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NOTE ON STABILITY OF AN SIRS EPIDEMIC MODEL

YUKIHIKO NAKATA

ABsTrRACT. In this paper we derive a scalar delay differential equation from.an
epidemic model with waning immaunity. The model is formulated as a system
of delay differential equations. The characteristic equation is computed. We
visualize the stability condition for an endemic equilibrium in a two-parameter
plane.

1. INTRODUCTION

In [9] we consider periodic outbreak of mycoplasma pneumoniae in Japan. Minor
variation of the immunity period is shown to be essential in order to explain the
infectious disease dynamics. Our agenda includes mathematical studics for periodic
solutions of the mathematical model employed in [9]. This note is a preliminary
study for the project. The model in [9] takes the form of SEIRS type epidemic model
with a gamma distribution which the immunity period follows. In this paper for
mathematical analysis we consider SIRS type epidemic model with fixed immunity
period (such that the variance of the immunc period is zero). Let us consider the
following SIRS epidemic model

d
(1.1a) 55(8) = =BS()I(t) +~I(t —7),

d
(1.1b) 7 1(8) = BSOI(L) = ~1(t),
(1.1¢) 3 R(t) = 41 = I(t = 7),
where the total population is fixed as
(1.2) SHY+It)+R(t)=1,t>—71
and recovered population satisfies
(1.3) R(t) = 7/ I(t = s)ds, t > 0.

0

Here S(t), I(t) and R(t) respectively denote the fraction of susceptible, infective
and recovered populations at time t. The model has three parameters: transmission
coefficient 8 > 0, the recovery rate v > 0 and the immune period 7 > 0. We also
refer the papers [6, 10, 4] for analyses of similar SIRS epidemic models. See also
[5] for detail of compartmental model in epidemiology. The model (1.1) appears in
the paper |5] and we here review the stability analysis.

From (1.2) and (1.3) we get

S(t) =1 - I(2) —7/07'1@— s)ds
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then we obtain a scalar delay differential equation:
d , T
(1.4) az](t)z](t){,@ (I—I(t)mf)/f I(tms)ds) ——’y}.
0 .

The basic reproduction number is given as

R0:=—'3—.
Y

It is assumed that Ry > 1 holds so that (1.4) has a positive equilibrium:

Remark 1. v = ¥ denotes the fraction of the immunity period over the expected

1
infectious period, which may be a large parameter. Note that
1
yr > 17> ;

implies that the immunity period is longer than the expected infectious period.

We normalize the equation (1.4) defining

xz(t) = II(:) -1

and subsequently consider the nondimensional time u = -7': Abusing notation we
finally obtain

(1.5) ggm(t) = —p(z(t) +1) (m(t) + 77/0 z(t — s)ds) ,
where

(1.6a) = = ;’;T(RO ~1),

(1.6b) N = yT.

Initial condition for (1.5) is
x(6) =¢(0) =2 —1, 6 € {_LOL
excluding the constant function ¥(8) = —1, 6 € [~1,0].

Remark 2. To apply the time transformation we introduce a nondimensional time
u = % and define

F(u) = 5;(;{—) = 2(t).

Then one can see %fc(u) = *ra-d-ix(t) and

/(;Tx(t——s)ds:/::i(um;)ds—-:'rfoli(u——a)d&
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2. STABILITY ANALYSIS

Applying the fluctuation lemma we can obtain a global stability result. There
seems to be no other results for global stability. See also the global stability condi-
tion by the fluctuation lemma in [7].

Theorem 3. Let us assume that n < 1 holds. Then the trivial equilibrium of (1.5)
is globally attractive.

Proof. Let us write

Z = limsup z(t), z = liminf z(t).
1—oc t—oc

Consider a sequence such that z(t,) = T as n — oo with z/(¢,,) > 0. Then we get

1
0> z(tn) + 7 / (tn — 8)ds.
0

Taking the limit and estimating the second term of the right hand side from below
by z, we get
0>7+nz.

Similarly, considering a sequence which tends to z, we get

1
0

Thus
0<z+nZT.
Therecfore it holds
TH+nz<0L z+n7,

thus

ZF—z)<n@E@—2z).
Since n < 1 is assumed, we obtain £ = Z. It is easy to see that z = T = 0
follows. O

If n < 1 then the trivial equilibrium is shown to be asymptotically stable in the
following scction.

2.1. Linearized stability analysis. To analyze asymptotic stability of the triv-
ial equilibrium of (1.5) we derive the characteristic equation. The characteristic
cquation is computed as

1
(2.1) A= —p (1 -+ 77/ e"’\sds) , Ae C.
0

We analyze the characteristic equation (2.1) following Chapter XI of [2]. See also
[3, 1, 8] for analysis of characteristic equations of delay equations. One can see that
A = 0 is a root of (2.1) if p = 0 holds, where the transcritical bifurcation occurs (as
p increases). Substituting A = iw, w € R we get

1
(2.2) 0=1+ 77/ cos (ws) ds,
0

1
(2.3) w = pn/ sin (ws) ds.
0
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From (2.2) one has

_ -1 . w
= fol cos (ws) ds T sinw’
Then p is determined from (2.3) as
' B w wsinw
P= nfOl sin (ws) ds ~ 1-cosw’

For n € N§ let
I,=(2n+1)m2(n+1)m).

The parametric curve

(2.4) (W), pw)) = ( w_ s ) we I

sinw’ 1-—cosw

depicts the condition where the characteristic equation (2.1) has a conjugated pair
of purely imaginary roots A = tiw, w € I,. One can casily see that
(n(w),p(w)) € RE, w e In.

The parametric curve (2.4) can be translated in terms of Ro and 7 using the
relation (1.6). We get the following condition

Ro—1 w sin w (1 sinw)

1—cosw w
w

I

YT = — 3
sSinw

where the characteristic equation (2.1) has purely imaginary roots.
3. DiscussIioN

We here sketch the stability analysis for the SIRS epidemic model with delay.
Although the model equation has a simple looking, it exhibits destabilization of
the endemic equilibrium and has a periodic solutions via Hopf bifurcation. In the
paper |9] we discuss a role of the minor variation of the immunity period in the
periodic epidemic cycle seen in a childhood discasc, in particular, for small Ry. See
also [8]. The author study periodicity and uniquencss of a periodic solution of the
cquation (1.5) in the collaboration with G. Kiss, G. Vas and R. Omori.
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FIGURE 2.1. Stability boundary of the endemic cquilibrium in
(1, p) plane (above) and in (y7, Rop—1) plane (below). The number
depicts the number of roots of the characteristic cquation in the
right half complex plane. The arrows in the curves indicate the
direction of increasing w.
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