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ON EQUIVARIANT PERTURBATIVE INVARIANTS IN 3-DIMENSION
BY MORSE THEORY

TADAYUKI WATANABE

1. INTRODUCTION

Aound 1992, Axelrod-Singer and Kontsevich independently developed the method to
obtain (mathematical) topological invariants of 3-manifolds by perturbative expansion
of Witten’s path integral (Chern-Simons perturbation theory, [1, 5]). The invariant is
a series of terms corresponding to Feynman diagrams such that each term is given by
integration over the configuration space of a 3-manifold. This is known to be very strong,
for example, the expansion around the trivial connection dominates all Q-valued Ohtsuki
finite type invariants for integral homology 3-spheres ([7]). In this note, we explain about
our attempt to construct ‘equivariant invariant’ of 3-manifolds with the first Betti number
1.

Around 2008, Ohtsuki constructed an equivariant refinement of the LMO invariant® for
3-manifolds with the first Betti number 1 ({12, 13]), which pioneered a new direction of
perturbative invariants of 3-manifolds. Inspired by Ohtsuki’s work, Lescop constructed
an equivariant refinement of Chern—Simons perturbation theory for 3-manifolds with the
first Betti number 1 for the 2-loop graphs by using a method similar to Marché ([9, 11]).
Lescop’s construction is as follows.

Let M be a closed 3-manifold with H;(M) = Z. The equivariant configuration space
Confg, (M) is defined as the set of tuples (z1,zs,7), 71,22 € M, satisfying the following
conditions.

(1) T 7é Zs9.

(2) v is the relative bordism class of paths ¢ : [0,1] — M that go from x; to z,.
The natural map Confg, (M) — Confy(M) = M x M\ Ay that forgets « is an infinite
cyclic covering. Instead of removing the diagonal Ay in the definition of Confy(M),
consider the blowing-up along A, namely replacing Ay, with its normal sphere bundle,
to obtain a compactification Confy(M) of Confa(M). Similarly, by blowing-up along the
preimage of Ay in the space of tuples (21, z,7) satisfying only (2) above, we obtain the
‘closure’ Conf g, (M) of Confy,(M).

Lescop defined an invariant of 3-manifolds M with b;(M) = 1 by an equivariant inter-
section theory in Confg,(M). The principal term of it is given by the equivariant triple
intersection (@, @, @)z for a fundamental 4-chain
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which satisfies a certain boundary condition (equivariant propagator)?.

Received December 30, 2015.

1LMO invariant is defined combinatorially by using Kontsevich’s link invariant and is known to be
universal among finite type invariants of homology 3-spheres

2The Poincaré dual of [Q] € Hq(Confz(M),dConf2(M); Q(t)) generates H*(Confa(M); Q(t)) = Q(£).
The meaning of the word ‘propagator’ here differs from the usual one.




Lescop proved the existence of an equivariant propagator by means of homology theo-
retic arguments. We developed a notion of ‘Z-paths’ (we previously called ‘AL-paths’) in
a surface bundle M over S* and gave an explicit equivariant propagator by the natural
map from the moduli space of Z-paths to configuration space ([16]). By using the equivari-
ant propagator, we construct an invariant of fiberwise Morse functions on M ([17]). The
construction of the invariant can be applied to a construction of a perturbative isotopy
invariant of knots in M, which is useful for the study of finite type invariants of knots in
M ([18]).

2. MODULI SPACE OF Z-PATHS

We define the moduli space of Z-paths and its ‘closure’.®

2.1. Z-path. Let M be an oriented closed 3-manifold. Assume that M admits a structure
of an oriented fiber bundle x : M — S*. We say that a C® map f : M — R is a fiberwise
Morse function if the restriction f, = flc-1(s) @ £71(s) = R is Morse for each s € S*
(known to exist for every ). The totality of the critical points of f,, s € S, forms a
1-submanifold of M (closed braid) and we call each component of the 1-submanifold a
critical locus. Let £ be the gradient of f along the fibers, namely, the one whose restriction
to each fiber over s € S' is grad f,. Let X(£) denote the union of all critical loci of £. For
a critical locus p of a fiberwise Morse function f, the descending/ascending manifold are
defined respectively by

2y(§) ={z e M| t_l_zf_noo (I’tg(x) € p}
(€)= { € M| Jim ¥(z) € 5}

where ® , : M — M is the flow of —£.
Let % : M — R be the pullback of x by the projection R — R/Z = S*.

M—>R

M= St
The induced map 7 : M — M on the total space is an infinite cyclic covering. The

function f fom: M- R is a fiberwise Morse function (for a fiber bundle over R). Let

5 denote the gradient for f along the fibers. By replacing £ with 5 , the critical locus, its
descending/ascending manifolds are defined similarly.

We say that an embedding o : [g,v] — M is horizontal if Im o is included in a single
fiber of ¥ and say that it is vertical if Im o is included in a single critical locus of f A
horizontal (resp. vertical) embedding o : [p,v] — M is descending if f flo(p) > f (a(z/))
(resp. K{o(u)) > K(o(v))). A horizontal embedding o : [p,v] — M is a flow-line of £ if
for each t € (u,v), dO’g(%) is a positive multiple of (_-E),@.

Definition 2.1. Let z,y € M be such that %(z) > R(y). A Z-path from z to y is a
sequence y = (01,09, ..., 0,) satisfying the following six conditions.

3The definition in this note differs slightly from that of [16].
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FIGURE 1. Z-path

(1) For each i, o; is an embedding [u;, vs] — M (ui, v; are real numbers such that
w; < v;) and it is either horizontal or vertical.

(2) For each i, ; is descending. N

(3) If o; is horizontal, then o; is a flow-line of £. If it is vertical, then u; < v;.

(4) o1(1) = z, on(tn) = y.

(5) 0'.;'(1/,') = 0’,’+1([l,,'+1) for1<i<n.

(6) If o, is horizontal (resp. vertical) and if ¢ < n, then 0,4, is vertical (resp. horizon-
tal).

We say that two Z-paths are equivalent if they are related by piecewise reparametrizations.

We call a sequence of paths of the form noy = (100;,...,700,) for a Z-path vy in M a
Z-path in M.

Let #Z(€) be the set of all equivalence classes of Z-paths in M. This has a natural
structure of a noncompact manifold with corners. Let ¢ denote the covering translation
of the covering = : M — M that induces the translation z z —1in R. This induces
diagonal Z-actions v - t"y, (z,y) — ("z,%"y) on ME(E) and Mx M. We denote the

quotient spaces .#Z(£)/Z and (M x M)/Z respectively by ME(&)z and M xz M. We
consider another Z-action on the quotient spaces, denoted by ¢" by abuse of notation, as

t(z x 9) = [o x ty].
For a gradient £ along the fiber for a fiberwise Morse function f, let £ denote the nonsin-

gular vector field £ + gradx on M. Let s; : M — ST(M) (ST denotes the unit tangent
bundle) be the section given by —£/||€].

Theorem 2.2 ([16]). Let ¥ be an oriented connected closed surface and let M be the
mapping torus of an orientation preserving diffeomorphism ¢ : L — . Let Ay C
M xz M be the preimage of the diagonal Ay of M x M.

(1) There is a natural ‘closure’-]{_g 6z of //{;,Z(E)z that is a countable union of com-
pact manifolds with corners.

(2) Suppose that k induces an isomorphism Hy(M)/Torsion & H;(S*). Letl—) }'/Zf(é')z -
M xz M be the map that assigns the endpoints. Let Bly1(x,,) (.//{ 2 (§)z) be the

blow-up of A~ 5 (€)z along 5-1(Ay). Then b induces a map

Bl (%, (M5 (€)z) — Confx, (M)



that represents a 4-dimensional Q(t)-chain Q(g) of Confg,(M). Moreover, the
following identity in H3(0Confy, (M); Q) ®qp,-1 Q(t) holds.

i€
&

where {, is the Lefschetz zeta function for ¢ and K is a knot such that k.([K D
is the positive generator of Hy(S'). Furthermore, there is a product P(t) of cy-
clotomic polynomials such that P()A(M)Q(E) is a Q[t,t™']-chain (A(M) is the
Alezander polynomial of M ).

[0Q(E)] = [s¢(M)] + =2 [ST(M)|x],

2.2. Closure of the moduli space of Z-paths. We define the space .4, (E) of horizontal
paths in M by

M(E) = {(z,y) € M x M; R(z) = K(y), y = B {x) for some ¢ > 0}.

Let b : J/{z(g) — M x M denote the inclusion map. For a continuous parameter s € S

such as real numbers, we denote the sum U V, by / V, and if the parameter is at most
ses s€S

countable, then we denote it by Z Veor Vo, + Vs, + -+ etc
se8
For a generic &, the intersection %, (5) N &, (5) is transversal and hence is a smooth

manifold. There is a free R-action on 7, (5) N &, (E) by = > & (:c) (T € R). We put

Mog(E) = (Do) N H(E))/R.

Proposition 2.3. There is a natural closure .4 Ho(E) of M(€) and the extension b :
o (E) = M x M of b such that for a generic £ the following hold (Ag C S x S denotes
the diagonal for any set S).

(1) Ao(E) — b~ Y(Azp) is a manifold with corners.

(2) b induces a diffeomorphism Int A 2(5) — My(E).

(3) The codimension r stratum of M Ho(E) — b 1(Ajp) corresponds to broken flow-lines

that are broken r times at critical points. The codimension r stratum of A (€ -
b~} (Ag) for r > 1 is canonically diffeomorphic to

Y () X DuC) - Y Ay (r=1)
*€R @ )
. Z Ly, (Es) X My (Es) X -+ X My _14.(65) X Dy (&) (r=2)
SER e Q«rEY(é)

91 ,,,,, gy distinct

The formula for the codimension r stratum (r > 2) in Proposition 2.3 can be rewritten
as follows.

X(s) % Qs) x -+ x Qs) x'¥ (s).

r-1

seER
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Here, if E(E) = {plap27 v 7pN}a then

X(s) = (Hp (&) Hp(&) - py(£))
Y(5) = (D (&) Dnnl(&s) -+ Dpy(Es))
e ﬂpxm(gs) ‘/gpxpa(;) ‘%PIPN(%;)

bl
b

Mprp: (és) 0 - M prps (&) -+ Moy (é)
Q(s) = ‘dpapl (gs) ‘/ﬂpapl (58) 0 ‘/Zp:apzv (fs)
Mps(€s) Mpnpa(€s) Moyps(&) - 0

and the direct product of matrices is defined by replacing multiplications and sums with
direct products and disjoint unions, respectively.

Proposition 2.4. Let p be a critical locus of € and let Do(€) = b~ (p x M), &,(€) =
b~1(M x p). For a generic £, the following are satisfied.

(1) D,(E) (resp. A,p(€)) is a manifold with corners.
(2) b induces a diffeomorphism Int D,(£) — 9,42) (resp. Int E,,(E) - .szf,,(g) ).

~

(3) The codimension r stratum of 'Y = (Dp,(€) Dpp(€) -+ Dy ©)) (resp. X =

A s

(A (6) A py(E) - ZJ,,N(E)) ) for r > 1 is canonically diffeomorphic to

/ Q(s) x -+ x Q(s) x*Y(s) (resp. /eR X(s) x Q(s) x -+ x s) )

GR\ ~ 7
T

v
r

Proposition 2.5. Let p, g be critical loci of E and let —JZM(E) =b"1(pxq). For a generic
&, the following fold.

(1) zm(g) is a manifold with corners. N
(2) There is a natural diffeomorphism Int A p,(€) — Mpg(§)-

(3) The codimension r stratum of Q& = ((1 — 6i;) M p,p,(€)) for v > 1 is canonically
diffeomorphic to

/ s) x -+ x Qs).

':;1

A fiberwise space over a space B is a pair of a space F and a continuousmap ¢ : £ — B.
A fiber over a point s € B is E(s) = ¢~(s) ([2]). For two fiberwise spaces E; = (Ej, ¢1)
and Ey = (Es, ¢9) over B, a fiberwise product Ey X g E is defined as the following subspace
of E1 X EQI

El XpB E, = El(s) X E2(3).
SEB

Namely, E; xp E, is the pullback of E; "Ape E,.



For a sequence A; = (4;,¢;), ¢i : A; = R (i = 1,2,...,n) of fiberwise spaces over R,
we define its iterated integrals as

/ Ahgee A, = / Ar(s1) x Aa(s2) % - X An(sn)
R §1>82> >8n
= (¢1 X X ¢n)_1({(sl>"-)sn> S R™ ’ 81 >0 > Sn});

/A}Ag LR An = / Al(Sl) X AQ(SQ) X oo X An(sn)
R 812282228

= (¢ XX B) M {(51y- -, 80) ER [ 812 -+ > 5,})

For a matrix P = (A,;) of fiberwise spaces over R, we define a fiber of s € R by P(s) =
(Ai;(s)). Then iterated integrals for matrices of fiberwise spaces over R can be defined
by similar formulas as above.

We define matrices X, Y, of fiberwise spaces over R by

-~

X = (i (&) Hpp(®) -+ Hpe®), Y =(Zp(€) Dr(€) -+ Don(9)),
Q = ((1 = 8ij) My, (1

Then the space of Z-paths in M is rewritten by means of the iterated integrals as follows.
ME(E) =.//{2(E)+/X‘Y+/XQW+/XQQ‘Y+-~ ,
R R R
We would like to define the ‘closure’ of this space.

Lemma 2.6. For a generic £, the space / XQ---Q is the disjoint union of finitely
R e

k]

many manifolds with corners, and the closure of its codimension 1 stratum is given by the
following formula.

>'are) .¢——t——‘ wm..«m »u..——t_— bd .. t-—_
/R(aX)Q. QY+;/RXQ;1Q(6‘Q)Q *.Q Y + RXQ Q(6'Y)

———— Ty}
' oD re XA % O reYZe) OO O 7 YO...00 7
+/R(X xRQ)QT-l;;Q Y+;/RXQ;—-1-Q(Q xmg)%;? Y+/RX THQ(Q xg 'Y).

For n > 0, let S, (resp. T},) denote the first line (resp. the second line) of the formula
in Lemma 2.6.

Lemma 2.7. There is a natural stratification preserving diffeomorphisms
X =X xgQ, 0V =2Q0xp'Y,
=0 xgQ, M6 = Ay + X xz'Y.
These induce, for n > 0, a stratification preserving diffeomorphism
Sp & Thys.

Let S_; C 3722(5) be the face that corresponds to X xg 'Y by the diffeomorphism of
Lemma 2.7.
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Definition 2.8.
6 = [+ [X7+ [X0T+ [X00T 4] /-
R R R

Here, for each n > 0, we identify S,_; with T,, by the diffeomorphism of Lemma 2.7. Z
acts on 7{—3(5) by (21, Z2,...,2,) — (t21,t22,. .., tz,). We put

M8z = M, (€)/L.
Outline of the proof of Theorem 2.2. By fixing orientations on the manifold pieces in the
stratified space T/Zﬁ(g)z, the map b : 725(&)1 — M xz M represents a Q(t)-chain of
M xz M. (The proof that the coefficients are rational functions is an analogue of the

proof of the rationality of Novikov complexes by Pajitnov ([14, 15]).) By Lemmas 2.6,
2.7 and by checking the orientations on the gluing parts, it turns out that the boundary

of A- 2 (§)z concentrates on the lift Ay of the diagonal Ay. Hence the boundary of
Bz, (7{—2 (€)z) consists of Z-paths with endpoints agree (in M) and of closed Z-paths
(in M). One sees that in the homology class of the boundary of BEE_l(gM)(_./—/Zg (E)z), the

part for closed Z-paths corresponds to the logarithmic derivative of the Lefschetz zeta
function.

3. PERTURBATION THEORY FOR A-COEFFICIENTS

Put A = Q[t,t71], A= Q(¢). Since a recipe for the perturbation theory for Lie algebra
local coefficient systems is given by Axelrod-Singer, Kontsevich ([1, 5]), it is expected
that one can obtain a perturbative invariant with A-coefficients if there is an appropriate
propagator with A-coefficients. The Q(t)-chain given by the moduli space of Z-paths can
be considered as an appropriate equivariant propagator and we use it.

3.1. A-colored graph. We call a finite connected graph with edges oriented a graph. A
vertez-orientation of a graph is an assignment of cyclic order of edges incident to each

vertex. For a vertex-oriented graph I', a A- -coloring of ' is a mapping ¢ : Edges(T") — A.
Definition 3.1 (Garoufalidis-Rozansky [4]).

spang{I : 3-valent, 2n vertices, A-colored vertex-oriented graphs}
AS, THX, Orientation reversal, Linearity, Holonomy

AS THX
= - [ = }ﬁ{ - }%
v v
AR R N %

)] @ ® m @ @

(A) =

Orientation Linearity Holonomy
Reversal



3.2. Equivariant configuration space and equivariant intersection. Let x: M —
1)

S! be a fiber bundle and let = 1 “ 5. We define M® as

M® = {(z1, 22311, %2, 78) | 21,72 € M,

7; : homotopy class of ¢; : [0,1] — S* such that

¢i(0) = £(z1), (1) = K(z2)}-
When H;(M) = Z, the homotopy class 7; of ¢; is the same thing as the relative bordism
class of the lift ¢; : [0,1] — M of ¢;. The equivariant configuration space Confg(M) for
© is defined by

Confe (M) := BL(M®, preimage of Ay),

where B{(X, A) is the blow-up of a (real) manifold X along a submanifold A. The projec-
tion Confg(M) — Confy(M) is a Z3-covering and we have my(Confe(M)) ~ HY(O;Z) =
[©,5.

By extending the intersections of chains by K—Iinearity, we define the multilinear form
Q1 ® Q2 ® Qs (Q1,Q2,Qa)e € Co(Confo(M); Q) ®pes A%

(A®3 = QI 15, ¢5Y), A% = Q(t1) ®¢ Q(t2) ®g Q(ts)) for ‘generic’ 4-dimensional A-
chains @1, Q2, @3 in Confg, (M).
We define the trace Trg : A®® — & (A) for A-colored graphs by

214

Tro(Fi(t1) ® Fa(te) ® F3(ts)) = [}

This induces the following map.
Tre : Ho(Confe(M); Q) ®pes A% — Ho(Confy(M); Q) ®g #(A) = 4 (A).
Similarly, for a 3-valent graph I' with 2n vertices (3n edges), we obtain
Q1 ®Q® - ®Qsn (Qy: codimension 2 A-chain in Confg,(M) or in M)
= (@1, Q2 -, Qun)r € Co(Confr(M); Q) ®pssn AT
= Trp(Q1, Qo - -, Qsn)r € Ho(Confan (M); Q) 8 a(A) = o (A).

Definition 3.2. Let «; : M — S! be an oriented surface bundle such that x; ~ . Let
fi : M — R be an oriented “fiberwise Morse function (w.r.t. &;), let & be the gradient for
«; along the fibers (1 =1,2,...,3n). We define Z,, as follows.

Z, =Y Trr(Q(E), Q&) - -, Qsn))r € Fa(R).
r

The sum is over all (labeled) 3-valent graphs with 2n vertices.

Namely, PDp(&:) is oriented for each critical locus p.
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Theorem 3.3 ([17]).

Zn = Zn — Z3°™ (i) € (R)
is an invariant of (M, s,[&],[f]). (Z2"°™® (5w ) is a term obtained by counting affine
graphs in a rank 8 vector bundle over some compact 4-manifold W such that OW = M.
Here,

(1) s is a spin structure on M.

(2) [k] € HY(M) is the homotopy class of .

(3) [f] is the ‘concordance class’ of an oriented fiberwise Morse function f : M — R.
(Oriented fiberwise Morse functions fo and f, are concordant if there is a generic
homotopy F : M x [0,1] — R between fy and f1 such that for each birth-death
locus, its projection to S* x [0, 1] is a simple closed curve and is not nullhomotopic.)

To get an invariant of (M, [k]), one must show that Z, does not depend on the choice
of concordance class of oriented fiberwise Morse functions, namely, that 2,, is invariant
under a generic homotopy of oriented fiberwise Morse functions. However, as suggested
by the definition of concordance, the topology of the moduli space of Z-paths may change
if there is a birth-death locus whose projection on S* x [0,1] is nullhomotopic. We guess
that the restriction of the homotopy to concordances might be too strong,.

Though, this is sufficient to study finite type isotopy invariants of knots in a 3-manifold
([18]). Thanks to the definition of Z, by Z-paths, Theorem 3.3 can be proved by a
standard argument (constructing a cobordism between moduli spaces on the endpoints)
without difficulty.

3.3. Z-graph. Now we explain that Z, can be defined by counting certain graphs. In
the following, we only consider the graph I' = © for simplicity.

Definition 3.4. Put ¥ = x71(0). For (a;,az,a3) € Z3, we define

'ﬂez(al ,62,03)(2; {1: 621 53)
as the set of maps I : © — M such that
(1) 4-th edge is a Z-path for &;.
(2) #(i-th edge of I) N X = q; (count with signs)
We call such a map I : © — M a Z-graph.

This definition is an analogue of the flow-graphs considered in Fukaya’s Morse homotopy
theory [3]. The following lemma can be proved by a transversality argument as in [3].



Lemma 3.5. For a generic k;, & (i = 1,2,3), the moduli space //{g(al,ama)(z;gl,gz,&)
is a compact oriented 0-dimensional manifold (¥(a1,az2,a3) € Z*)

Proposition 3.6. Choose k;, & (it = 1,2,3) generically as in the Lemma. Put
Foi= Y #lli e (Tt G &)1

(a1,a2,a3) €23

Then there exist a polynomial P(ty,ty,t3) € Q[tE,¢51, 5] and a product C(t) € A of
cyclotomic polynomials such that
— P(t17t21t3)

C(t1)C(t2)C(t3) A1) At2) A(ts)

holds. (A(t) is the Alezander polynomial of M)
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