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On the resolvent problem for one dimensional
Schrodinger operators with singular potentials

SRR R 2R — R filB B R (Motohiro Sobajima)

Department of Mathematics, Tokyo University of Science

1. Introduction

This paper is a joint work with Professor Giorgio Metafune (University of Salento)
and a part of [13]. In this paper we consider the resolvent problem for one-dimensional
Schrodinger operators with singular potentials:

d2

H:_E;f-*_;—i

in LQ(R+)9
where a € (—o0, —1) and R, := (0, 00).

Asis well-known, Hp;, (H endowed with domain C§°(R,)) is nonnegative if and only
ifa> —-i. In this case, the Friedrichs extension of H;, exists. This is a consequence
of the one-dimensional Hardy inequality

In the view-point of ordinary differential equation, the solution of Hu = 0 can be simply
written as

( 1 1 .
arit 4 cri7? i a > D

1 1
u(r) = ¢ 2 +cz?‘% logr if a= -7

. 1
clr2+“’ +epriT if g < ~1

with v = 4/|b+ if and an arbitrary constants ¢, c; € C. This means that existence of
positive soiutlons to Hu = 0 holds if and only if @ > ~ 3% 7 and every solution is oscillating
if a < —%. We remark that Hy,, is essentially selfadjomt (Hyin has a unique selfadjoint

extensmn) if and only if a > 2.
In N-dimensional case, by Hardy’s inequality

(?)2 A ) '“ti“{‘g'zd < /R Vu@)Pds  we GRRY\ {0})

the operator Ly, = —A + blz|~% (endowed with domain C$°(RY \ {0})) is nonnegative
if and only if b > —~(—"12“—2)2. We also remark that the essentially selfadjointness of Ly,
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holds for b > —(%2)? + 1 (see [17, Section X.1]). Further previous works for L, in

LP spaces can be found in Okazawa [15], Liskevich, Sobol and Vogt [9] and Metafune
et al. [14]. On the other hand if b < — (-I—V—;—z)z, Baras and Goldstein proved in [2] that
there exists no nonnegative (non-trivial) distributional solution of the equation

ou

(1.1) a—(x,t) — Au(z,t) + ra%gu(x, t) =0, (z,t) € RN x R,.

This nonexistence result for nonnegative solutions has been generalized by subsequent
papers ([4], [7], [8], [10] and [6]).
In the present paper we consider the one-dimensional case under the assumption

1
(1.2) a<~i, V:=\/~a——-4—>0.

We characterize all realizations of operators between Hpin and Hpay = (Hpin)*, given
by
D(Hma) = {u € L*(Ry) N Hip (Ry) ; Hu € L*(Ry)},

having the non-empty resolvent set by introducing a boundary condition at 0 of oscil-
lating type. Spectral properties of selfadjoint realizations of H are also considered in
[5] when a < —1.

This paper is organized as follows. In Section 2, we analyze the properties of so-
lutions to the equation Au + Hu = f. Section 3 is devoted to show how to construct
all realizations of H with non-empty resolvent set. Generation of analytic semigroup
on L*(R,) by realizations of —H is considered in Section 4. Finally, in Section 5 we
mention generation result for realization of —L in N-dimensional case. -

2. Preliminaries

In this section we study the equation Au + Hu = f.

2.1. The homogeneous equation

If A & (—00,0], then the above equation with f = 0 has two solutions. One is expo-
nential decaying and the other is exponential growing at co. The behavior of these two
solutions near 0 is clarified in the next two lemmas.

Lemma 1. Let w € C; := {z € C; Rez > 0}, w = pe¥ with u > 0, |¢| < &. Assume
that (1.2) is satisfied. Then there ezists a solution @, of

a
(21) | whe(r) = ¢"(r) + 5p(r) =0, reRy
and a constant R = R(b,w) > 0 such that

(2.2) [Puo(r)] < 2@, 7> R



and there exists o € C\ {0} such that

(2.3) r“lﬁcpw,o(r) - ;ﬁe‘é (ap™e ' r™ + ap™"er )| -0 asrlO0.

Moreover, if w s real, then @, o(r) is real.
Proof. (Step 1). We consider the following equation in Cj:

d*w a
(2.4) w(z) — —(—i—zg(z) + ;;Q-w(z) =0, ze€C,.
The indicial equation a(a — 1) = a has roots ; = 1 +iv and a, = % —v. Then every
solution has the form

(2.5) w(2) = gl(z)z%“" + gg(z)z%‘i",

with g; and g, which are entire functions. And therefore w is holomorphic in C\ (—o0, 0],
see [3, Chapter 9.6, 9.8].

Now we show that there exists a solution of (2.4) which behaves like e in Ef =
{z € Cy; |z| > R}. Setting h(z) := e*w(z), we see that (2.4) reduces to

d*h dh a

(26) a‘gé' Z) - QEZ—(Z) = ;—2"1(2!), z e (C_;..
We denote X as the set of all bounded holomorphic functions in Eg, endowed with
llhllx := sup,eg, |h(2)]. Define

, —21
Th(z) =] +/[‘ e (/F ae,r]Z h(?]) dn) dé, z € Ep,
2 ¢

where I', := {tz ; t € [1,00)}; note that a fixed point of T is not 0 and satisfies (2.6).
Then T': X — X is well-defined and contractive in X when R is large enough. In fact,
if h € X, then Th is well-defined and holomorphic in Fr. Moreover, for z € Fp,

(oS o0 —282
et (/ A zds) zdt'
[ ¢ (s2)? (s2)
oo 8 —25z
= ’/ (/ e dt) ae s—h(sz)ds
1 1 S

=2 (110 s

|Th(z) — 1] =

< sup
1<s<00

|a|
< 'R"'“h'“X

Similarly, we have |Thy(2) — Tha(z)] < 4 ||hy — hy||x for every hy, hy € X and z € Ep.
Therefore T : X — X is well-defined and if we choose R = Ry := 2|a|, then T is
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contractive. By Banach’s contraction mapping principle, there exists a unique fixed
point hg € X of T. Noting that

llho — 1llx +1

lho(2) = 11 = [Tha(z) - T0(z)| < ol < Mo+
0

we deduce ||hy — 1||x < 1. Taking wo(z) = e ?ho(z) it follows that wy has an analytic
continuation to a solution of (2.4) and

le*wo(2)| <2, z € Eg,.

Now we define
Quo(r) = wo(wr), reR,.

Then ¢, satisfies (2.1):

Wp,0(r) — @l o(r) + %%,o(r) = u? (wo(wr) _ dd;”;’ (wr) + (Tu%)-z-wo(m))

= 0.

Moreover, if r > R := Ry/|w]|, then

|7 pu,0(r)] = | wo(wr)|
<2
and therefore (2.2) is satisfied.

(Step 2). Next we consider wy on R,. Note that wg is real on R,. In fact, wy(r) and
Wo(r) are solutions of (2.4) on R, which behave like e~ near co. Since such a solution
of (2.4) is unique, it follows that wo(r) = Wo(r) for r € R,. By (2.5) we have

(2.7) wo(z) = gl(z)z%“" + gz(z)z%“i”, 2 € C\ (—00,0],

where gy, g» are entire functions. Then g,(r) = go(r) for 7 > 0 and a = ¢;(0) = ¢,(0).
This implies that

Iz"%wo(z) —(a2” +az™)| >0 asz—0 (z€Cy).

Consequently, we obtain (2.3):

,r—%(Pw,O('r) _ ,u,%e’é (ae—-fuuiuriu + a-e{uu—iur—iu)

(wr)_%wo(wr) — (e(wr)” + @(wr)™)| =0 asr 0.

b

This completes the proof. O

Next we study the behavior at 0 of the exponentially growing solution.



Lemma 2. Let w € C, satisfy w = pe® with p > 0, |£] < w/2. Assume that (1.2)
is satisfied. Then there exist a solution ¢, 1 of (2.1) and constants C!, > C,, > 0 and
R' > 0 such that

(2.8) CeBer <o, 1 (r)] < CLe®ewr  for > R,
(2.9) r“';'cpwﬁl(r) - ,u,%e"% (ap™e " —au"e®r )| -0 asr |0,

where o is given in Lemma 1. Moreover, if w is real, then ip, 1(r) is real.

Proof. By (2.5) there exist two solutions w;, wy satisfying
z“%‘“’wl(z) -1, z"%“”wg(z) -1 asz—0.

With the same notation as in the proof of Lemma 1, we have @, o(r) = wo(wr) and
wo(z) is given by (2.7), g1(r) = go(r) for r > 0 and a = ¢;(0) = g2(0) # 0. Now we take
v(2) = gi(2)z3 ¥ — 92(2)z3*. Then wg, v are linearly independent and Wua(r) = v(rw)
is a solution of (2.1) which satisfies (2.9) and is imaginary when w is real. To prove (2.8)
we note that (2.1) has one solution which behaves like exp(—wr) (namely, ¢, ) and
one solution which behaves like exp(wr) at oo, see [12, Proposition 4] for an elementary

proof. Since ¢, is independent of ¢, o, (2.8) holds. O
Finally we consider the case where w = 4u with g > 0.

Lemma 3. Assume that (1.2) is satisfied. Then for every u > 0, there exist two
solutions ;.0 and @, of

(2.10) —pP(r) (1) + () =0, reRy

such that as r — oo,

e pio(T) = 1, e, olr) = ip,
e Py (r) = 1, el 1 (r) = —ip.

Proof. Tt suffices to apply [12, Proposition 5], with f(z) = —u?, to (2.10) (see also [16,
Theorem 6.2.2]). O

2.2. The inhomogeneous equation

Lemma 4. Let w € C, satisfy w = pe with u > 0, |¢] < ©n/2. Assume that (1.2)
is satisfied. Let p,p0 and ¢, be as in Lemmas 1 and 2. Then for f € L*(R,), every
solution of

wiu(r) —u"(r) + %u(r) = f(r), reR,;

18 given by

(2.11) u(r) = couo(r) + 10w (r) + T f(r),
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where ccC and ¢; € C are constants and

7.0 = gy ([ a1 is) )

+ W%E (/roo Puwo(s)f(s) dS) Pu,1(T),

with the Wronskian W(w) of Y0, Pu,1. The map T, is a bounded linear operator from
L*(R,) to itself. Moreover, if w is real, then T,, is selfadjoint.

Proof. By variation of parameters (2.11) easily follows. Observe that

T.f(r) = ] " Gulr,8)(s) ds,

where W) Guol(r)gun(s) if
_ W) pwo(ripwi(s) s <,
Gu(r,s) = { W(w) Ypuo(s)pui(r) ifs>r

Using Lemmas 1 and 2 and noting that both solutions are bounded near 0, we obtain
|@wo(r)] < Ce=®e) o, 1 (r)] < Ce®e) for every r > 0. Therefore

|G (r,8)| < Cle~Bewllr=sl 150 5> 0

and therefore the boundedness of T, follows. If w is real, then ¢, 0,9, 1,iW(w) are
real. Hence we have G, (r,s) = G,(s,r), that is, T, is selfadjoint. O

3.Realizations of H and their spectral properties

Here we characterize all extensions Hyn C H C Hypay with non-empty resolvent set by
introducing a boundary condition at 0 of oscillating type. And we study their spectral
properties.

Lemma 5. Let the operator H satisfy Hpin C H C Hyay. Then [0,00) C a(f] ).

Proof. First we prove (0,00) € o(—H). Let 5,(r) be a smooth function equal to 1 in
[n, 2n], with support contained in [3,3n] and 0 < 7, <1, || < &, |9 < &. Using

@ino0 as in Lemma 3, we consider ¥, = 1a@iu0 € C°(Ry) C D(H). Then we see that
— P n + Hipn = =200, 0 = TnPino-
We have |[4h, ||2 = /7 and, since ;0 and ¢}, , are bounded near oo,
1w + H)pulls < O™,

Therefore 4i° is the approximate point spectrum, in other words, —u?+ H does not have
a bounded inverse. Finally, noting that o(H) is closed in C, we have [0,00) C o(H). O
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Lemma 6. Let Hupyn C H C Hpax. Assume that (1.2) and p(H) # O are satisfied.
Then there exists ¢ € C such that the domain of H is given by
_ o} ,

(3.1) D(H) = {u € D(Hpax); 3C € Csit. 1i§f)1 roiu(r) — C (a17™ + agr™™)

where the pair (a1,as) € C*\ {(0,0)} is given by
(3.2) a; = @+ Ww) Naue™,  ay=(6— W(w) Hap e

Proof. First we show the inclusion “C” in (3.1). Fix A € p(H). Tt follows from Lemma
5 that A € C\ [0,00). Let w € C, satisfy —w? = A. From Lemma 4, we have

[(@W? + H)T () = ol Hpun(r) + er(Fpwa(r) + Tuf (7).

Since 1 ¢ L*(R.) and ¢, € L*(R,), it follows that ¢;(f) is 0 and that co(f) is a
bounded linear functional in L*(R,). Riesz’s representation theorem yields that there
exists v € L*(R.) such that

colf) = / " f(s)o(s) ds.

If we choose f = w?u + Hu for u € CP(R,), then, for 7 small enough, by integration
by parts we see that

0 = u(r)
x%umwmq+w%3([ﬁ%m@ﬂﬂ@)%MW)
= Co(f)‘Pw,o(T)-

Thus co(f) = 0 for every f € (w? + H)(C(Ry)). This yields that (w? + H)v = 0 and
hence we see that v = ¢y, 0. Therefore

(3.3) colf) = 6/ Vuo(8)f(s)ds for some é € C,
0
Consequently, for every f € L2(R,), u = (w? + H)~'f satisfies

.
(3.4) 1T1§)1r 2

)= ([ eanl09) d5) (Epuolr) + W) )] =0

Using (2.3) and (2.9) (with the same notation), we obtain “C” with (a1, as) # (0,0)
given by (3.2) and ¢ given by (3.3).
Conversely, we prove the inclusion “O” in (3.1). Let u € D(Hypax) satisfy

lim }r“%u(r) —C' (a1r™ + ar™%)| =0,

ri0
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where the pair (a1, a2) is defined in (3.2) and ¢ in (3.3). By (2.3) and (2.9) we have

limr~z [u(r) = C (Gpuo(r) + W(w) e )| =

rl0

Set & = (w?+ H) ™ (w?+ Hmax)u and w = u—i. Then (w?+H)w = 0. Sincew € L2(R,),
we see that w = g, o for some ¢’ € C. Noting that

lim =2
rl0

i(r) = C (8uolr) + W(w) Mpun(r)| = 0,

we obtain

-1
2

¢ pup(r) = (C = C) (6puolr) + W(w) ua(n)] =0,

limr
r}0

or equivalently,

lriﬁ)lr‘% (c' - ¢(C - C’))(pw,o(r) - (C - é)W(w)wlﬁ,Ow,l(r)‘ —o0
By (2.3) and (2.9) again we deduce that ¢’ = 0, hence u = 4 € D(f{)_ -

In view of Lemma 6, we define realizations between Hp, and H,,,, as follows.

:o},

Remark 3.1. All functions in D(Hpay) satisfies Dirichlet boundary condition at 0. For
fixed A, we consider an additional boundary condition r~2u(r) & a;r + a;r~ near
r < 1. This can be regarded as a boundary condition of oscillating type.

Remark 3.2. If H satisfies Hpw C HC Hp.x and p~(ﬁ )} # @, then by Lemma 6 there
exists a pair A = (a1,az) € C?\ {(0,0)} such that H coincides with H,. Moreover, if
ay = ca; and aj = cay for some ¢ € C\ {0}, then H4 = H,/. This implies that the map

Definition 1. Let A = (aj,a2) € C?\ {(0,0)}. Then

D(H,) = {u € D(Hyay) ; 3C € Csit. liﬁt)l r”%u(r) — C (a17” + agr™™)

Hjiu = Hu.

A€CP, > Ha € {H; Hupin € H C Hpay & p(H) # 0}

is well-defined and one to one, where CP, denotes the Riemann sphere (or the one-
dimensional complex projective space). Note that it is known in a field of mathematical
physics that there exists a bijective map

RP (2 SY) = {H ; Huin C H C Hpox & H is selfadjoint}.

See Proposition 3.1 for more explanation.

In order to clarify the spectrum of H,4, we need the following preliminary result.



Lemma 7. Let w = pe® € C, satisfy |£| < n/2. Then (w* + H,) is invertible if and
only if p.o0 ¢ D(Ha).

Proof. Assume that ¢, ¢ D(Ha) and therefore w? + Hy is injective. By (2.3) this is
equivalent to

aﬂiue—«fu a’u,—ive{
431 a2

(3.5) I 40,

Let f € L*(Ry) and u = co(f)pwo + T f, where co(f) is defined in (3.3). Then (3.4)
holds, and hence v € D(Hpg), where B = (b;,b) and

by = (E4+Ww) Hap®e™,
by = (6~ W(w) Hap”e.

The system b; = kay, by = Kas has a unique solution (¢, &) because of (3.5). With this
choice, u € D(Hg) = D(H,) and (w? + Ha) ™' f = co(f)¢wo + T f is bounded by (3.3)
and Lemma 4. O

To formulate the assertion for spectrum of realizations of H, we introduce the set
(3.6) S(k) = {-pe € C: p et = ren}

. ! jor
={—pj8w€CI0=Woglﬁl, pjzeﬂ—%iw » jEZ},

v

where k£ € C\ {0} and o = |ale™ is defined in Lemma (1). Note that S(x) consists
of double-ended sequence {(z;),j € Z} lying on the half line {z = —pe®}, such that
|z;] = o0 as j — 400 and |z;| — 0 as j — —oo. The above angle 8 is independent of
« and the moduli of the points z; depend only on v and 7 = arg(«).

Theorem 3.1. The following assertions hold:
(i) Assume a1 # 0, az # 0 and let k= 2. If
(3.7) k| € (e, ™),
then
o(Hy) =[0,00) U S(k),

where S(k) is given by (3.6). Moreover, S(k) coincides with the set of all eigen-
values of H,.

(i) If A does not satisfy condition in (i), then

U(f‘[A) = [O, OO)

93
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Proof. Lemma 5 yields [0,00) C 0(H4). If w = pe® € C,, |¢| < 7/2, then Lemma 7
asserts that A = —w? € o(H,) if and only if p,o € D(Ha). By (3.5) this happens if

and only if
a,@ = agap®e

or A € S(k). Since |2£| < m, this relation holds when (3.7) holds. Finally, the assertion
for eigenvalues follows from Lemmas 3 and 7 (it suffices to prove that 0 is not an
eigenvalue of H4). This is easy verified since every solution of Hu = 0 is given by
u=crit? 4 027'%_“/ and never belongs to L?(1, 00). O

Finally, we characterize the adjoint of H 4.

Proposition 3.1. Let A = (a;,a3) € C*\ {(0,0)}. Then (Ha)* = Hp where B =
(b1,b2) and by = @y, by = @y. H, is selfadjoint if and only if |a,| = |az).

Proof. Theorem 3.1 yields the existence of w > 0 such that w? + H, is invertible. From
the proof of Lemma 6 we see that

ot i) = ([ aal)6)d5) a4 T
for a suitable ¢ € C and then (3.2) with p = w and £ = 0 yields
a = (c+ W(w) Haw”  a;=(c— W) Haw™.
By Lemma 4, T, is selfadjoint. Thus we obtain
4 () =2 ([ o)1) a4 Tt
and therefore (H,4)* = Hp, where

h=@C+Ww Now =8, b=(C-Ww How™ =a

il

since W(w) is purely imaginary. Finally, H, is selfadjoint if and only if @, = ca,,
@y = cay for a suitable ¢ € C\ {0} and this happens if and only if |a;| = |as|. O

Remark 3.3. Four cases appear in the description of o(H,).

Case I. Assume that H, is selfadjoint. By Proposition 3.1, we have || = 1 and
6 = 0. It follows from Theorem 3.1 that every selfadjoint extension of Hpyin
has infinitely many eigenvalues and its spectrum is unbounded both from
above and below.

Case II. Next we consider the case

that is, € [—n/2,7/2]. In this case, p(—H,) does not contain C, \ {0}.
Therefore, —H 4 does not generate an analytic semigroup on L*(R,).



Case III. In the case o
a yr  ym
k] = —= € (e™™, &™)\ [e7F,e7],

||
we have 8 € (—n, m)\[-7/2,7/2]. Hence one can expect that —H 4 generates
an analytic semigroup on L*(R,). Indeed, we prove in Proposition 4.1 that
—H 4 generates a bounded analytic semigroup of angle 7/2 — |6].

Case IV. Finally we consider the case

o = 2] € ,00]\ (e, e7).
las |

Here we use |k| = 0o if a; = 0 and |k| = 0 if a3 = 0. By Theorem 3.1 (ii)

we have o(H,4) = [0, 00), see Figure 4. As in Case III, we prove that —Hy4

generates a bounded analytic semigroup on L?(R,) of angle m/2.

4. Generation of analytic semigroups
In this section we characterize the cases when —H 4 generates an analytic semigroup.

Theorem 4.1. Let H, be defined in Definition 1. Then —Ha generates a bounded
analytic semigroup {T4(2)} on L?(R,) if and only if a1 and ay satisfy

4__|‘12| ~yn em
(4.1) fnl-—l-a;I-G{O,oo]\[e ez ).

Moreover, if § = l—o—g;}'ﬁ, the maximal angle of analyticity 84 of {Ta(z)} is given by
Ll : -V LUT L
10!“5 Zf[l‘t}E(@ € )\[6 2762:1:
B4 := -

- therwise.
5 otherwise

Setting
5(0) = {z € C\ {0} ; |Argz| <]},

from Theorem 3.1, we obtain

Lemma 8. £(7/2 + 04) C p(—Ha). In particular, C, \ {0} C p(—Ha) if and only if
ay and ay satisfy (4.1).

To prove Theorem (4.1), we use a scaling argument. It worth noticing that if a; # 0
and ap # 0, then D(H,) is not invariant under scaling u(r) + u(sr) for some s > 0
in spite of the scale invariant property of D(Hpyin) and D(Hpax). This means that the
scale symmetry of Hy (with s € (0,00)) is broken. However, there exists a subgroup G
of (0, 00) such that the scale symmetry of H4 with s € G is still true.

95
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Lemma 9. For v > 0, we define
Gv)= {e¥ ; meZ}.

Assume that ay # 0 and a; # 0. Then D(Ha) is invariant under the scaling u(r)
u(sr) if and only if s € G(v). On the other hand, if a1 = 0 or ay = 0, then D(H,) is
invariant under the scaling u(r) — u(sr) for every s € (0, 00).

Proof. Fix A = (a,as) with a; # 0 and ay # 0 and let u € D(H,) satisfy

s -1 w —iv -
lrlf(f)l ‘r 2u(r) - C (alr + aor ) =0
for some C # 0. Then u(sr) € D(Hy,) if and only if
liﬁr)l ’r‘%u(sr) —C' (ayr™ 4+ agr™)| =0

for some C’. This is equivalent to
l}ﬁf)l |C (ar(s7) + az(sr)™™) = C' (a17™ + aor™)| = 0,
or
Cs¥=C'=Cs™™,

We deduce log s € (7/v)Z, or equivalently, s € G(v). The cases a; = 0 or az = 0 are
similar. 0

Proof of Theorem 4.1. Assume that (4.1) is satisfied. For 0 < ¢ < 8,4, let

. = {,\ €X(m/2+04—6); 1< A < ezv"} C p(=Ha).

Since L, is compact in C, ||(A + H4)™!|| is bounded in ¥,. Therefore we have

- M.
|(A+ Ha) 1][§W, A€ X,

Observe that by Lemma 9 the dilation operator (I,u)(z) := szu(sz) satisfies || I,ul| L2R;) =
lull2r,) and

(4.2) Hyl, = s*I,H 4, s € G(v).
Let A € X(n/2+ 04 — €). Taking so € G(v) as

log|A\| @ log|)| s
log s € [———:2—-,; T n ;Z# 0,

we see that s2)\ € ., and hence, we have
M,

2 -1 < €
(43) (537 + Ha) <



Using (4.2) with (4.3), we obtain

8,
= soll Lz (soA + Ha) 7 L |
sEM,
" IsgAl
o ME
A

I+ Ha) 7l = A+ sg* Lz Halso) 7

Therefore —H 4 generates a bounded analytic semigroup on L*(R,) of angle 8,. The
optimality of 64 follows from Theorem 3.1.

On the other hand, if (4.1) is violated, then Lemma 8 implies that —H 4 does not
generates an analytic semigroup on L*(R.,). O

¥z

Remark 4.1. In the case || = €7 or |k| = e~*F, we do not know whether the operator
—H 4 generates a Cy-semigroup on L?(R,). We point out that if —H 4 generates a Cy-
semigroup, then it cannot be (quasi) contractive because Hardy’s inequality does not
hold on C§°(Ry ), since a < —1.

5 Remarks on the N-dimensional case

Here we give a result for the N-dimensional Schrédinger operators

L=-A+ LI LA(RY),

|zf?
where N > 2 and b € (—oo, —(252)2). As in one dimension we define

D(Lmin) = CSO(RN \ {O})>
D(Liax) = {u € L*(RY) N HE (RY\ {0}) ; Lu € LA(RM)}.

As mentioned in Introduction, Hardy’s inequality implies the existence of a nonegative
selfadjoint extension of Ly, namely the Friedrichs extension, for b > —(#:2)2. There-
fore in this section we assume b < —(%:2)2. Using Proposition 4.1 we can derive the
following result.

Proposition 5.1. Assume b < ——(1—\’3‘—2-)2. Then there exist infinitely many intermediate
operators between Ly, and L,y which are negative generators of analytic semigroups
on L(RY).

To prove Proposition 5.1 we use the following expansion of f € L2(RN) by spherical

harmonics
o0

f=) FGf)

§=0
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where F; : L*(R,) — L*(R") and G, : L*RN) — L*(R,) are defined by

Fig(z)= || "7 g(|z))Q;(w), g € L*(Ry),

Gjf(r)=r"T" [ [@)Qsw) do, [ € LHRY),

Here {Q; ; j € N} is a orthonormal basis of L?(SV~!) consisting of spherical harmonics
Q; of order n;. Q); is an eigenfunction of Laplace-Beltrami operator Ag~-1 with respect
to the eigenvalue —A; = —n;(N — 2 + n;), see e.g., [20, Chapter IX] and also 18,
Chapter 4, Lemma 2.18]. For detail, see [13].
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