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Abstract

We force a family of strongly almost disjoint functions by finite conditions.
Our forcing construction is divided into two stages. The first stage provides a
Kurepa tree and forced by side conditions only. The second stage provides a
family of strongly almost disjoint functions by a c.c.c. poset that makes use of
the Kurepa tree forced in the first stage. This explicates a role of side conditions
in side condition methods.

Introduction

Let x be a regular cardinal with k£ > ws. We force a family of strongly almost
disjoint functions of a size k by a two-step iteration. Our notion of forcing is of
a form (a proper poset by finite conditions)*(a c.c.c. poset by finite conditions).
We first force a matrix, that is thought of a structured collection of countable
universes of set theory, a la [A-M]. But we force with side conditions only. The
matrix in turn entails a Kurepa tree of height w; with at least x-many cofinal
branches. Any Kurepa tree as such entails an indexed family (g, | @ < k) of
almost disjoint functions g, : w3 — w. Any family of functions as such entails
a ccc poset that forces an indexed family (f, | & < k) of strongly almost disjoint
functions f, : w; — w. Our construction is based on a remark by Galvin in
[Ka, page 163]. There are several related constructions in [Z], [Ko], and [I]. We
originally constructed a family of almost disjoint functions directly out of our
matrix forced. But the composition of this paper via a Kurepa tree reflects a
comment by Y. Yoshinobu.

§1. Forcing a matrix

This section is based on [M]. We first force what we called a matrix in [M].

1.1 Theorem. ([M]) Let k be a regular cardinal with £ > ws. Then there
exists a notion of forcing P that is proper, has the ws-c.c. (CH), and that forces
a collection NV of countable elementary substructures N € V, where V stands
for the ground model, of HY such that

(1) For N, M € N,if N Nw; = M Nwi, then there exists a unique isomorphism
® s between (N, €, NN N) and (M, e, NN M) and ®x is the identity on
the intersection N N M.



(2) For any N, M €N, if NNw; < M Nwy, then there exists M’ € A such that
NeM and M Nw; =MNuw;.

(3) UN = HY.
Proof. (Outline) Our poset is identical to the very first step Py of Aspero-Mota

iteration in [A-M]. We define p € P, if p is a finite set of countable elementary
substructures of H, such that

(1) For N,M € p, if NNw; = M Nwy, then there exists a unique isomorphism
®nar between (N,€,pN N) and (M, €,pN M) and ®n ) is the identity on
the intersection N N M.

(2) For any N,M € p, if N Nw; < M Nwi, then there exists M’ € p such that
NeM and M'Nw; = MNuws.

For p,q € P, we set ¢ < p, if ¢ O p. Let G be P-generic over the ground
model V and let )
N=JG.
Then this N works. Notice that for any N, M € N, there exists M’ € N such
that N,M € M’'. Namely, N is e-directed. This gets entailed, say, by the fact
that NV is €-cofinal in HY .
m]

We do not expect that this N, called a matrix, entails any morass. However,
a matrix N entails a Kurepa tree.

1.2 Theorem. ([M]) Any collection N as above entails a Kurepa tree of
height w; with at least x-many branches.

If we have a Kurepa tree of height w; with at least k-many branches, then we
have an indexed family (g, | @ < k) of almost disjoint functions g, : w3 — w.
Namely, EJ; = {y < w1 | ga(7) = 95(7)}(= E},) is of a size countable for all
a, B < k with a # (.

For the convenience of the readers, we reproduce a section of [M] that provides
a proof of 1.2 Theorem.

§2. Forming a Kurepa tree

In this section, we assume that we are in the generic extension by P. Hence
we have N that satisfies (1), (2), and (3) of 1.1 Theorem. We show that there
exists a Kurepa tree of height w; with at least xk-many cofinal paths. Let I =
{NNw; | NeN}.
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2.1 Definition. For ¢ € I, let us fix N; € N with N; Nwy = i. Transitive
collase N; onto N;. Let Fy,, = {(cy)"' | N € Nand NNw;, = i}. For
i,j € I with i < j, let F;; = {epro(en)™ | NyM EN,NeM,NNw, =i
and M Nw; = j}. Here cy and cps are the transitive collapses of N and M
respectively.

The following is a represetation of A'. Write N,,, = HY .

2.2 Lemma. (1) For all i < jin IU{w;} and all f € Fy;, f: N; — N, are
elementary embeddings.

(2) For all i < j in I, Fj; is a countable set.
(3) Foralli < j < kin IU{w1}, we have F;y = Fj; o F;;. (pairwise compositions)

(4) For all i1,i3 in I and all f; € Fy,y,, fa € Fi,w,, there exist (g1, g2, h, k) such
that 41,7 <k €1, g1 € Fi,x, 92 € Fi,x, h € Frw, and fi1 = hog, fo = hogo.

(5) Nuy =U{f[Ni] | i € I, f € Fiu, }, where f[Nj] = {f(z) | z € Ni}.

(6) For alli < jin TU{w1}, all f1, f2» € Fy, all 1,8 € N, if fi(e1) = f2(2),
then €7 = €;. (tree order)

Proof. (1): Some account for the case j < w;. Let f € Fj; and let f =
ey o (eny)™t. Since N € M, we have N < M. Since cy : N — N, and
e i M — Ny, we have f = cpro (en)™1: N; — N

(2): Fyj = {cen,0(en)™ | N € N NN;,NNw =i} holds and so Fj; is
countable. Some details follows. Let f € F;;. Take N’, M € N such that N’ € M
and f=cpyo (cNf)‘l. Since N; Nw; = j = M Nwy, there exists an isomorphism
¢: M — Nj. Let N = ¢(N’). Then N € NNN;, NNw; = N Nw; = g,
cm = cn,; o ¢ and cn' = ey o (p[N'). Hence f = cn, o (cy) ™! holds.

(3): Let i < j < k < w;y in I. The case k = w; is similar. Let f =
ev o (en)™ € Fy, with N € M. Take N’ € N such that N € N' ¢ M
and N'Nw; = j. Then cp: o (CN)_1 € Fij and cps © (CN/)'l € Fj. It is
clear that f = (cpr o (env)™!) o (env o (en)™!) € Fjg o F;j. Conversely, let
f € F; and g € Fj,. Then g = cn, o (cp)™!. Since M and N; are isomorphic,
we may assume f = cpr o (cy)”! for some N € M € Ni. Hence go f =
(e o (em) M) o (ear o (en)™h) = ey 0 (en) ™! € Fi.

(4): Let f1 = (cn,) ! and fo = (cn,)~!. Since N is €-directed, there exists
N € N such that N;,No € N. Let k = NNwy, h = (en)™ !, g1 = en o (en,) ™t
and g = cn o (en,) ', Then h € Fyw,, g1 € Fik, 92 € Fiyp and fi = ho gy,
fo = h o gs hold.

(5): Let e € HY = |JN. Then there exists N € A’ with in e € N. Hence e is
in the range of (cy)~! € F,, .
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(6): First with j = w;. Let f1 = (en,)™! and fo = (cn,) ! with Ny Nw; =
NoNw; =i. Let e = fi(e1) = f2(€3). Then e € N; N N,. Since two structures
(Ni1,€) and (N, €) are isomorphic and the isomorphim ¢ : N; — Nj is the
identity on N} N Ny, we have €1 = ¢, (e) = (cn, © @)(e) = cn,(e) = €.

Next i < j < w; in I. Let fi(e1) = f2(€z). Take any h € Fj,,. Then
(ho f1)(€1) = (ho f2)(e3). Hence we have seen that e7 = 3.

]

2.3 Definition. Let T = {(,€) | i € IU{w;}, € € N;}. For t; = (i,&7),t2 =
(i2,€32), we set ¢; <t t2, if 91 < 42 and there exists f € F;,;, with f(e7) = &.

2.4 Lemma. (1) (T, <r) is a tree.

(2) For e € N, let i, € I be the least i € I such that e € N for some N € N
with N Nw; = 1. Then for all ¢« € I with i > 4., there exists a unique
mi(e) € N; such that there exists h € F,, with h(m;(e)) = e. The set
{(i,mi(e)) | ie <i€I}U{(w1,e)} forms a chain in (T, <7).

(3) For different e;,e; € N,,, {mi(e1) | i > 4., in I} and {m;(e3) | i > ie, in I}
split at some point.

Proof. (1): (irreflexive) (i,€) <r (4,€) does not hold, as 7 < 7 does not hold.

(transitive) Let (i1,€1) <7 (i2,€2) <7 (i3,€3). Then i) < iy < i3, f(e1) = €3,
g(€3) = e3. Hence i, < i3 and (g o f)(e7) = €.

(comparable below a node) Let (i;,€7), (i2,€2) <t (¢,€). We have fi(e7) =
€ = fao(ez). Let iy = iz, then we know € = €. Two nodes are identical
in this case. Let i; < 73. Then f; = hog with g € F;,;, and h € F,,;.
Then h(g(e1)) = f2(€2). Hence g(€1) = €3. Therefore (i1,e1) <7 (i2,€3). The
remaining case is similar.

(linear order below any node is well-ordered) Since (i1,€7) <7 (i2,€3) entails
11 < 19, the linear order below any node is well-ordered.

(2): Let en(e) = m;, (). Then for any i > i, in I, we have f; € F;_; and
h; € Fy, such that (cy)™! = h; o f;. Hence let m;(e) = fi(mi (€)). Then
hi(mi(e)) = e and so (i, m;(e)) <r (w1,e). Hence if i, < i; < iy in I, we have
(i1, 75, (€)) <7 (i2, 74, (€))-

(3): Take N € N with e1,e; € N. Let teye; = N Nw;. Then for any ¢ € I
with @ > 4e,¢,, we see that m;(e1) and m;(ez2) are different.

O

2.5 Theorem. There exists a Kurepa tree of height w; with at least k-many
paths.
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Proof. Since N, = {f(€) |i€I,f € F,,,e € N;} and {(i,€) | i € I, e € N;}
is of a size w1, there exists 4o € I and &5 € N, such that K = {f(€5) | f € Fiyu, }
is of a size k. We may call root = (ip,€). Then the subtree ({(¢,m;(e)) | t0 <
i € I,e € K}, <r) with the single root works.

O

Notice that the Kurepa tree we constructed may not be normal (at some limit
level, there may exist two nodes with the same cofinal path below them).

83. A c.c.c. poset

Throughout this section, we fix an indexed family (g, | @ < k) of almost
disjoint functions g, : w; — w with a regular cardinal x > ws. Namely, Egﬁ =
{v < w1 | ga(v) = gs(7)} is of a size countable for all o, 8 < k with a # 3. We
want to force an indexed family (f, | & < &) of strongly almost disjoint functions
fa : w1 — w by finite conditions. Namely, Egﬁ ={y <w | fa(y) = fs(v)}
is finite for all o, 8 < k with a # 3. We are going to have a c.c.c. poset P by
making use of EJ ; in such a way that E({B C EZ 5.

3.1 Definition. Let p € P, if

(1) p:aP x b» — w, where a? is a finite subset of x and b is a finite subset of
wi.

(2) ELz C El; for all o, 8 € aP with o # S.
For p,q € P, we set q < p, if

(1) ¢2p
(2) If v € b2\ b®, then p(-, 7) : a? — w is one-to-one. Namely, for any «, 3 € a?
with o # 3, we demand p(e, 7) # p(83,7).

3.2 Lemma. (1) For any p € P and v < wy, there exists ¢ € P such that
g <pandyebl.
(2) For any p € P and a < &, there exists g € P such that ¢ < p and a € af.

Proof. For (1): We may assume that v € . Let v : a? X {y} — w be any
one-to-one map. Let ¢ : a? x (b U {vy}) — w be a map such that p and ¢ agree
on a? x b and g and v agree on a? x {v}. Namely, ¢ = pUwv. Then ¢ € P and
g < p hold. In particular, we have E] ; = E? 5 C EZB for all o, 8 € a? = aP with
o # .

For (2): We may assume that o € a?. Let h: {a} x b — w be a map such
that the images h[{a} x bP] = {h(a,7) | v € b*} and p[a? x b"] = {p(B,7) | B €
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aP,~y € bP} are disjoint. Let ¢ : (a?U{a}) x b — w be a map such that p and ¢
agree on a? x b? and q and h agree on {a} x b?. Namely, ¢ = pUh. Then q € P
and ¢ < p hold. In particular, for any 3 € a?, we have Ej, =0 C EZ .

O

3.3 Lemma. P has the c.c.c:

Proof. Let (px | k < wi) be an indexed family of conditions of P. By the A-
system argument and counting the number of isomorphism types that is just at
most countable, we may find a pair p = p; and q = p; with 7 # j such that there
exist a pair of isomorphisms e; : (a?, <) — (a?,<) and e5 : (b*, <) — (b9, <)
such that

(1) e on the intersection aP N a? is the identity on a? N af.
(2) ez on the intersection b” N b7 is the identity on P N b9.
(3) 9a(Y) = gey(a)(e2(v)) for all @ € a? and vy € bP.
(4) p(a,v) = g(e1(a), ea(y)) for all @ € a? and v € bP.

)

(5) Let us denote
Ag =a’Nal, Ay =bPNbHI,

£ =aP\ Ag, t4 =a?\ A,,
=0\ Ay, t1=057\ Ay

Then we have four disjoint unions;

a? = A UtE, P = Ay Uy,
a? =AUtd, b= A, Ut.

Now we may demand two additional pairwise disjointness;
(B | aB€Baa#ph)nth =

(B | o, B € Agya # B}) NE] = 0.

This is possible, since there are w;-many disjoint possible candidates b(P¥)\ Ay,
while U{EZ; | @, 8 € Aa, o # B} is a countable set. Notice that p and ¢ agree
on Aa X Ab.

Claim 1. Let us consider p on A, xt}. For o, 8 € A, with a # B and v € ¢},
we have p(a,v) # p(8,7).

Proof. Since E} 3Nty = @ and EY 5 C EY 5, we conclude that p(a,v) # p(8,7).
of
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Claim 2. Let us consider gon A, xt]. For a,8 € A, with o # Sand v € ¢,
we have g(, v) # (6, 7).

Proof. Since EJ 5Nt} = 0 and EJ; C EY 5, we conclude that g(a, ) # ¢(83,7).
a)

By Claim 1 and Claim 2, we may fix two maps V : t¢ x {{ — w and W :
t? x t§ — w such that

(1) Three sets p[aP x bP]Ug[a? x b?], V'[td x t}], and W [t? x t]] are pairwise disjoint
finite subsets of w.

(2) For any v € tf, V on t1 x {7} is one-to-one.

(3) For any y € t{, W on £ x {} is one-to-one.

Let
r=pUqUV NW.

Notice that
(aPUa?) x (BPUbT) = (A UtE Ut]) x (Ap Uty Ut])
= dom(p) U dom(q) U dom(V') U dom(W)

and three sets dom(p) U dom(g), dom(V), and dom(W) are disjoint. Hence
r: (aP Ua?) x (P Ub?) — w is a map such that r D p,q. We also assured that

(4) ron a? x {7} is one-to-one for all v € t) = b" \ b7.
(5) ron aP x {7} is one-to-one for all y € t] = b" \ bP.
It remains to show that r € P. To show this, we argue in 21 cases.
Let a,8 € a” = a? U a? with a # 3. We need to show El; C Egﬁ. Let
v € " =bP Ub? Suppose r(a,v) =r(8,7). We want to show go(7) = gs(v).
Case 1. a, 8 € A,:

Subcase 1.1. v € Ay Since p(a,v) = r(a,v) = 7(8,7) = p(B,7), we get
9a(7) = g5(7)-

Subcase 1.2. v € t}: Similar.

Subcase 1.3. v € t{: Similar.

Case 2. o, € t&:

Subcase 2.1. v € A: Since p(a,v) = r(e,y) = 7(6,7) = p(B,7), we get
9a(7) = ga(7).
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Subcase 2.2. v € ¢}: Similar.

Subcase 2.3. v € tJ: Since 7(a,y) = W(a,7v) # W(B8,v) = r(8,7). This
case does not occur.

Case 3. o, [ € t:
Subcase 3.1. v € Ay: Since g(a,vy) = r(a,v) = r(8,7) = ¢(B,7), we get
9a(7) = g(7)-

Subcase 3.2. v € t}: Since r(a,v) = V(a,v) # V(B8,7) = r(8,7). This case
does not occur.

Subcase 3.3. v € t{: Since ¢(a,y) = r(e,v) = 7(8,7) = ¢(B,7), we get
9a(7) = 98(7).

Case 4. a € Ay and B € tE:

Subcase 4.1. v € Ay: Since p(a,v) = r(a,v) = r(B,7) = p(B,7), we get
9a(7) = 95(7).

Subcase 4.2. v € t}: Similar.

Subcase 4.3. vy € t{: Since 7(a,7) = q(a,y) # W(B,7v) = r(8,7), this case
does not occur.

Case 5. a € A, and g3 € tl:

Subcase 5.1. v € Ay: Since ¢(a,v) = r(a,vy) = r(8,7) = q(B,7), we get
9a(7) = g8(7)-

Subcase 5.2. v € t}: Since r(a,7) = p(e,v) # V(B,7) = r(B,7), this case
does not occur.

Subcase 5.3. v € t: Since g(a,7) = r(a,v) = r(B,7) = q(8,7), we get
9a(7) = g8(7)-

Case 6. o € t2, B €t and  # e1():

Subcase 6.1. v € A;: Since g(e1(a),y) = g(ei(@),e1(y)) = pla,y) =
r(o,y) = r(8,7) = 4(B,7), we get ge,(a)(7) = g8(7)- But ga(7) = gey(a)(7)-
Hence ga(7) = g5(7)-

Subcase 6.2. v € t}: Since r(o,7v) = p(a,v) # V(B,7) = r(8,~), this case
does not occur.

Subcase 6.3. v € t]: Since r(a,v) = W(a,v) # q(8,7) = r(8,7), this case
does not occur.
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Case 7. a €tE, B €td, and B = e1(a):
Subcase 7.1. v € Ap: Simply, we have gg(7) = ge, (a) (e2(7)) = ga(v)-

Subcase 7.2. «y € t}: Since (e, y) = pla,v) # V(B,7) = r(B,7), this case
does not occur.

Subcase 7.3. v € t§: Since r(a,v) = W(a,v) # q(8,7) = 7(8,7), this case
does not occur.

This completes the proof.

Therefore, we established the following.

3.4 Theorem. Let k be a regular cardinal with K > wo. Let (g4 | a < k)
be an indexed family of almost disjoint functions g, : w; — w. Then there
exists a c.c.c. poset that forces an indexed family (f, | @ < &) of strongly almost
disjoint functions f, : w1 — w such that for all a,3 < x with a # 3, the
finite sets Eiﬂ satisfy Eiﬁ C EYg, where Eiﬁ ={y <wi | fa(v) = f3(7)} and

Eop={y <wilga(v) =g8(1)}

3.5 Theorem. Let k be a regular cardinal with K > ws. Then there exists
a notion of forcing that consists of finite conditions, is proper, has the wo-c.c.
(CH), and that forces an indexed family (f, | @ < k) of strongly almost disjoint
functions f, : w1 — w.
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