\mathbb{L}^2}, \\
B_{\mu} := (\partial \varphi(U), I \partial \psi_{\mu}(U))_{\mathbb{L}^2}.
\end{cases}$$

We add $(6.4) \times \delta^2$ and (6.5) for some $\delta > 0$ to get

$$\frac{d}{dt} \left\{ \delta^{2} \varphi(U) + \psi_{\mu}(U) \right\} + \delta^{2} \lambda |\partial \varphi(U)|_{\mathbb{L}^{2}}^{2} + \kappa |\partial \psi_{\mu}(U)|_{\mathbb{L}^{2}}^{2}
+ \delta^{2} \kappa G + \lambda G_{\mu} + (\delta^{2} \beta - \alpha) B_{\mu}
\leq \gamma_{+} \left\{ 2\delta^{2} \varphi(U) + q \psi(U) \right\} + (F, \delta^{2} \partial \varphi(U) + \partial \psi_{\mu}(U))_{\mathbb{L}^{2}}.$$
(6.6)

Let $\epsilon \in (0, \min\{\lambda, \kappa\})$ be a small parameter. By the inequality of arithmetic and geometric means, and the fundamental property (2.4), we have

$$\delta^{2}\lambda|\partial\varphi(U)|_{\mathbb{L}^{2}}^{2} + \kappa|\partial\psi_{\mu}(U)|_{\mathbb{L}^{2}}^{2}$$

$$= \epsilon \left\{\delta^{2}|\partial\varphi(U)|_{\mathbb{L}^{2}}^{2} + |\partial\psi_{\mu}(U)|_{\mathbb{L}^{2}}^{2}\right\} + (\lambda - \epsilon)\delta^{2}|\partial\varphi(U)|_{\mathbb{L}^{2}}^{2} + (\kappa - \epsilon)|\partial\psi_{\mu}(U)|_{\mathbb{L}^{2}}^{2}$$

$$\geq \epsilon \left\{\delta^{2}|\partial\varphi(U)|_{\mathbb{L}^{2}}^{2} + |\partial\psi_{\mu}(U)|_{\mathbb{L}^{2}}^{2}\right\} + 2\sqrt{(\lambda - \epsilon)(\kappa - \epsilon)\delta^{2}|\partial\varphi(U)|_{\mathbb{L}^{2}}^{2}|\partial\psi_{\mu}(U)|_{\mathbb{L}^{2}}^{2}}$$

$$\geq \epsilon \left\{\delta^{2}|\partial\varphi(U)|_{\mathbb{L}^{2}}^{2} + |\partial\psi_{\mu}(U)|_{\mathbb{L}^{2}}^{2}\right\} + 2\sqrt{(\lambda - \epsilon)(\kappa - \epsilon)\delta^{2}(G_{\mu}^{2} + B_{\mu}^{2})}. \tag{6.7}$$

Note that by the key inequality Lemma 4.2

$$G \ge G_{\mu} \ge c_{q}^{-1} |B_{\mu}|. \tag{6.8}$$

Therefore combining (6.6), (6.7) and (6.8) yields

$$\frac{d}{dt} \left\{ \delta^{2} \varphi(U) + \psi_{\mu}(U) \right\} + \epsilon \left\{ \delta^{2} |\partial \varphi(U)|_{\mathbb{L}^{2}}^{2} + |\partial \psi_{\mu}(U)|_{\mathbb{L}^{2}}^{2} \right\} + J(\delta, \epsilon) |B_{\mu}|
\leq \gamma_{+} \left\{ 2\delta^{2} \varphi(U) + q\psi(U) \right\} + (F, \delta^{2} \partial \varphi(U) + \partial \psi_{\mu}(U))_{\mathbb{L}^{2}}.$$
(6.9)

where

$$J(\delta,\epsilon) := 2\delta\sqrt{(1+c_q^{-2})(\lambda-\epsilon)(\kappa-\epsilon)} + c_q^{-1}(\delta^2\kappa + \lambda) - |\delta^2\beta - \alpha|.$$

Now we show that $(\frac{\alpha}{\lambda}, \frac{\beta}{\kappa}) \in \mathrm{CGL}(c_q^{-1})$ gives $J(\delta, \epsilon) \geq 0$ for some δ and ϵ . By the continuity of $\epsilon \mapsto J(\delta, \epsilon)$ it suffices to show $J(\delta, 0) > 0$ for some δ . When $\alpha\beta > 0$, it is enough to take $\delta = \sqrt{\alpha/\beta}$. When $\alpha\beta \leq 0$, we have $|\delta^2\beta - \alpha| = \delta^2|\beta| + |\alpha|$. Hence

$$J(\delta,0) = (c_q^{-1}\kappa - |\beta|)\delta^2 + 2\delta\sqrt{(1+c_q^{-2})\lambda\kappa} + (c_q^{-1}\lambda - |\alpha|).$$

Therefore if $|\beta|/\kappa \le c_q^{-1}$, we have $J(\delta,0) > 0$ for sufficiently large $\delta > 0$. If $c_q^{-1} < |\beta|/\kappa$, we find that it is enough to see the descriminant is positive:

$$D/4 := (1 + c_q^{-2})\lambda \kappa - (c_q^{-1}\kappa - |\beta|)(c_q^{-1}\lambda - |\alpha|) > 0.$$
(6.10)

Since

$$D/4 > 0 \Leftrightarrow \frac{|\alpha|}{\lambda} \frac{|\beta|}{\kappa} - 1 < c_q^{-1} \left(\frac{|\alpha|}{\lambda} + \frac{|\beta|}{\kappa} \right),$$

the condition $(\frac{\alpha}{\lambda}, \frac{\beta}{\kappa}) \in \mathrm{CGL}(c_q^{-1})$ yields D > 0, whence $J(\delta, 0) > 0$ for some δ .

Now we take δ and ϵ satisfying $J(\delta, \epsilon) \geq 0$. By Lemma 6.1, integrating (6.9) gives

$$\sup_{t \in [0,T]} \varphi(U(t)) + \int_0^T |\partial \varphi(U(s))|_{\mathbb{L}^2}^2 ds + \int_0^T |\partial \psi_{\mu}(U(s))|_{\mathbb{L}^2}^2 ds \le C_2, \tag{6.11}$$

where C_2 depends on the constants stated in Lemma 6.2. We multiply $(E)_{\mu}$ by $\partial \psi(U)$ to get

$$\frac{d}{dt}\psi(U) + \kappa |\partial\psi(U)|_{\mathbb{L}^{2}}^{2} + \lambda(\partial\varphi(U), \partial\psi(U))_{\mathbb{L}^{2}}$$

$$= -\alpha(I\partial\varphi(U), \partial\psi(U))_{\mathbb{L}^{2}} - \beta(I\partial\psi_{\mu}(U), \partial\psi(U))_{\mathbb{L}^{2}} + q\gamma\psi(U) + (F, \partial\psi(U))_{\mathbb{L}^{2}}$$

$$\leq \frac{\kappa}{4}|\partial\psi(U)|_{\mathbb{L}^{2}}^{2} + \frac{\alpha^{2}}{\kappa}|\partial\varphi(U)|_{\mathbb{L}^{2}}^{2} + q\gamma+\psi(U) + \frac{\kappa}{4}|\partial\psi(U)|_{\mathbb{L}^{2}}^{2} + \frac{1}{\kappa}|F|_{\mathbb{L}^{2}}^{2}.$$
(6.12)

Hence by (4.1) and (6.11), integrating (6.12) yields

$$\int_0^T |\partial \psi(U(s))|_{\mathbb{L}^2}^2 ds \le C_2. \tag{6.13}$$

Finally, combining $(E)_{\mu}$ with (6.11) and (6.13), we obtain the desired estimate (6.3).

Now we prove Theorem 1.

Proof of Theorem 1. Let U_{μ} be a solution of $(E)_{\mu}$, and fix T > 0. By Lemma 6.1 and 6.2, we have a sequence $\mu_n \downarrow 0$ satisfying

$$U_{\mu_n} \rightharpoonup U \quad \text{weakly in } L^2(0, T; \mathbb{H}^1_0(\Omega)),$$

$$\tag{6.14}$$

$$\frac{dU_{\mu_n}}{dt} \rightharpoonup \frac{dU}{dt} \quad \text{weakly in L}^2(0, T; \mathbb{L}^2(\Omega)), \tag{6.15}$$

$$\partial \varphi(U_{\mu_n}) \rightharpoonup G$$
 weakly in $L^2(0, T; \mathbb{L}^2(\Omega)),$ (6.16)

$$\partial \psi(U_{\mu_n}) \rightharpoonup H \quad \text{weakly in } L^2(0, T; \mathbb{L}^2(\Omega)),$$
 (6.17)

for some function $G, H \in L^2(0, T; \mathbb{L}^2(\Omega))$. Note that we use the weak closedness of $\frac{d}{dt}$ in $L^2(0, T; \mathbb{L}^2(\Omega))$ to (6.15).

First we show $G = \partial \varphi(U)$ in $L^2(0,T; \mathbb{L}^2(\Omega))$. For each $W \in \mathbb{C}_0^{\infty}(\Omega)$ and $w \in \mathbb{C}_0^{\infty}(0,T)$, we have $w(t)W \in L^2(0,T; \mathbb{L}^2(\Omega))$. Hence in the limit of (6.14) and (6.16), we obtain

$$\int_0^T w(s)(G(s),W)_{\mathbb{L}^2}ds = \int_0^T w(s)(U(s),-\Delta W)_{\mathbb{L}^2}ds.$$

Then by the fandamental lemma of calculus of variations, $(G(t), W)_{\mathbb{L}^2} = (U(t), -\Delta W)_{\mathbb{L}^2}$ for a.e. $t \in (0, T)$, so that $-\Delta U(t) = G(t) \in \mathbb{L}^2(\Omega)$. Also by (6.14), $U(t) \in \mathbb{H}^1_0(\Omega)$ a.e. $t \in (0, T)$. Therefore $U(t) \in D(\partial \varphi)$ and $\partial \varphi(U(t)) = -\Delta U(t) = G(t)$ for a.e. $t \in (0, T)$.

Next in order to see $H = \partial \psi(U)$ in $L^2(0,T;\mathbb{L}^2(\Omega))$, we are showing

$$U_{\mu'_n} \to U \quad \text{in } \mathcal{C}(0,T;\mathbb{L}^2(\Omega')) \text{ for each bounded } \Omega' \subset \Omega,$$
 (6.18)

for some subsequence $\{\mu'_n\} \subset \{\mu_n\}$. To confirm this, we use Ascoli's theorem and a diagonal argument. Let $\{\Omega_k\}_{k\in\mathbb{N}}$ be bounded domains in \mathbb{R}^N with smooth boundaries satisfying (i) $\Omega_k \subset \Omega_{k+1} \subset \Omega$ for each $k \in \mathbb{N}$; (ii) for all bounded $\Omega' \subset \Omega$ there exists $k \in \mathbb{N}$ such that $\Omega' \subset \Omega_k$. Fix $k \in \mathbb{N}$. By Lemma 6.1 and 6.2, we have

$$|U_{\mu_n}(t_2) - U_{\mu_n}(t_1)|_{\mathbb{L}^2(\Omega_k)} \le \left\{ \int_{t_1}^{t_2} \left| \frac{dU_{\mu_n}}{ds} \right|_{\mathbb{L}^2(\Omega)} ds \right\}^{\frac{1}{2}} \left\{ \int_{t_1}^{t_2} ds \right\}^{\frac{1}{2}} \le \sqrt{C_2} \sqrt{t_2 - t_1}, \quad (6.19)$$

$$|U_{\mu_n}(t)|_{\mathbb{H}^1(\Omega_k)}^2 = |U_{\mu_n}(t)|_{\mathbb{L}^2(\Omega_k)}^2 + |\nabla U_{\mu_n}(t)|_{\mathbb{L}^2(\Omega_k)}^2 \le C_1 + 2C_2.$$
(6.20)

By (6.19), $\{U_{\mu_n}\}$ is uniformly equicontinuous in $C(0,T;\mathbb{L}^2(\Omega_k))$, and by (6.20), $\{U_{\mu_n}(t)\}$ is relatively compact in $\mathbb{L}^2(\Omega)$ for each $t \in (0,T)$. Hence by Ascoli's theorem, we have

$$U_{\mu_n^k} \to U^k$$
 in $C([0,T]; \mathbb{L}^2(\Omega_k))$ as $n \to \infty$,

for some function $U^k \in \mathrm{C}([0,T];\mathbb{L}^2(\Omega_k))$ and some subsequence $\{\mu_n^k\}_{n\in\mathbb{N}}\subset \{\mu_n\}_{n\in\mathbb{N}}$. Now we take a subsequence successively from k=1 to ∞ : $\{\mu_n^{k+1}\}_{n\in\mathbb{N}}\subset \{\mu_n^k\}_{n\in\mathbb{N}}$ for each $k\in\mathbb{N}$. Then the diagonal sequence $\{\mu_n^n\}_{n\in\mathbb{N}}=:\{\mu_n'\}_{n\in\mathbb{N}}$ satisfies

$$U_{\mu'_n} \to U^k$$
 in $C([0,T]; \mathbb{L}^2(\Omega_k))$ as $n \to \infty$ for each $k \in \mathbb{N}$. (6.21)

On the other hand, by (6.14), we have

$$U_{\mu'_n} \rightharpoonup U$$
 weakly in $L^2(0, T; \mathbb{L}^2(\Omega_k))$ as $n \to \infty$ for each $k \in \mathbb{N}$. (6.22)

Thus by the uniqueness of a weak limit, we have $U^k = U$ in $L^2(0,T;\mathbb{L}^2(\Omega_k))$. Finally since $\Omega' \subset \Omega_k$ for some k, we obtain the desired convergence (6.18) from (6.21).

Now we are show $H = \partial \psi(U)$ in $L^2(0,T;\mathbb{L}^2(\Omega))$. By the demiclosedness of $U \mapsto |U|_{\mathbb{R}^2}^{q-2}U$ in $L^2(0,T;\mathbb{L}^2(\Omega'))$, we have

$$U(t) \in \mathbb{L}^{2(q-1)}(\Omega') \quad \text{for a.e. } t \in (0,T), \tag{6.23}$$

$$H(t) = |U(t)|_{\mathbb{R}^2}^{q-2} U(t)$$
 in $\mathbb{L}^2(\Omega')$ for a.e. $t \in (0, T)$. (6.24)

Since (6.24) holds for all bounded $\Omega' \subset \Omega$, we have $|U(t)|_{\mathbb{R}^2}^{q-2}U(t) = H(t)$ for a.e. $x \in \Omega$, so that $U(t) \in D(\psi)$ and $H(t) = \partial \psi(U(t))$ for a.e. $t \in (0,T)$.

Finally we are showing that the function U satisfies equation (E). Note that $J_{\mu'_n}U_{\mu'_n} \to U$ in $L^2(0,T;\mathbb{L}^2(\Omega'))$ by Lemma 6.2 where $J_{\mu} := (1+\mu\partial\psi)^{-1}$. By the demiclosedness of $\partial\psi$ in $L^2(0,T;\mathbb{L}^2(\Omega'))$, we fined that U satisfies (E) in $L^2(0,T;\mathbb{L}^2(\Omega'))$ for all bounded $\Omega' \subset \Omega$. Hence it also satisfies (E) in $L^2(0,T;\mathbb{L}^2(\Omega))$. $U(0) = U_0$ in $\mathbb{L}^2(\Omega)$ can be obtained immediately from (6.18), since $U_{\mu'_n}(0) = U_0$ for each $n \in \mathbb{N}$.

7 Proof of Theorem 2

Now we are proving Theorem 2. Let $U_{0n} \in \mathbb{H}_0^1(\Omega) \cap \mathbb{L}^q(\Omega)$ satisfying $U_{0n} \to U_0$ in $\mathbb{L}^2(\Omega)$. By Theorem 1, we have a solution $U_n \in \mathrm{C}([0,T];\mathbb{L}^2(\Omega))$ corresponding to the initial value U_{0n} . First we derive some a priori estimates for the solution of (E) with $U_0 \in \mathbb{H}_0^1 \cap \mathbb{L}^q$.

Lemma 7.1. Let U be a solution of (E), and fix T > 0. Then there exists a positive constant C_1 depending only on γ , T, $|U_0|_{\mathbb{L}^2}$ and $\int_0^T |F|_{\mathbb{L}^2}^2$ satisfying

$$\sup_{t \in [0,T]} |U(t)|_{\mathbb{L}^2}^2 + \int_0^T \varphi(U(s))ds + \int_0^T \psi(U(s))ds \le C_1.$$
 (7.1)

Lemma 7.2. Let U be a solution of (E) with $U_0 \in \mathbb{H}^1_0(\Omega) \cap \mathbb{L}^q(\Omega)$ and $(\frac{\alpha}{\lambda}, \frac{\beta}{\kappa}) \in \mathrm{CGL}(c_q^{-1})$. Fix T > 0. Then there exist a positive constant C_2 depending only on $\lambda, \kappa, \alpha, \beta, \gamma, T$, $|U_0|_{\mathbb{L}^2}$ and $\int_0^T |F|_{\mathbb{L}^2}^2$ satisfying

$$\sup_{t \in [0,T]} t\varphi(U(t)) + \int_0^T s \left| \frac{dU}{ds} \right|_{\mathbb{L}^2}^2 ds + \int_0^T s |\partial \varphi(U(s))|_{\mathbb{L}^2}^2 ds + \int_0^T s |\partial \psi(U(s))|_{\mathbb{L}^2}^2 ds \le C_2. \quad (7.2)$$

Since proofs are almost exactly the same as those of Lemma 6.1 and 6.2, we skip the details.

Proof of Theorem 2. Let U_n be a solution of (E) with $U_n(0) = U_{0n} \in \mathbb{H}^1_0(\Omega) \cap \mathbb{L}^q(\Omega)$, where $U_{0n} \to U_0$ in $\mathbb{L}^2(\Omega)$. By Lemma 7.1 and 7.2, we have $\{m_n\}_{n\in\mathbb{N}}\subset \{n\}_{n\in\mathbb{N}}$ satisfying

$$U_{m_n} \rightharpoonup U$$
 weakly in $L^2_{loc}((0,\infty); \mathbb{H}^1_0(\Omega)),$ (7.3)

$$\sqrt{t} \frac{dU_{m_n}}{dt} \rightharpoonup \sqrt{t} \frac{dU}{dt}$$
 weakly in L²(0, T; L²(\Omega)), (7.4)

$$\sqrt{t}\partial\varphi(U_{m_n}) \rightharpoonup \sqrt{t}G \quad \text{weakly in L}^2(0,T;\mathbb{L}^2(\Omega)),$$
(7.5)

$$\sqrt{t}\partial\psi(U_{m_n}) \rightharpoonup \sqrt{t}H \quad \text{weakly in L}^2(0,T;\mathbb{L}^2(\Omega)),$$
(7.6)

for some function G, H. Note that we use the weak closedness of $\frac{d}{dt}$ in $L^2(\delta, T; \mathbb{L}^2(\Omega))$ for any $\delta \in (0,T)$ to (7.4). First by the same argument as those of Theorem 1, we have $G = \partial \varphi(U)$ in $L^2(\delta,T;\mathbb{L}^2(\Omega))$ for any $\delta \in (0,T)$, so that $G = \partial \varphi(U)$ a.e. $t \in (0,T)$. Next, also by the same argument as those of Theorem 1, we have

$$U_{m'_n} \to U$$
 in $C(\delta, T; \mathbb{L}^2(\Omega'))$ for each bounded $\Omega' \subset \Omega$ and $\delta \in (0, T)$, (7.7)

for some subsequence $\{m'_n\} \subset \{m_n\}$. Therefore this yields $H = \partial \psi(U)$ in $L^2(\delta, T; \mathbb{L}^2(\Omega))$ for any $\delta \in (0, T)$, so that a.e. $t \in (0, T)$. Now we find that U satisfies equation (E) in the limit $(m'_n \to \infty)$ of the approximate equation of $U_{m'_n}$. Thus in order to finish the proof, it is enough to check

$$U(t) \to U_0 \quad \text{in } \mathbb{L}^2(\Omega) \text{ as } t \downarrow 0.$$
 (7.8)

First we show $U(t) \to U_0$ weakly in $\mathbb{L}^2(\Omega)$. Multiplying the approximate equation of U_n by each $W \in \mathbb{C}_0^{\infty}(\Omega)$, we have

$$\frac{d}{dt}(U_n(t), W)_{\mathbb{L}^2} = \gamma(U_n(t), W)_{\mathbb{L}^2} + (F(t), W)_{\mathbb{L}^2}
- ((\lambda + \alpha I)\partial\varphi(U_n(t)), W)_{\mathbb{L}^2} - ((\kappa + \beta I)\partial\psi(U_n(t)), W)_{\mathbb{L}^2}.$$
(7.9)

Hence integrating (7.9) and taking the absolute value gives

$$\begin{split} |(U_n(t) - U_{0n}, W)_{\mathbb{L}^2}| &\leq |\gamma| |W|_{\mathbb{L}^2} \int_0^t |U_n(s)|_{\mathbb{L}^2} ds + |W|_{\mathbb{L}^2} \int_0^t |F(s)|_{\mathbb{L}^2} ds \\ &+ (\lambda + |\alpha|) |\nabla W|_{\mathbb{L}^2} \int_0^t |\nabla U_n(s)|_{\mathbb{L}^2} ds \\ &+ (\kappa + |\beta|) \int_0^t \int_{\Omega} |U_n(s)|_{\mathbb{R}^2}^{q-1} |W|_{\mathbb{R}^2} dx ds. \end{split}$$

Thus using Hölder's inequality with Lemma 7.1, we have the estimate

$$|(U_{n}(t) - U_{0n}, W)_{\mathbb{L}^{2}}| \leq |\gamma| \sqrt{C_{1}} |W|_{\mathbb{L}^{2}} t + \left\{ \int_{0}^{t} |F(s)|_{\mathbb{L}^{2}}^{2} ds \right\}^{\frac{1}{2}} |W|_{\mathbb{L}^{2}} t^{\frac{1}{2}} + (\lambda + |\alpha|) \sqrt{2C_{1}} |\nabla W|_{\mathbb{L}^{2}} t^{\frac{1}{2}} + (\kappa + |\beta|) (qC_{1})^{\frac{q-1}{q}} |W|_{\mathbb{L}^{q}} t^{\frac{1}{q}}.$$
 (7.10)

Letting $n=m'_n\to\infty$, we have $|(U(t)-U_0,W)_{\mathbb{L}^2}|\leq Ct^{\frac{1}{q}}$ for sufficiently small t>0, so that $U(t)\to U_0$ in $\mathcal{D}'(\Omega)$. Since $\mathbb{C}^\infty(\Omega)\subset\mathbb{L}^2(\Omega)$ is dense, we have $U(t)\rightharpoonup U_0$ weakly in $\mathbb{L}^2(\Omega)$. Then we show $|U(t)|_{\mathbb{L}^2}^2\to |U_0|_{\mathbb{L}^2}^2$. By the argument of Lemma 7.1, we have

$$|U_n(t)|_{\mathbb{L}^2}^2 \le e^{(2\gamma_+ + 1)t} \left\{ |U_{0n}|_{\mathbb{L}^2}^2 + \int_0^t |F(s)|_{\mathbb{L}^2}^2 ds \right\}.$$

Hence letting $n \to \infty$ gives $|U(t)|_{\mathbb{L}^2}^2 \le e^{(2\gamma_+ + 1)t} \{|U_0|_{\mathbb{L}^2}^2 + \int_0^t |F(s)|_{\mathbb{L}^2}^2 ds\}$. Then letting $t \downarrow 0$, we have $\overline{\lim}_{t \downarrow 0} |U(t)|_{\mathbb{L}^2}^2 \le |U_0|_{\mathbb{L}^2}^2$. On the other hand, since $U(t) \to U_0$, we have $|U_0|_{\mathbb{L}^2}^2 \le \underline{\lim}_{t \downarrow 0} |U(t)|_{\mathbb{L}^2}^2$ by the weak lower semicontinuity of the norm. Therefore $|U(t)|_{\mathbb{L}^2}^2 \to |U_0|_{\mathbb{L}^2}^2$. \square

参考文献

- [1] Aranson I. S.; Kramer L., The World of the Complex Ginzburg-Landau Equation, Rev. Mod. Phys. 74, 99, Published 4 February 2002.
- [2] Brezis, H., Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), pp. 101-156. Academic Press, New York, 1971.
- [3] Cross M. C.; Hohenberg P. C., Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 851, Published 1 July 1993.
- [4] Doering, C. R.; Gibbon, J. D.; Levermore, C. D., Weak and strong solutions of the complex Ginzburg-Landau equation. Phys. D 71 (1994), no. 3, 285-318.
- [5] Ginibre, J.; Velo, G., The Cauchy problem in local spaces for the complex Ginzburg-Laudau equation. I. Compactness methods. Phys. D 95 (1996), no. 3-4, 191-228.
- [6] Ginibre, J.; Velo, G., The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. II. Contraction methods. Comm. Math. Phys. 187 (1997), no. 1, 45-79.
- [7] Kuramoto, Y.; Chemical Oscillations, Waves, and Turbulence, Springer Series in Synergetics, Volume 19, 1984.
- [8] Levermore, C. D.; Oliver, M., The complex Ginzburg-Landau equation as a model problem. Dynamical systems and probabilistic methods in partial differential equations (Berkeley, CA, 1994), 141-190, Lectures in Appl. Math., 31, Amer. Math. Soc., Providence, RI,
- [9] Okazawa, N.; Yokota, T., Global existence and smoothing effect for the complex Ginzburg-Landau equation with p-Laplacian. J. Differential Equations 182 (2002), no. 2, 541-576.
- [10] Okazawa, N.; Yokota, T., Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation, Discrete Contin. Dyn. Syst. 28 (2010), no. 1, 311-341.
- [11] Showalter, R. E., Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs, 49. American Mathematical Society, Providence, RI, 1997.
- [12] Simon, J., Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (4) 146 (1987), 65-96.
- [13] Takeuchi, S.; Asakawa, H.; Yokota, T., Complex Ginzburg-Landau type equations with nonlinear Laplacian. Nonlinear partial differential equations and their applications, 315-332, GAKUTO Internat. Ser. Math. Sci. Appl., 20, Gakkotosho, Tokyo, 2004.
- [14] Temam, R., Infinite-dimensional dynamical systems in mechanics and physics. Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988.
- [15] Yang, Y. S., On the Ginzburg-Landau wave equation. Bull. London Math. Soc. 22 (1990), no. 2, 167-170.
- [16] Yokota, T.; Okazawa, N., Smoothing effect for the complex Ginzburg-Landau equation (general case). Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 305-316.