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We consider an environment-dependent spatial model. This random model is related to the stochastic
interacting system. We shall show that rescaled processes converge to a Dawson-Watanabe superprocess.
Formulation is due to setup of measure-valued branching Markov processes. The first step toward a
transformation of model into a superprocess is based upon construction of empirical meaures. Moreover,
we discuss the applicational issues of our random model to tumor immunity.
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1 Environment-dependent formalism

When Z¢ is a d-dimensional lattice, we suppose that each site on Z¢ is occupied by either one of the
two species. At each random time, a particle dies and is replaced by a new one, but the random time and
the type chosen of the species are assumed to be determined by the environment conditions around the
particle. The random function 7 : Z¢ — {0,1} denotes the state at time ¢, and each number of {0,1}
denotes the label of the type chosen of the two species. We define N := z + {y: 0 < ||yllc < r} as
an r-neighborhood of z. For i = 0,1, let f;(z,7) be a frequency of appearance of type i in AV for . In
other words,

filz) = fi(z,n) = #{y: 7lt(?/:’)#'/=\/z RAS Nx} (1)

For non-negative parameters «;; > 0, the dynamics of 1, is defined as follows. The state 1) makes transition
0 — 1 at rate Af1(fo + 01 f1)/(Af1+ fo), and it makes transition 1 — 0 at rate fo(f1 +aiofo)/(Af1+ fo)-
The particle of type ¢ dies at rate f; + «y;f;, and is replaced instantaneously by either one of the
two species chosen at random, according to the proliferation rate of type 0 and the interaction (= the
competitive result) with the particle of type 1. The density-dependent death rate f; + «;; f; consists of
the intraspecific and interspecific competitive effects {8]. We assume that competitive two species possess
the same intensity of intraspecific interaction. The exchange of particles after death is described in the
form being proportional to the weighted density between the two species, expressed by a parameter A.
Assume that A > 1.

2 Scaling rule

For brevity’s sake we shall treat a case A = 1 only. For N = 1,2,..., let my € N, and we put
¢y = mnVN, and Sy := Z4/8y, and Wy = (W}, ..., W;{,)‘e (Z¢/My) \ {0} is defined as a random
vector satisfying (i) L(Wn) = L(-Wn); (ii) E(WLWY) — 8;0%(> 0) (as N — oo); (iii) {|{Ww|?}
(N € N) is uniformly integrable. Here L£(Y) indicates the law of a random variable Y. For the kernel



pn(z) = P(Wxn/VN = z). z € Sy and n € {0,1}°¥, we define the scaled frequency I as

.ﬂ'N(T» 7}) = Z p’V(’/ - 'r)]-{n(y):i}s (7 =0, 1) (2)

YESN
We denote by 7V the state determined by the scaled frequency depending on ol and py. As a matter of
fact, the rescaled process n)¥ : Sy 3 2 = 0¥ (z) € {0.1} is determined by the following state transition
law, nemaly, it makes transition 0 — 1 at rate NfN(f& + of’ fIV), or else it makes transition 1 — 0 at

rate NfYN(fN + o f¥). The symbol Res(py,al) denotes the rescaled process 7}

3 Superprocess via variational derivative approach
On this account. we may define the associated measure-valued process (or its corresponding empirical
measure) as

" 1
rE€SN

For the initial value X2, we assume that supy (X, 1) < oo, and X' — X in Mp(RY) (as N — o0),
where Mp(RY) is the totality of all the finite measures on RY, equipped with the topology of weak
convergence. Let Qp = D([0,00), Mp(R?)) be the Skorokhod space of all the Mp(R?)-valued cadlag
paths, and Q¢ = C([0,00), Mp(R?)) be the space of all the My (R%)-valued continuous paths, equipped
with uniform convergence topology on compacts. On the other hand. the first order variational derivative

of a function F on Mp(FE) relative to p € Mp(FE) is defined as

SFw) . Flu+r-6,)~ F(u) ,

Sy . . (@eB) )
if the limit in the right-hand side of (4) exists. In addition, the second order variational derivative
82F(u)/du(x)? is defined as the first order variational derivative of G(u) = 6F(u)/éu(z) if its limit

exists. We define the generaior L£g as

o SF(p) . 82 F () .
toF ()= [ A% Butan + [ B ) 5)

where A[-] = Q;AH +6[-] and v > 0. If Mp(E)-valued continuous stochastic process X = {X;, P} is -

a solution to the (L. Dom(Lg))-martingale problem, then X = {X,, P} is called a Dawson-Watanabe
superprocess, or DW superprocess in short, where 24 > 0 is a branching rate, § € R is a drift term and

02 > 0 is a diffusion coefficient.

4 Assumptions

Let {£F} be a continuous time random walk with rate NV and step distribution py starting at a point
x € Sy, and { é}” } be a continuous time coalescing random walk with rate N and step distribution py
starting at a point x. For a finite set A C Sy, we denote by 7(A) the time when all the particles starting
from A finally coalesce into a single particle. Take a sequence {¢y} of positive numbers such that ey — 0

and Ney — oo as N — oo. Moreover, we suppose that when N — oo,

N -PE,=0)—0 and Z pn(e) P(m({0,e}) € (en,t]) = 0 (V1> 0). (6)

cE€SN

We also assume that the following limits exist :

]\;i_l)nm egv pnle) - P(r({0,e}) > en) =3y(>0) and 1\}1_1}100 P(r(A/tn) € en) = 3((A) )
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holds for any finite subset A C Z9. We also denote by Sg the totality of all the finite subsets in Z4.
5 Perturbation

According to [10], we consider decomposing proper components of our model Res(py, «v; MY into two
parts; a part of the principal interacting particle system and the other part. Based upon the notation in
[11], we consider decomposing the rate function ¢y (::,1). In fact, we shall rewrite fivst a rate N f; N fN
a'f’ fN) into a new rate N f¥ + 0;‘] (f/V)? by using a relation 0 = N(al¥ - 1), and next decompose the
rate function cy(z,n) (which changes the coordinate n(z) into 1 — n(z)) as en(z,n) = N - colz,m) +

(@ 1) 2 0, where co(z,7) := 3 5, PN (€)1 (n(e+c)sn(2)}> a0d

ez, 1) = 05 (S (2, 0))* 1 (niey=0y + OF (£ (2. M))* L n(a)=1 (8)
=S (I n@+eNB3n (A= + In(A) ne)=1))-

AESF c€A/tN
On the assumption that for real-valued functions 3y and dy defined on Sg, there exist proper real-valued
functions .3 and 4 defined on Sp such that 3y — 8 and dy — & are valid for each point of Sg as N — oo,

we consider the convergence of the law of the empirical measure X”. For simplicity, when we set

Fi(Sp):={f:Sr =R |Iflh:= ) If(A)] <oo}, (9)
AESE
then it follows that By ()(n(:) = B()C(") in F1(SF) as N — oc. While, when we define
01(B.¢()) = > BIAX(A). 6%(8,5,¢()):= D (B(A)+8(A))¢(AU{0}), (10)
A€Sr A€Sr

then we put # = 6(B,((-)) - 62(8,6,¢("))-
6 Convergence result

THEOREM 1. (cf. [1]) When we denote the law of a measure-valued stochastic process X N on the path
space Qp by Pn, then there exists a probability measure P* € P(Q¢) such that

Pv = P; (as Nooo). (11)

2
= X% named o DW superprocess with

Then there erists a Mp(R%)-valued stochastic process X
. 2
parameters 2y > 0, 6 € R and 02 > 0, satisfying that X converges to X% as N — oo in the sense

2
of weak convergence for measures, and Py is the law of X 207

Then we attain that

/f PNAM,(0) = F(Xe. ) — F({Xo. ) // )Xo Ag) da—/ (X o)) (Xo. P ds
(12)

is a continuous, F;X-measurable, L?-martingale. Equivalently, for F(u) = f({u, »)) with F' € Dom(Lo),
t
F(X;) - F(Xo) ——/ LoF(X,)ds isa Py, — martingale.
0

As a consequence, it is proven that the law P(X. € (-)) of the limit process X = {X,} satisfies the
martingale problem characterizing Py € P(fc).
7 Sketch of proof

Based on the estimation E[ supy,cr 17" |° ] < o0 for VT" > 0, combining the discussion on death and
birth processes to a series of results for voter models [10] together, the first decomposition for rescaled -

process models Res(py, ) holds, i.e.

¥ (z) =0 (@) + M"* + D'*, vz eSy,t>0, (13)



where MtN * is a square integrable orthogonal martingale, and its predictable quadratic variation process

is given by
i . i
ey = [N paly = o€l ) - €' a)?
0 Y
+ Z(H eN(x + €)) (BN (A en (2y=0} + IN(A) 1 en (a)=1}) }ds. (14)
A«

N
t

Moreover, the term D, ™ is given by

f .
DY = [{E N oty - 2 ) - € @)
+ > ([T @ + BN (D en zy=0) ~ ON(A)Lew (y=1)) Hds. (15)
A €

Here the variable y runs over Sy and A does over Sy in the above estimation ¥ of (14), (15), and e
runs over the set A/¢y in the above product []. Next, by employing Itd’s formula and applying the
decomposition theorem for semimartingales to 0¥, for any ¢ € C([0,7] x Sy) and 0 < t < T, XY

permits the following second decomposition
XN o) = (X o) + DN () + MY (). (16)

where M} () is a square integrable martingale. Then, based upon the relative compactness for the law
{Pn} of XV, we take the limit procedure. It suffices to check whether all the weakly convergent limit
points X. of subsequence X Nk) satisfy the martingale problem that characterizes the superprocess with

designated parameters (2,6, 0?). For more details, see e.g. [9].

8 Terminology

Let X; be a superprocess obtained in Theorem 1 in §6, namely, it is a measure-valued branching
Markov process. If (X;,1) > 0 holds for any time vt > 0, then it is said that X, survives or is existent.
Medically or biologically, that just corresponds to the situation where both normal cells and cancer cells
are coexistent. On the contrary, X, is said to be extinct if the equality (X3, 1) = 0 holds for V¢ > T with
sufficiently large time T > 0. This means that it dies out after a certain amount of time passed. So that,
medically or biologically, it means that it becomes cancerous in a clinical sense. Next X; is said to exhibit
local extinction if there exists a proper random time (g(w) for each bounded subset B given, such that
X(B) = 0 holds for ¥t > (p(w). This implies that X; can be extinct if we look at it Jocally. Medically or
biologically, cancer cells are stronger than effector group (immune cells) and cancer cells have a tendency
of occupying more and more regions [2], [3]. This is very important concept on an applicational basis.
On the other hand, X, is said to exhibit finite lime extinclion [6] if P,(X¢ =0 for V¢ > T) =1 holds for
Jgsome T > 0. This means that X, necessarily dies out in a finite time, and can never survive. Hence,

medically or biologically, it showing a tendency to be cancerous.

9 Extinction and tumor immune effect

For the superprocess obtained in Theorem 1, in the case of d > 3, the sufficient condition for long-time
survival phenomena to occur is 6 > 0 for the drift parameter @ of the process X;. In other words, when
the inequality 8' > 62 holds (cf. Eq.(10) in §5), then long-time existence of X; can be guaranteed. This
is nothing but providing the guarantee of existence of normal cells [5]. For the case of reverse inequality
#' < #?, the long-time existence of Xy is not valid (Table 1). For simplicity, we set P* := Pf{z’o"’z =

[i(Xf “"0"’2). Since (X;, P*) is a measure-valued branching Markov process, generally speaking, according
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6 >0 (6" >0 | X, : existent for a long time

(possible to become coexistent with cancers

# <0 (6" <) | X;: not alive for a long time

(tendency to become cancerous finally

# 1 Existence of superprocess X;.

to the property of Markov process that governs random behaviors, (i) it dies out locally (local extinction);
(ii) it completely vauishes (finite time extinction); (iii) it converges to a stationary state as the time goes
by (Table 2).

More precisely, for the case of d = 1, the process X, is always extinct locally, and it is in a cancerous
situation with probability one. For the case of d > 2, it exposes distinct phenomena according to the
conditions. Those conditions are stated in terms of operator analysis, however the result turns out to be
distinct in accordance with the property of Markov process, because after all the generator (=differential
operator) just corresponds to Markov process itself by one-to-one. When we denote by H; the class of

positive harmonic functions, then we have
Hf ={ueC?®: u>0, (L+6)u=0 on R} (17)
The (EF) condition (resp. (DH) condition) is given by the followings respectively:

(EF) 3he C%f (Hélder), 0<e<1l; 3IBCR? such that
inf,yh >0 and (L+60)Ah<0 on R?\B.

(DH) 3¢>0 suchthat (X;,P.) converges weakly to Y. € P(Mg(RY)),

d =1 | total mass process | no condition finite time extinction

(X:. 1) (cancerous with probability one)

d=1| superprocess X no condition local extinction (tendency to

become cancerous)

d > 2| superprocess X; Hf #0 local extinction (tendency to

become cancerous)

d > 2| superprocess X; (EF) condition | finite time extinction

(cancerous)

d > 2| superprocess X; | (DH) condition | stationary state

# 2 Extinction property of superprocess X;.

where A denotes the Lebegue measure on R?. If H, # 0, then we can say that it is showing medically a
tendency of being cancerous, since the local extinction holds there. Besides, under the (EF) condition, it
exposes finite time extinction, and it implies that it is in a cancerous situation. Under (DH) condition,
it proves to be in a stationary state.
10 Mathematical analysis

In this section we shall prove mathematical statements which are used in the previous section to

explain some applications of random models to immune response against cancer cells.

THEOREM 2. (Local extinction) The DW superprocess X, exhibits local extinction if and only if there-

exists a strictly positive solution u > 0, i.e., u € H; .



Proof. Recall Pinsky’s criticality theory for superdiffusion [12]. Let A, denote the generalized principal
eigenvalue for L = E;A on R with d > 2. We shall show that if # < — )., then X, exhibits local extinction.
Thanks to Iscoe (1988)'s argument for super-Brownian motions, for a ball Bg of radius R > 0, we readily
get

o
PA[ X¢(Bpr)ds =0) = lim exp(—/r',,.(t. a)p(dx)), (18)

IO

where v,, is the unique solution in Cy(RY) to the evolution equation d;u = Lu + fu —au? on [0,00) x RY
with the minimal positive solution u(0,z) = ¢, () to Lv + v —av?® + i, = 0 with a proper test function
¥, (ef. (1.5) of [12]). On this account, we have 6111)’ to verify that limy_, o lim, o vn(t,2) = 0. The
classical parabolic maximum principle leads to v, (t.x) < 3/{a(l — e )} for Vz € RY, t > 0 and ¥n.

Hence, by monotone property in n we obtain

v(t,x) = lim v (1,7) < oo, vz eRY t>0. (19)

e d
So that, to complete the proof, it suffices to show that w(z) = lm;o v(f,x) = 0. By employing the

uniqueness of the solution 1,,, and taking advantage of the expression for local martingale

vt - 8, Y) — / (a2~ Bu )t — Y, )dr (20)
a

(where Y is a diffusion process corresponding to the operator L), we may apply the fundamental property

of subcritical operators to obtain

v{z) = {U’m( Uno) exP{/ —av, ) (Yo)dt} 1 op, < 7'"1] (21)

for z € By, \ By, with o, == inf{t 2 0: |V}] < no} and 7, = inf{t > 0: |Y;| > m}, where we made use
of the functional analytic argument related to the Green function G for L + B3 — a¢p. On the assumption
that w > 0, leading to a contradiction completes the proof, by employing the discussion on the cone of

positive harmonic functions on R? for the operator L + 8 ~ aw. 0

Recall one of the definition for extinction. We say that X, exhibits weak local extinction under F, if
for every Borel set B CC D, P, (limy o [| X4l = 0) = I = X¢(D), cf. Def. 1.17, §1.15 of [14].

Next we are going to prove:

PROPOSITION 3. (Weak local extinction) Let u(# 0) be a finite measure with suppp CC D. Under the

process X, exhibits weak local extinction if and only if A, < 0.

Proof. The fact that there exists a function u > 0 satisfying (L + #)u = 0 on D(= GY) is equivalent
to A. € 0. On the other hand, it is shown [15] that local extinction is also in fact equivalent to weak
local extinction for superprocesses. Taking the positivity of the parameter 3 > 0 into consideration, the

discussion in the proof of Theorem 2 finishes the proof of Proposition 3. J

Remark 1. A similar statement as Theorem 2 under a slightly different setup can be found in Lemma
4, §1.3 of [13].

Remark 2. A completely different proof of Proposition 3 can be found in §3 of 15|, which is technically
based upon Girsanov change of measure and change of measure for spatial branching processes.

Remark 3. When we assume that the DW superprocess X, exhibits local extinction, if there exists
a function h € C2*, (0 < ¢ < 1) and a non-empty open ball B C R? (# 0) such that inf, ah > 0 and
(L+ 6)h < 0 on R*\ B, then X; becomes extinct. A similar result have been proved under a different

setup in [13], by using the h-transform technique for superdiffusions.
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11 Concluding remarks

The result stated in Theorem 1 is known [1]. Our proof is due to variational derivative formalism
for the generator of superprocess and is rather new, because they do not use the variational derivative
approach in [1]. By virtue of the variational derivative approach, it is easy to get a better prospect for
proving the convergence result. Hence, a new limit theorem for X~ ) with spatially dependent branching

rate can be derived as well.
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