On the resolvent problem for one dimensional Schrödinger operators with singular potentials

東京理科大学理学部第一部数学科 側島 基宏 (Motohiro Sobajima)
Department of Mathematics, Tokyo University of Science

1. Introduction

This paper is a joint work with Professor Giorgio Metafune (University of Salento) and a part of [13]. In this paper we consider the resolvent problem for one-dimensional Schrödinger operators with singular potentials:

$$H = -\frac{d^2}{dr^2} + \frac{a}{r^2}$$
 in $L^2(\mathbb{R}_+)$,

where $a \in (-\infty, -\frac{1}{4})$ and $\mathbb{R}_+ := (0, \infty)$.

As is well-known, H_{\min} (H endowed with domain $C_0^{\infty}(\mathbb{R}_+)$) is nonnegative if and only if $a \geq -\frac{1}{4}$. In this case, the Friedrichs extension of H_{\min} exists. This is a consequence of the one-dimensional Hardy inequality

$$\frac{1}{4} \int_0^\infty \frac{|u(r)|^2}{r^2} dr \le \int_0^\infty |u'(r)|^2 dr, \quad u \in C_0^\infty(\mathbb{R}_+).$$

In the view-point of ordinary differential equation, the solution of Hu = 0 can be simply written as

$$u(r) = \begin{cases} c_1 r^{\frac{1}{2} + \nu} + c_2 r^{\frac{1}{2} - \nu} & \text{if } a > -\frac{1}{4}, \\ c_1 r^{\frac{1}{2}} + c_2 r^{\frac{1}{2}} \log r & \text{if } a = -\frac{1}{4}, \\ c_1 r^{\frac{1}{2} + i\nu} + c_2 r^{\frac{1}{2} - i\nu} & \text{if } a < -\frac{1}{4} \end{cases}$$

with $\nu = \sqrt{|b+\frac{1}{4}|}$ and an arbitrary constants $c_1, c_2 \in \mathbb{C}$. This means that existence of positive solutions to Hu = 0 holds if and only if $a \ge -\frac{1}{4}$ and every solution is oscillating if $a < -\frac{1}{4}$. We remark that H_{\min} is essentially selfadjoint (H_{\min} has a unique selfadjoint extension) if and only if $a \ge \frac{3}{4}$.

In N-dimensional case, by Hardy's inequality

$$\left(\frac{N-2}{2}\right)^{2} \int_{\mathbb{R}^{N}} \frac{|u(x)|^{2}}{|x|^{2}} dx \le \int_{\mathbb{R}^{N}} |\nabla u(x)|^{2} dx \qquad u \in C_{0}^{\infty}(\mathbb{R}^{N} \setminus \{0\})$$

the operator $L_{\min} = -\Delta + b|x|^{-2}$ (endowed with domain $C_0^{\infty}(\mathbb{R}^N \setminus \{0\})$) is nonnegative if and only if $b \geq -(\frac{N-2}{2})^2$. We also remark that the essentially selfadjointness of L_{\min}

holds for $b \ge -(\frac{N-2}{2})^2 + 1$ (see [17, Section X.1]). Further previous works for L_{\min} in L^p spaces can be found in Okazawa [15], Liskevich, Sobol and Vogt [9] and Metafune et al. [14]. On the other hand if $b < -(\frac{N-2}{2})^2$, Baras and Goldstein proved in [2] that there exists no nonnegative (non-trivial) distributional solution of the equation

(1.1)
$$\frac{\partial u}{\partial t}(x,t) - \Delta u(x,t) + \frac{b}{|x|^2} u(x,t) = 0, \qquad (x,t) \in \mathbb{R}^N \times \mathbb{R}_+.$$

This nonexistence result for nonnegative solutions has been generalized by subsequent papers ([4], [7], [8], [10] and [6]).

In the present paper we consider the one-dimensional case under the assumption

(1.2)
$$a < -\frac{1}{4}, \quad \nu := \sqrt{-a - \frac{1}{4}} > 0.$$

We characterize all realizations of operators between H_{\min} and $H_{\max} := (H_{\min})^*$, given by

$$D(H_{\max}) := \{ u \in L^2(\mathbb{R}_+) \cap H^2_{\text{loc}}(\mathbb{R}_+) ; Hu \in L^2(\mathbb{R}_+) \},$$

having the non-empty resolvent set by introducing a boundary condition at 0 of oscillating type. Spectral properties of selfadjoint realizations of H are also considered in [5] when $a < -\frac{1}{4}$.

This paper is organized as follows. In Section 2, we analyze the properties of solutions to the equation $\lambda u + Hu = f$. Section 3 is devoted to show how to construct all realizations of H with non-empty resolvent set. Generation of analytic semigroup on $L^2(\mathbb{R}_+)$ by realizations of -H is considered in Section 4. Finally, in Section 5 we mention generation result for realization of -L in N-dimensional case.

2. Preliminaries

In this section we study the equation $\lambda u + Hu = f$.

2.1. The homogeneous equation

If $\lambda \notin (-\infty, 0]$, then the above equation with f = 0 has two solutions. One is exponential decaying and the other is exponential growing at ∞ . The behavior of these two solutions near 0 is clarified in the next two lemmas.

Lemma 1. Let $\omega \in \mathbb{C}_+ := \{z \in \mathbb{C} ; \operatorname{Re} z > 0\}$, $\omega = \mu e^{i\xi}$ with $\mu > 0$, $|\xi| < \frac{\pi}{2}$. Assume that (1.2) is satisfied. Then there exists a solution $\varphi_{\omega,0}$ of

(2.1)
$$\omega^2 \varphi(r) - \varphi''(r) + \frac{a}{r^2} \varphi(r) = 0, \quad r \in \mathbb{R}_+$$

and a constant $R = R(b, \omega) > 0$ such that

(2.2)
$$|\varphi_{\omega,0}(r)| \le 2e^{-(\operatorname{Re}\omega)r}, \quad r \ge R$$

and there exists $\alpha \in \mathbb{C} \setminus \{0\}$ such that

$$\left| r^{-\frac{1}{2}} \varphi_{\omega,0}(r) - \mu^{\frac{1}{2}} e^{i\frac{\xi}{2}} \left(\alpha \mu^{i\nu} e^{-\xi \nu} r^{i\nu} + \overline{\alpha} \mu^{-i\nu} e^{\xi \nu} r^{-i\nu} \right) \right| \to 0 \quad as \ r \downarrow 0.$$

Moreover, if ω is real, then $\varphi_{\omega,0}(r)$ is real.

Proof. (Step 1). We consider the following equation in \mathbb{C}_+ :

(2.4)
$$w(z) - \frac{d^2w}{dz^2}(z) + \frac{a}{z^2}w(z) = 0, \quad z \in \mathbb{C}_+.$$

The indicial equation $\alpha(\alpha - 1) = a$ has roots $\alpha_1 = \frac{1}{2} + i\nu$ and $\alpha_2 = \frac{1}{2} - i\nu$. Then every solution has the form

(2.5)
$$w(z) = g_1(z)z^{\frac{1}{2}+i\nu} + g_2(z)z^{\frac{1}{2}-i\nu},$$

with g_1 and g_2 which are entire functions. And therefore w is holomorphic in $\mathbb{C}\setminus(-\infty,0]$, see [3, Chapter 9.6, 9.8].

Now we show that there exists a solution of (2.4) which behaves like e^{-z} in $E_R = \{z \in \mathbb{C}_+ ; |z| > R\}$. Setting $h(z) := e^z w(z)$, we see that (2.4) reduces to

(2.6)
$$\frac{d^2h}{dz^2}(z) - 2\frac{dh}{dz}(z) = \frac{a}{z^2}h(z), \quad z \in \mathbb{C}_+.$$

We denote X as the set of all bounded holomorphic functions in E_R , endowed with $||h||_X := \sup_{z \in E_R} |h(z)|$. Define

$$Th(z) = 1 + \int_{\Gamma_z} e^{2\xi} \left(\int_{\Gamma_\xi} \frac{ae^{-2\eta}}{\eta^2} h(\eta) d\eta \right) d\xi, \quad z \in E_R,$$

where $\Gamma_z := \{tz \; ; \; t \in [1, \infty)\}$; note that a fixed point of T is not 0 and satisfies (2.6). Then $T: X \to X$ is well-defined and contractive in X when R is large enough. In fact, if $h \in X$, then Th is well-defined and holomorphic in E_R . Moreover, for $z \in E_R$,

$$\begin{split} |Th(z)-1| &= \left| \int_{1}^{\infty} e^{2tz} \left(\int_{t}^{\infty} \frac{ae^{-2sz}}{(sz)^{2}} h(sz)z \, ds \right) z \, dt \right| \\ &= \left| \int_{1}^{\infty} \left(\int_{1}^{s} e^{2tz} \, dt \right) \frac{ae^{-2sz}}{s^{2}} h(sz) \, ds \right| \\ &\leq \sup_{1 \leq s < \infty} \left| \frac{a(1-e^{2(s-1)z})}{2z} \right| \left(\int_{1}^{\infty} \frac{1}{s^{2}} \, ds \right) \|h\|_{X} \\ &\leq \frac{|a|}{R} \|h\|_{X}. \end{split}$$

Similarly, we have $|Th_1(z) - Th_2(z)| \le \frac{|a|}{R} ||h_1 - h_2||_X$ for every $h_1, h_2 \in X$ and $z \in E_R$. Therefore $T: X \to X$ is well-defined and if we choose $R = R_0 := 2|a|$, then T is

contractive. By Banach's contraction mapping principle, there exists a unique fixed point $h_0 \in X$ of T. Noting that

$$|h_0(z) - 1| = |Th_0(z) - T0(z)| \le \frac{|a|}{R_0} ||h_0||_X \le \frac{|h_0 - 1||_X + 1}{2},$$

we deduce $||h_0 - 1||_X \le 1$. Taking $w_0(z) = e^{-z}h_0(z)$ it follows that w_0 has an analytic continuation to a solution of (2.4) and

$$|e^z w_0(z)| \leq 2, \quad z \in E_{R_0}$$

Now we define

$$\varphi_{\omega,0}(r) = w_0(\omega r), \quad r \in \mathbb{R}_+.$$

Then $\varphi_{\omega,0}$ satisfies (2.1):

$$\omega^{2} \varphi_{\omega,0}(r) - \varphi_{\omega,0}''(r) + \frac{a}{r^{2}} \varphi_{\omega,0}(r) = \omega^{2} \left(w_{0}(\omega r) - \frac{d^{2} w_{0}}{dz^{2}} (\omega r) + \frac{a}{(\omega r)^{2}} w_{0}(\omega r) \right)$$

$$= 0.$$

Moreover, if $r > R := R_0/|\omega|$, then

$$|e^{\omega r}\varphi_{\omega,0}(r)| = |e^{\omega r}w_0(\omega r)| < 2$$

and therefore (2.2) is satisfied.

(Step 2). Next we consider w_0 on \mathbb{R}_+ . Note that w_0 is real on \mathbb{R}_+ . In fact, $w_0(r)$ and $\overline{w_0}(r)$ are solutions of (2.4) on \mathbb{R}_+ which behave like e^{-r} near ∞ . Since such a solution of (2.4) is unique, it follows that $w_0(r) = \overline{w_0}(r)$ for $r \in \mathbb{R}_+$. By (2.5) we have

(2.7)
$$w_0(z) = g_1(z)z^{\frac{1}{2}+i\nu} + g_2(z)z^{\frac{1}{2}-i\nu}, \quad z \in \mathbb{C} \setminus (-\infty, 0],$$

where g_1, g_2 are entire functions. Then $g_1(r) = \overline{g_2(r)}$ for r > 0 and $\alpha = g_1(0) = \overline{g_2(0)}$. This implies that

$$\left|z^{-\frac{1}{2}}w_0(z) - \left(\alpha z^{i\nu} + \overline{\alpha}z^{-i\nu}\right)\right| \to 0 \quad \text{as } z \to 0 \quad (z \in \mathbb{C}_+).$$

Consequently, we obtain (2.3):

$$\begin{split} & \left| r^{-\frac{1}{2}} \varphi_{\omega,0}(r) - \mu^{\frac{1}{2}} e^{i\frac{\xi}{2}} \left(\alpha e^{-\xi \nu} \mu^{i\nu} r^{i\nu} + \overline{\alpha} e^{\xi \nu} \mu^{-i\nu} r^{-i\nu} \right) \right| \\ &= \mu^{\frac{1}{2}} \left| (\omega r)^{-\frac{1}{2}} w_0(\omega r) - \left(\alpha (\omega r)^{i\nu} + \overline{\alpha} (\omega r)^{-i\nu} \right) \right| \to 0 \quad \text{as } r \downarrow 0. \end{split}$$

This completes the proof.

Next we study the behavior at 0 of the exponentially growing solution.

Lemma 2. Let $\omega \in \mathbb{C}_+$ satisfy $\omega = \mu e^{i\xi}$ with $\mu > 0$, $|\xi| < \pi/2$. Assume that (1.2) is satisfied. Then there exist a solution $\varphi_{\omega,1}$ of (2.1) and constants $C'_{\omega} > C_{\omega} > 0$ and R' > 0 such that

(2.8)
$$C_{\omega}e^{(\operatorname{Re}\omega)r} \leq |\varphi_{\omega,1}(r)| \leq C_{\omega}'e^{(\operatorname{Re}\omega)r} \quad \text{for } r \geq R',$$

$$\left| r^{-\frac{1}{2}} \varphi_{\omega,1}(r) - \mu^{\frac{1}{2}} e^{i\frac{\xi}{2}} \left(\alpha \mu^{i\nu} e^{-\xi \nu} r^{i\nu} - \overline{\alpha} \mu^{-i\nu} e^{\xi \nu} r^{-i\nu} \right) \right| \to 0 \quad as \ r \downarrow 0,$$

where α is given in Lemma 1. Moreover, if ω is real, then $i\varphi_{\omega,1}(r)$ is real.

Proof. By (2.5) there exist two solutions w_1, w_2 satisfying

$$z^{-\frac{1}{2}-i\nu}w_1(z) \to 1$$
, $z^{-\frac{1}{2}+i\nu}w_2(z) \to 1$ as $z \to 0$.

With the same notation as in the proof of Lemma 1, we have $\varphi_{\omega,0}(r) = w_0(\omega r)$ and $w_0(z)$ is given by (2.7), $g_1(r) = \overline{g_2(r)}$ for r > 0 and $\alpha = g_1(0) = \overline{g_2(0)} \neq 0$. Now we take $v(z) = g_1(z)z^{\frac{1}{2}+i\nu} - g_2(z)z^{\frac{1}{2}-i\nu}$. Then w_0 , v are linearly independent and $\varphi_{\omega,1}(r) = v(r\omega)$ is a solution of (2.1) which satisfies (2.9) and is imaginary when ω is real. To prove (2.8) we note that (2.1) has one solution which behaves like $\exp(-\omega r)$ (namely, $\varphi_{\omega,0}$) and one solution which behaves like $\exp(\omega r)$ at ∞ , see [12, Proposition 4] for an elementary proof. Since $\varphi_{\omega,1}$ is independent of $\varphi_{\omega,0}$, (2.8) holds.

Finally we consider the case where $\omega = i\mu$ with $\mu > 0$.

Lemma 3. Assume that (1.2) is satisfied. Then for every $\mu > 0$, there exist two solutions $\varphi_{i\mu,0}$ and $\varphi_{i\mu,1}$ of

(2.10)
$$-\mu^2 \varphi(r) - \varphi''(r) + \frac{a}{r^2} \varphi(r) = 0, \quad r \in \mathbb{R}_+$$

such that as $r \to \infty$,

$$e^{-i\mu r}\varphi_{i\mu,0}(r) \to 1, \qquad e^{i\mu r}\varphi'_{i\mu,0}(r) \to i\mu, \ e^{i\mu r}\varphi_{i\mu,1}(r) \to 1, \qquad e^{i\mu r}\varphi'_{i\mu,1}(r) \to -i\mu.$$

Proof. It suffices to apply [12, Proposition 5], with $f(x) = -\mu^2$, to (2.10) (see also [16, Theorem 6.2.2]).

2.2. The inhomogeneous equation

Lemma 4. Let $\omega \in \mathbb{C}_+$ satisfy $\omega = \mu e^{i\xi}$ with $\mu > 0$, $|\xi| < \pi/2$. Assume that (1.2) is satisfied. Let $\varphi_{\omega,0}$ and $\varphi_{\omega,1}$ be as in Lemmas 1 and 2. Then for $f \in L^2(\mathbb{R}_+)$, every solution of

$$\omega^2 u(r) - u''(r) + \frac{b}{r^2} u(r) = f(r), \quad r \in \mathbb{R}_+$$

is given by

(2.11)
$$u(r) = c_0 \varphi_{\omega,0}(r) + c_1 \varphi_{\omega,1}(r) + T_{\omega} f(r),$$

where $c_{\in}\mathbb{C}$ and $c_1 \in \mathbb{C}$ are constants and

$$T_{\omega}f(r) = rac{1}{W(\omega)} \left(\int_0^r arphi_{\omega,1}(s) f(s) \, ds
ight) arphi_{\omega,0}(r) \ + rac{1}{W(\omega)} \left(\int_r^{\infty} arphi_{\omega,0}(s) f(s) \, ds
ight) arphi_{\omega,1}(r),$$

with the Wronskian $W(\omega)$ of $\varphi_{\omega,0}, \varphi_{\omega,1}$. The map T_{ω} is a bounded linear operator from $L^2(\mathbb{R}_+)$ to itself. Moreover, if ω is real, then T_{ω} is selfadjoint.

Proof. By variation of parameters (2.11) easily follows. Observe that

$$T_{\omega}f(r)=\int_{0}^{\infty}G_{\omega}(r,s)f(s)\,ds,$$

where

$$G_{\omega}(r,s) = \begin{cases} W(\omega)^{-1} \varphi_{\omega,0}(r) \varphi_{\omega,1}(s) & \text{if } s \leq r, \\ W(\omega)^{-1} \varphi_{\omega,0}(s) \varphi_{\omega,1}(r) & \text{if } s \geq r. \end{cases}$$

Using Lemmas 1 and 2 and noting that both solutions are bounded near 0, we obtain $|\varphi_{\omega,0}(r)| \leq Ce^{-(\text{Re}\omega)r}, \ |\varphi_{\omega,1}(r)| \leq Ce^{(\text{Re}\omega)r}$ for every r > 0. Therefore

$$|G_{\omega}(r,s)| \le C^2 e^{-(\text{Re}\,\omega)|r-s|}, \quad r > 0, \ s > 0$$

and therefore the boundedness of T_{ω} follows. If ω is real, then $\varphi_{\omega,0}, i\varphi_{\omega,1}, iW(\omega)$ are real. Hence we have $\overline{G_{\omega}(r,s)} = G_{\omega}(s,r)$, that is, T_{ω} is selfadjoint.

3. Realizations of H and their spectral properties

Here we characterize all extensions $H_{\min} \subset \tilde{H} \subset H_{\max}$ with non-empty resolvent set by introducing a boundary condition at 0 of oscillating type. And we study their spectral properties.

Lemma 5. Let the operator \tilde{H} satisfy $H_{\min} \subset \tilde{H} \subset H_{\max}$. Then $[0,\infty) \subset \sigma(\tilde{H})$.

Proof. First we prove $(0,\infty) \in \sigma(-\tilde{H})$. Let $\eta_n(r)$ be a smooth function equal to 1 in [n,2n], with support contained in $[\frac{n}{2},3n]$ and $0 \leq \eta_n \leq 1$, $|\eta'_n| \leq \frac{C}{n}$, $|\eta''_n| \leq \frac{C}{n^2}$. Using $\varphi_{i\mu,0}$ as in Lemma 3, we consider $\psi_n = \eta_n \varphi_{i\mu,0} \in C_0^{\infty}(\mathbb{R}_+) \subset D(\tilde{H})$. Then we see that

$$-\mu^{2}\psi_{n} + H\psi_{n} = -2\eta'_{n}\varphi'_{i\mu,0} - \eta''_{n}\varphi_{i\mu,0}.$$

We have $\|\psi_n\|_2 \approx \sqrt{n}$ and, since $\varphi_{i\mu,0}$ and $\varphi'_{i\mu,0}$ are bounded near ∞ ,

$$\|(\mu^2 + H)\psi_n\|_2 \le Cn^{-1/2}.$$

Therefore μ^2 is the approximate point spectrum, in other words, $-\mu^2 + H$ does not have a bounded inverse. Finally, noting that $\sigma(\tilde{H})$ is closed in \mathbb{C} , we have $[0, \infty) \subset \sigma(\tilde{H})$. \square

Lemma 6. Let $H_{\min} \subset \tilde{H} \subset H_{\max}$. Assume that (1.2) and $\rho(\tilde{H}) \neq \emptyset$ are satisfied. Then there exists $\tilde{c} \in \mathbb{C}$ such that the domain of \tilde{H} is given by

(3.1)
$$D(\tilde{H}) = \left\{ u \in D(H_{\max}); \exists C \in \mathbb{C} \text{ s.t. } \lim_{r \downarrow 0} \left| r^{-\frac{1}{2}} u(r) - C \left(a_1 r^{i\nu} + a_2 r^{-i\nu} \right) \right| = 0 \right\},$$

where the pair $(a_1, a_2) \in \mathbb{C}^2 \setminus \{(0, 0)\}$ is given by

(3.2)
$$a_1 = (\tilde{c} + W(\omega)^{-1})\alpha\mu^{i\nu}e^{-\xi\nu}, \qquad a_2 = (\tilde{c} - W(\omega)^{-1})\overline{\alpha}\mu^{-i\nu}e^{\xi\nu}.$$

Proof. First we show the inclusion " \subset " in (3.1). Fix $\lambda \in \rho(\tilde{H})$. It follows from Lemma 5 that $\lambda \in \mathbb{C} \setminus [0, \infty)$. Let $\omega \in \mathbb{C}_+$ satisfy $-\omega^2 = \lambda$. From Lemma 4, we have

$$[(\omega^2 + \tilde{H})^{-1}f](r) = c_0(f)\varphi_{\omega,0}(r) + c_1(f)\varphi_{\omega,1}(r) + T_{\omega}f(r).$$

Since $\varphi_{\omega,1} \notin L^2(\mathbb{R}_+)$ and $\varphi_{\omega,0} \in L^2(\mathbb{R}_+)$, it follows that $c_1(f)$ is 0 and that $c_0(f)$ is a bounded linear functional in $L^2(\mathbb{R}_+)$. Riesz's representation theorem yields that there exists $v \in L^2(\mathbb{R}_+)$ such that

$$c_0(f) = \int_0^\infty f(s)v(s) \, ds.$$

If we choose $f = \omega^2 u + Hu$ for $u \in C_0^{\infty}(\mathbb{R}_+)$, then, for r small enough, by integration by parts we see that

$$0 = u(r)$$

$$= c_0(f)\varphi_{\omega,0}(r) + \frac{1}{W(\omega)} \left(\int_0^\infty \varphi_{\omega,0}(s)f(s) ds \right) \varphi_{\omega,1}(r)$$

$$= c_0(f)\varphi_{\omega,0}(r).$$

Thus $c_0(f) = 0$ for every $f \in (\omega^2 + H)(C_0^{\infty}(\mathbb{R}_+))$. This yields that $(\omega^2 + H)v = 0$ and hence we see that $v = \tilde{c}\varphi_{\omega,0}$. Therefore

(3.3)
$$c_0(f) = \tilde{c} \int_0^\infty \varphi_{\omega,0}(s) f(s) ds \quad \text{for some } \tilde{c} \in \mathbb{C},$$

Consequently, for every $f \in L^2(\mathbb{R}_+)$, $u = (\omega^2 + \tilde{H})^{-1}f$ satisfies

(3.4)
$$\lim_{r\downarrow 0} r^{-\frac{1}{2}} \left| u(r) - \left(\int_0^\infty \varphi_{\omega,0}(s) f(s) \, ds \right) \left(\tilde{c} \varphi_{\omega,0}(r) + W(\omega)^{-1} \varphi_{\omega,1}(r) \right) \right| = 0.$$

Using (2.3) and (2.9) (with the same notation), we obtain " \subset " with $(a_1, a_2) \neq (0, 0)$ given by (3.2) and \tilde{c} given by (3.3).

Conversely, we prove the inclusion " \supset " in (3.1). Let $u \in D(H_{\text{max}})$ satisfy

$$\lim_{r \downarrow 0} \left| r^{-\frac{1}{2}} u(r) - C' \left(a_1 r^{i\nu} + a_2 r^{-i\nu} \right) \right| = 0,$$

where the pair (a_1, a_2) is defined in (3.2) and \tilde{c} in (3.3). By (2.3) and (2.9) we have

$$\lim_{r\downarrow 0} r^{-\frac{1}{2}} \left| u(r) - C \left(\tilde{c} \varphi_{\omega,0}(r) + W(\omega)^{-1} \varphi_{\omega,1}(r) \right) \right| = 0.$$

Set $\tilde{u} = (\omega^2 + \tilde{H})^{-1}(\omega^2 + H_{\text{max}})u$ and $w = u - \tilde{u}$. Then $(\omega^2 + H)w = 0$. Since $w \in L^2(\mathbb{R}_+)$, we see that $w = c'\varphi_{\omega,0}$ for some $c' \in \mathbb{C}$. Noting that

$$\lim_{r\downarrow 0} r^{-\frac{1}{2}} \left| \tilde{u}(r) - \tilde{C} \left(\tilde{c} \varphi_{\omega,0}(r) + W(\omega)^{-1} \varphi_{\omega,1}(r) \right) \right| = 0,$$

we obtain

$$\lim_{r\downarrow 0} r^{-\frac{1}{2}} \left| c' \varphi_{\omega,0}(r) - (C - \tilde{C}) \left(c \varphi_{\omega,0}(r) + W(\omega)^{-1} \varphi_{\omega,1}(r) \right) \right| = 0,$$

or equivalently,

$$\lim_{r\downarrow 0} r^{-rac{1}{2}} \left| \left(c' - ilde{c}(C - ilde{C})
ight) arphi_{\omega,0}(r) - (C - ilde{C}) W(\omega)^{-1} arphi_{\omega,1}(r)
ight| = 0.$$

By (2.3) and (2.9) again we deduce that
$$c' = 0$$
, hence $u = \tilde{u} \in D(\tilde{H})$.

In view of Lemma 6, we define realizations between H_{\min} and H_{\max} as follows.

Definition 1. Let $A = (a_1, a_2) \in \mathbb{C}^2 \setminus \{(0, 0)\}$. Then

$$\begin{cases} D(H_A) := \left\{ u \in D(H_{\max}) \; ; \; \exists C \in \mathbb{C} \text{ s.t. } \lim_{r \downarrow 0} \left| r^{-\frac{1}{2}} u(r) - C \left(a_1 r^{i\nu} + a_2 r^{-i\nu} \right) \right| = 0 \right\}, \\ H_A u = H u. \end{cases}$$

Remark 3.1. All functions in $D(H_{\text{max}})$ satisfies Dirichlet boundary condition at 0. For fixed A, we consider an additional boundary condition $r^{-\frac{1}{2}}u(r) \approx a_1 r^{i\nu} + a_2 r^{-i\nu}$ near $r \ll 1$. This can be regarded as a boundary condition of oscillating type.

Remark 3.2. If \tilde{H} satisfies $H_{\min} \subset \tilde{H} \subset H_{\max}$ and $\rho(\tilde{H}) \neq \emptyset$, then by Lemma 6 there exists a pair $A = (a_1, a_2) \in \mathbb{C}^2 \setminus \{(0, 0)\}$ such that \tilde{H} coincides with H_A . Moreover, if $a'_1 = ca_1$ and $a'_2 = ca_2$ for some $c \in \mathbb{C} \setminus \{0\}$, then $H_A = H_{A'}$. This implies that the map

$$A \in \mathbb{C}P_1 \mapsto H_A \in \{\tilde{H} ; H_{\min} \subset \tilde{H} \subset H_{\max} \& \rho(\tilde{H}) \neq \emptyset\}$$

is well-defined and one to one, where $\mathbb{C}P_1$ denotes the Riemann sphere (or the one-dimensional complex projective space). Note that it is known in a field of mathematical physics that there exists a bijective map

$$\mathbb{R}P_1(\cong S^1) \to \{\tilde{H} \ ; \ H_{\min} \subset \tilde{H} \subset H_{\max} \ \& \ \tilde{H} \ \text{is selfadjoint}\}.$$

See Proposition 3.1 for more explanation.

In order to clarify the spectrum of H_A , we need the following preliminary result.

Lemma 7. Let $\omega = \mu e^{i\xi} \in \mathbb{C}_+$ satisfy $|\xi| < \pi/2$. Then $(\omega^2 + H_A)$ is invertible if and only if $\varphi_{\omega,0} \notin D(H_A)$.

Proof. Assume that $\varphi_{\omega,0} \notin D(H_A)$ and therefore $\omega^2 + H_A$ is injective. By (2.3) this is equivalent to

(3.5)
$$\begin{vmatrix} \alpha \mu^{i\nu} e^{-\xi \nu} & \overline{\alpha} \mu^{-i\nu} e^{\xi \nu} \\ a_1 & a_2 \end{vmatrix} \neq 0.$$

Let $f \in L^2(\mathbb{R}_+)$ and $u = c_0(f)\varphi_{\omega,0} + T_{\omega}f$, where $c_0(f)$ is defined in (3.3). Then (3.4) holds, and hence $u \in D(H_B)$, where $B = (b_1, b_2)$ and

$$b_1 = (\tilde{c} + W(\omega)^{-1})\alpha\mu^{i\nu}e^{-\xi\nu},$$

$$b_2 = (\tilde{c} - W(\omega)^{-1})\overline{\alpha}\mu^{i\nu}e^{\xi\nu}.$$

The system $b_1 = \kappa a_1, b_2 = \kappa a_2$ has a unique solution (\tilde{c}, κ) because of (3.5). With this choice, $u \in D(H_B) = D(H_A)$ and $(\omega^2 + H_A)^{-1} f = c_0(f) \varphi_{\omega,0} + T_\omega f$ is bounded by (3.3) and Lemma 4.

To formulate the assertion for spectrum of realizations of H, we introduce the set

(3.6)
$$S(\kappa) = \left\{ -\rho e^{i\theta} \in \mathbb{C} : \rho^{-i\nu} e^{\theta\nu} = \kappa e^{2i\eta} \right\}$$
$$= \left\{ -\rho_j e^{i\theta} \in \mathbb{C} : \theta = \frac{\log |\kappa|}{\nu}, \ \rho_j = e^{\frac{\eta + 2j\pi}{\nu}}, \ j \in \mathbb{Z} \right\},$$

where $\kappa \in \mathbb{C} \setminus \{0\}$ and $\alpha = |\alpha|e^{i\eta}$ is defined in Lemma (1). Note that $S(\kappa)$ consists of double-ended sequence $\{(z_j), j \in \mathbb{Z}\}$ lying on the half line $\{z = -\rho e^{i\theta}\}$, such that $|z_j| \to \infty$ as $j \to +\infty$ and $|z_j| \to 0$ as $j \to -\infty$. The above angle θ is independent of α and the moduli of the points z_j depend only on ν and $\eta = \arg(\alpha)$.

Theorem 3.1. The following assertions hold:

(i) Assume $a_1 \neq 0$, $a_2 \neq 0$ and let $\kappa = \frac{a_1}{a_2}$. If

$$(3.7) |\kappa| \in \left(e^{-\nu\pi}, e^{\nu\pi}\right),$$

then

$$\sigma(H_A) = [0, \infty) \cup S(\kappa),$$

where $S(\kappa)$ is given by (3.6). Moreover, $S(\kappa)$ coincides with the set of all eigenvalues of H_A .

(ii) If A does not satisfy condition in (i), then

$$\sigma(H_A) = [0, \infty).$$

Proof. Lemma 5 yields $[0, \infty) \subset \sigma(H_A)$. If $\omega = \mu e^{i\xi} \in \mathbb{C}_+$, $|\xi| < \pi/2$, then Lemma 7 asserts that $\lambda = -\omega^2 \in \sigma(H_A)$ if and only if $\varphi_{\omega,0} \in D(H_A)$. By (3.5) this happens if and only if

$$a_1\overline{\alpha} = a_2\alpha\mu^{2i\nu}e^{-2\xi\nu}$$

or $\lambda \in S(\kappa)$. Since $|2\xi| < \pi$, this relation holds when (3.7) holds. Finally, the assertion for eigenvalues follows from Lemmas 3 and 7 (it suffices to prove that 0 is not an eigenvalue of H_A). This is easy verified since every solution of Hu = 0 is given by $u = c_1 r^{\frac{1}{2} + i\nu} + c_2 r^{\frac{1}{2} - i\nu}$ and never belongs to $L^2(1, \infty)$.

Finally, we characterize the adjoint of H_A .

Proposition 3.1. Let $A = (a_1, a_2) \in \mathbb{C}^2 \setminus \{(0, 0)\}$. Then $(H_A)^* = H_B$ where $B = (b_1, b_2)$ and $b_1 = \overline{a_2}$, $b_2 = \overline{a_1}$. H_A is selfadjoint if and only if $|a_1| = |a_2|$.

Proof. Theorem 3.1 yields the existence of $\omega > 0$ such that $\omega^2 + H_A$ is invertible. From the proof of Lemma 6 we see that

$$(\omega^2 + H_A)^{-1} f = c \left(\int_0^\infty arphi_{\omega,0}(s) f(s) \, ds
ight) arphi_{\omega,0} + T_\omega f$$

for a suitable $c \in \mathbb{C}$ and then (3.2) with $\mu = \omega$ and $\xi = 0$ yields

$$a_1 = (c + W(\omega)^{-1})\alpha\omega^{i\nu}$$
 $a_2 = (c - W(\omega)^{-1})\overline{\alpha}\omega^{-i\nu}$.

By Lemma 4, T_{ω} is selfadjoint. Thus we obtain

$$(\omega^2 + (H_A)^*)^{-1} f = \overline{c} \left(\int_0^\infty \varphi_{\omega,0}(s) f(s) \, ds \right) \varphi_{\omega,0} + T_\omega f$$

and therefore $(H_A)^* = H_B$, where

$$b_1 = (\overline{c} + W(\omega)^{-1})\alpha\omega^{i\nu} = \overline{a}_2$$
 $b_2 = (\overline{c} - W(\omega)^{-1})\overline{\alpha}\omega^{-i\nu} = \overline{a}_1$

since $W(\omega)$ is purely imaginary. Finally, H_A is selfadjoint if and only if $\overline{a}_2 = ca_1$, $\overline{a}_1 = ca_2$ for a suitable $c \in \mathbb{C} \setminus \{0\}$ and this happens if and only if $|a_1| = |a_2|$.

Remark 3.3. Four cases appear in the description of $\sigma(H_A)$.

Case I. Assume that H_A is selfadjoint. By Proposition 3.1, we have $|\kappa| = 1$ and $\theta = 0$. It follows from Theorem 3.1 that every selfadjoint extension of H_{\min} has infinitely many eigenvalues and its spectrum is unbounded both from above and below.

Case II. Next we consider the case

$$|\kappa| = \frac{|a_2|}{|a_1|} \in \left[e^{-\frac{\nu\pi}{2}}, e^{\frac{\nu\pi}{2}}\right].$$

that is, $\theta \in [-\pi/2, \pi/2]$. In this case, $\rho(-H_A)$ does not contain $\overline{\mathbb{C}_+} \setminus \{0\}$. Therefore, $-H_A$ does not generate an analytic semigroup on $L^2(\mathbb{R}_+)$.

Case III. In the case

$$|\kappa| = \frac{|a_2|}{|a_1|} \in \left(e^{-\nu\pi}, e^{\nu\pi}\right) \setminus \left[e^{-\frac{\nu\pi}{2}}, e^{\frac{\nu\pi}{2}}\right],$$

we have $\theta \in (-\pi, \pi) \setminus [-\pi/2, \pi/2]$. Hence one can expect that $-H_A$ generates an analytic semigroup on $L^2(\mathbb{R}_+)$. Indeed, we prove in Proposition 4.1 that $-H_A$ generates a bounded analytic semigroup of angle $\pi/2 - |\theta|$.

Case IV. Finally we consider the case

$$|\kappa| = \frac{|a_2|}{|a_1|} \in [0, \infty] \setminus (e^{-\nu\pi}, e^{\nu\pi}).$$

Here we use $|\kappa| = \infty$ if $a_1 = 0$ and $|\kappa| = 0$ if $a_2 = 0$. By Theorem 3.1 (ii) we have $\sigma(H_A) = [0, \infty)$, see Figure 4. As in Case III, we prove that $-H_A$ generates a bounded analytic semigroup on $L^2(\mathbb{R}_+)$ of angle $\pi/2$.

4. Generation of analytic semigroups

In this section we characterize the cases when $-H_A$ generates an analytic semigroup.

Theorem 4.1. Let H_A be defined in Definition 1. Then $-H_A$ generates a bounded analytic semigroup $\{T_A(z)\}$ on $L^2(\mathbb{R}_+)$ if and only if a_1 and a_2 satisfy

$$|\kappa| = \frac{|a_2|}{|a_1|} \in [0, \infty] \setminus \left[e^{-\frac{\nu\pi}{2}}, e^{\frac{\nu\pi}{2}}\right].$$

Moreover, if $\theta = \frac{\log |\kappa|}{\nu}$, the maximal angle of analyticity θ_A of $\{T_A(z)\}$ is given by

$$heta_A := \left\{ egin{array}{ll} | heta| - rac{\pi}{2} & if |\kappa| \in (e^{-
u\pi}, e^{
u\pi}) \setminus \left[e^{-rac{
u\pi}{2}}, e^{rac{
u\pi}{2}}
ight], \ rac{\pi}{2} & otherwise. \end{array}
ight.$$

Setting

$$\Sigma(\theta) = \{ z \in \mathbb{C} \setminus \{0\} ; |Arg z| < |\theta| \},$$

from Theorem 3.1, we obtain

Lemma 8. $\Sigma(\pi/2 + \theta_A) \subset \rho(-H_A)$. In particular, $\overline{\mathbb{C}}_+ \setminus \{0\} \subset \rho(-H_A)$ if and only if a_1 and a_2 satisfy (4.1).

To prove Theorem (4.1), we use a scaling argument. It worth noticing that if $a_1 \neq 0$ and $a_2 \neq 0$, then $D(H_A)$ is not invariant under scaling $u(r) \mapsto u(sr)$ for some s > 0 in spite of the scale invariant property of $D(H_{\min})$ and $D(H_{\max})$. This means that the scale symmetry of H_A (with $s \in (0, \infty)$) is broken. However, there exists a subgroup G of $(0, \infty)$ such that the scale symmetry of H_A with $s \in G$ is still true.

Lemma 9. For $\nu > 0$, we define

$$G(\nu) = \left\{ e^{\frac{m\pi}{\nu}} \; ; \; m \in \mathbb{Z} \right\}.$$

Assume that $a_1 \neq 0$ and $a_2 \neq 0$. Then $D(H_A)$ is invariant under the scaling $u(r) \mapsto u(sr)$ if and only if $s \in G(\nu)$. On the other hand, if $a_1 = 0$ or $a_2 = 0$, then $D(H_A)$ is invariant under the scaling $u(r) \mapsto u(sr)$ for every $s \in (0, \infty)$.

Proof. Fix $A = (a_1, a_2)$ with $a_1 \neq 0$ and $a_2 \neq 0$ and let $u \in D(H_A)$ satisfy

$$\lim_{r\downarrow 0} \left| r^{-\frac{1}{2}} u(r) - C \left(a_1 r^{i\nu} + a_2 r^{-i\nu} \right) \right| = 0$$

for some $C \neq 0$. Then $u(sr) \in D(H_A)$ if and only if

$$\lim_{r \downarrow 0} \left| r^{-\frac{1}{2}} u(sr) - C' \left(a_1 r^{i\nu} + a_2 r^{-i\nu} \right) \right| = 0$$

for some C'. This is equivalent to

$$\lim_{r\downarrow 0} \left| C \left(a_1 (sr)^{i\nu} + a_2 (sr)^{-i\nu} \right) - C' \left(a_1 r^{i\nu} + a_2 r^{-i\nu} \right) \right| = 0,$$

or

$$Cs^{i\nu} = C' = Cs^{-i\nu}.$$

We deduce $\log s \in (\pi/\nu)\mathbb{Z}$, or equivalently, $s \in G(\nu)$. The cases $a_1 = 0$ or $a_2 = 0$ are similar.

Proof of Theorem 4.1. Assume that (4.1) is satisfied. For $0 < \varepsilon < \theta_A$, let

$$\Sigma_{\varepsilon} = \left\{ \lambda \in \overline{\Sigma(\pi/2 + \theta_A - \varepsilon)} \; ; \; 1 \le |\lambda| \le e^{\frac{2\pi}{\nu}} \right\} \subset \rho(-H_A).$$

Since Σ_{ε} is compact in \mathbb{C} , $\|(\lambda + H_A)^{-1}\|$ is bounded in Σ_{ε} . Therefore we have

$$\|(\lambda + H_A)^{-1}\| \le \frac{M_{\varepsilon}}{|\lambda|}, \qquad \lambda \in \Sigma_{\varepsilon}.$$

Observe that by Lemma 9 the dilation operator $(I_s u)(x) := s^{\frac{1}{2}} u(sx)$ satisfies $||I_s u||_{L^2(\mathbb{R}_+)} = ||u||_{L^2(\mathbb{R}_+)}$ and

$$(4.2) H_A I_s = s^2 I_s H_A, s \in G(\nu).$$

Let $\lambda \in \Sigma(\pi/2 + \theta_A - \varepsilon)$. Taking $s_0 \in G(\nu)$ as

$$\log s_0 \in \left[-\frac{\log |\lambda|}{2}, \frac{\pi}{\nu} - \frac{\log |\lambda|}{2} \right) \cap \frac{\pi}{\nu} \mathbb{Z} \neq \emptyset,$$

we see that $s_0^2 \lambda \in \Sigma_{\varepsilon}$, and hence, we have

(4.3)
$$||(s_0^2 \lambda + H_A)^{-1}|| \le \frac{M_{\varepsilon}}{|s_0^2 \lambda|}.$$

Using (4.2) with (4.3), we obtain

$$\begin{aligned} \|(\lambda + H_A)^{-1}\| &= \|(\lambda + s_0^{-2} I_{s_0^{-1}} H_A I_{s_0})^{-1}\| \\ &= s_0^2 \|I_{s_0^{-1}} (s_0^2 \lambda + H_A)^{-1} I_{s_0}\| \\ &\leq \frac{s_0^2 M_{\varepsilon}}{|s_0^2 \lambda|} \\ &= \frac{M_{\varepsilon}}{|\lambda|}. \end{aligned}$$

Therefore $-H_A$ generates a bounded analytic semigroup on $L^2(\mathbb{R}_+)$ of angle θ_A . The optimality of θ_A follows from Theorem 3.1.

On the other hand, if (4.1) is violated, then Lemma 8 implies that $-H_A$ does not generates an analytic semigroup on $L^2(\mathbb{R}_+)$.

Remark 4.1. In the case $|\kappa| = e^{\frac{\nu\pi}{2}}$ or $|\kappa| = e^{-\frac{\nu\pi}{2}}$, we do not know whether the operator $-H_A$ generates a C_0 -semigroup on $L^2(\mathbb{R}_+)$. We point out that if $-H_A$ generates a C_0 -semigroup, then it cannot be (quasi) contractive because Hardy's inequality does not hold on $C_0^{\infty}(\mathbb{R}_+)$, since $a < -\frac{1}{4}$.

5 Remarks on the N-dimensional case

Here we give a result for the N-dimensional Schrödinger operators

$$L = -\Delta + \frac{b}{|x|^2} \quad \text{in } L^2(\mathbb{R}^N),$$

where $N \geq 2$ and $b \in (-\infty, -(\frac{N-2}{2})^2)$. As in one dimension we define

$$D(L_{\min}) = C_0^{\infty}(\mathbb{R}^N \setminus \{0\}),$$

$$D(L_{\max}) = \{ u \in L^2(\mathbb{R}^N) \cap H_{\text{loc}}^2(\mathbb{R}^N \setminus \{0\}) ; Lu \in L^2(\mathbb{R}^N) \}.$$

As mentioned in Introduction, Hardy's inequality implies the existence of a nonegative selfadjoint extension of L_{\min} , namely the Friedrichs extension, for $b \ge -(\frac{N-2}{2})^2$. Therefore in this section we assume $b < -(\frac{N-2}{2})^2$. Using Proposition 4.1 we can derive the following result.

Proposition 5.1. Assume $b < -(\frac{N-2}{2})^2$. Then there exist infinitely many intermediate operators between L_{\min} and L_{\max} which are negative generators of analytic semigroups on $L^2(\mathbb{R}^N)$.

To prove Proposition 5.1 we use the following expansion of $f \in L^2(\mathbb{R}^N)$ by spherical harmonics

$$f = \sum_{j=0}^{\infty} F_j(G_j f).$$

where $F_i: L^2(\mathbb{R}_+) \to L^2(\mathbb{R}^N)$ and $G_i: L^2(\mathbb{R}^N) \to L^2(\mathbb{R}_+)$ are defined by

$$F_{j}g(x) = |x|^{-\frac{N-1}{2}}g(|x|)Q_{j}(\omega), \quad g \in L^{2}(\mathbb{R}_{+}),$$

$$G_{j}f(r) = r^{\frac{N-1}{2}} \int_{S^{N-1}} f(r,\omega)Q_{j}(\omega) d\omega, \quad f \in L^{2}(\mathbb{R}^{N}).$$

Here $\{Q_j : j \in \mathbb{N}\}$ is a orthonormal basis of $L^2(S^{N-1})$ consisting of spherical harmonics Q_j of order n_j . Q_j is an eigenfunction of Laplace-Beltrami operator $\Delta_{S^{N-1}}$ with respect to the eigenvalue $-\lambda_j = -n_j(N-2+n_j)$, see e.g., [20, Chapter IX] and also [18, Chapter 4, Lemma 2.18]. For detail, see [13].

References

- [1] M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions with formulas, graphs, and mathematical tables," National Bureau of Standards Applied Mathematics Series 55. Washington, D.C. 1964.
- [2] P. Baras, J.A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc. 284 (1984), 121–139.
- [3] G. Birkhoff, G. Rota, "Ordinary Differential Equations," Wiley, 1989.
- [4] X. Cabré, Y. Martel, Existence versus instantaneous blowup for linear heat equations with singular potentials C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 973-978.
- [5] D.M. Gitman, I.V. Tyutin, B.L. Voronov, Self-adjoint extensions and spectral analysis in the Calogero problem, J. Phys. A 43 (2010), 145205, 34 pp.
- [6] V.A. Galaktionov, On nonexistence of Baras-Goldstein type without positivity assumptions for singular linear and nonlinear parabolic equations, Tr. Mat. Inst. Steklova 260 (2008), Teor. Funkts. i Nelinein. Uravn. v Chastn. Proizvodn., 130–150; translation in Proc. Steklov Inst. Math. 260 (2008), 123–143.
- [7] J.A. Goldstein, Q.S. Zhang, On a degenerate heat equation with a singular potential, J. Funct. Anal. 186 (2001), 342–359.
- [8] J.A. Goldstein, Q.S. Zhang, Linear parabolic equations with strong singular potentials, Trans. Amer. Math. Soc. **355** (2003), 197–211.
- [9] V. Liskevich, Z. Sobol, H. Vogt, On the L^p -theory of C_0 -semigroups associated with second-order elliptic operators. II, J. Funct. Anal. 193 (2002), 55–76.
- [10] C. Marchi, The Cauchy problem for the heat equation with a singular potential, Differential and Integral Equations 16 (2003), 1065–1081.
- [11] G. Metafune, N. Okazawa, M. Sobajima, C. Spina, Scale invariant elliptic operators with singular coefficients, preprint (arXiv:1405.5657).
- [12] G. Metafune, M. Sobajima, An elementary proof of asymptotic behavior of solutions of u'' = Vu, preprint (arXiv:1405.5659).

- [13] G. Metafune, M. Sobajima, Spectral properties of non-selfadjoint extensions of Calogero Hamiltonian, Funkcialaj Ekvacioj, to appear.
- [14] G. Metafune, N. Okazawa, M. Sobajima, C. Spina, Scale invariant elliptic operators with singular coefficients, J. Evol. Equ., to appear (doi:10.1007/s00028-015-0307-1).
- [15] N. Okazawa, L^p-theory of Schrödinger operators with strongly singular potentials, Japan.
 J. Math. (N.S.) 22 (1996), 199–239.
- [16] F.W.J. Olver, "Asymptotics and special functions," Academic Press, New York-London, 1974.
- [17] M. Reed, B. Simon, "Methods of modern mathematical physics. II. Fourier analysis, self-adjointness," Academic Press, New York-London, 1975.
- [18] E.M. Stein, G. Weiss, "Introduction to Fourier analysis on euclidean spaces," Princeton University Press, 1971.
- [19] J.L. Vazquez, E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000), 103–153.
- [20] N. Ja. Vilenkin, "Fonctions spéciales et théorie de la représentation des groupes," Dunod Paris, 1969; English translation, "Special functions and the theory of group representation," Trans. Math. Monographs 22, Amer. Math. Soc., Providence, R.I., 1968.