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1. Introduction

This report is based on [12]. Throughout this report, a bounded linear operator T’
on a Hilbert space H is positive (denoted by 7" > 0) if (T¢,£) > 0 for all £ € H, and
T is strictly positive (denoted by T' > 0) if T is invertible and positive.

For strictly positive operators A and B, A b, B is defined as follows ([3, 4, 13] etc.):

Ab, B= A3 (A‘%BA”%)OEA%, z € R.

We call A b, B a path passing through A= Al Band B=Atf; B. If z € [0,1], the
path A f, B coincides with the weighted geometric operator mean denoted by A , B
(cf. [15]). We remark that A i, B = B 1, A holds for z € R.

Fujii and Kamei [2] defined the following relative operator entropy for strictly pos-
itive operators A and B: '

S(A|B) = Aélog( “%BA‘%) A}

d
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=0

We can regard S(A|B) as the gradient of the tangent line at z = 0 of the path A i, B.
Furuta [7] defined generalized relative operator entropy as follows:

DO

S«(A|B) = AI(A"TBA™%)*log(A"2BA™1)A?
d

= —ALB| ,ack

T

We regard S,(A|B) as the gradient of the tangent line at £ = « of the path. We
know immediately Sp(A|B) = S(A|B). Yanagi, Kuriyama and Furuichi [18] introduced
Tsallis relative operator entropy as follows:

A, B—A
o

T.(A|B) = , a € (0,1].

To(A|B) can be regarded as the average rate of change of Aff; Bfromz=0toz = a.
T .
Since lim° — = loga holds for a > 0, we have Ty(4|B) = lim Tu(A|B) = S(4|B).
&
Tsallis relative operator entropy can be extended as the notion for « € R. In this

case, we use f, instead of f,. In [8], we had given the following relations among these
relative operator entropies:

() Si(A|B) > —Ti_a(B|A) > Sa(A|B) > Ta(A|B) > S(A|B), a € (0,1).
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Figure 1: An interpretation of Do(A|B).

Fujii [1] defined operator valued a-divergence D,(A|B) for a € (0,1) as follows:

AV,B—-Af, B
a(l —a) ’

D4(A|B) =

where AV, B = (1—a)A+aB is the weighted arithmetic operator mean. The operator
valued a-divergence has the following relations at end points for interval (0, 1).

Theorem A ([5, 6]). For strictly positive operators A and B, the following hold:

Dy(A|B) = lim Da(4|B) = B— A= S(AIB),
Dy(A|B) = lim Du(A|B) = A—B—S(B|A).

a—1-
Petz [17] introduced the right hand side in the first equation in Theorem A as an
operator divergence, so we call Do(A|B) Petz-Bregman divergence. We remark that
D (A|B) = Dy(B|A) holds. Figure 1 shows our interpretation of Dy(A|B).
In [10], we showed the following relation between operator valued a-divergence and
Tsallis relative operator entropy:

Theorem B ([10]). For strictly positive operators A and B, the following holds:
D,(A|B) = —=T1_o(B|A) — To(A|B) fora € (0,1).

Theorem B shows that D,(A|B) is a difference between two terms in (*). From this
fact, we regard the differences between the relative operator entropies in () as op-
erator divergences. In section 2, we represent these operator divergences by using
Petz-Bregman divergence.

On the other hand, for an operator valued smooth function ¥ : C — B(H) and
X,Y € C, where C is a convex set in a Banach space, Petz [17] defined a divergence



Dg(X,Y) as follows:

De(X,Y) = U(X) — U(Y) — lim X FX V)~ ¥E)

a—+-+0 (a4

We call Dg(X,Y) ¥-Bregman divergence of Y and X in this report. Petz gave some
examples for invertible density matrices X and Y. If ¥(X) = n(X) = Xlog X and X
commutes with Y, then Dg(X,Y) =Y —~ X+ X (log X —logY"), and if ¥(X) = tr n(X),
then Dy (X,Y) =tr X(log X —logY’), which is the usual quantum relative entropy.

In section 3, we let C = R and show Dy(z,y) = Do(A 4y B|A 4, B) for ¥(¢) =
Aty B and z,y € R. Then we have Dy(1,0) = Do(A|B) in particular. Based on
this interpretation, we discuss ¥-Bregman divergences Dy (1, 0) for several functions ¥
which relate to the operator divergences given in section 2.

In section 4, we show the results corresponding to those in section 2 on expanded
relative operator entropies defined by operator power mean. '

2. Divergences given by the differences among relative operator
entropies
In this section, we regard the differences between the relative operator entropies in

(x) as operator divergences. There are 10 such divergences. For convenience, we use
symbols A; for them as follows:

Ay =Ta(A|B) - S(AIB),  Ay=Sa(A|B) - Tu(A|B),
As = —T1_o(BJA) — S4(A|B), A4= Si(A|B)+ Ti-«(B|A),
As=Su(A|B)— S(AIB),  As=—Ti_a(B|4) — Tu(A|B) = Da(A|B),
Ar=Si(AIB) — SalAIB),  Ag=~Ti_o(BJA) - S(AIB),
Ao = 51(A|B) - To(A|B), Ao = S1(A|B) — S(A|B).
We represent each of Aj,---, Ay by using Petz-Bregman divergence. It is sufficient

to consider Ay, Ay, Az and Ay since the following relations hold:

Ds = D; + Dy, DNs = Ay + As, Ay = Az + Ay,
A8=A1+A2+A3, AQ=A2+A3+A4, A10=A1+A2+A3+A4.

The relation of the differences among A;, - -+, Ajg are given as in Table 1.
The next lemma is essential in our discussion.

' Lemma 2.1 ([8, 10]). For strictly positive operators A and B, the following hold for
s, teR:

(1) Sy(AlA By B) = s5:(A|B),
(2) S(A|B) = —51-+(B|A).
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Table 1 ~
S1(A|B)—-S5(A|B) 2 S1(A|B)—Ta(A|B) 2 S1(A|B)-Sa(A|B) 2 S1(A|B)+T1-a(B|A) 2 0
VI Vi Vi
~T1—a(B|A)~S(A|B) 2 ~Ti—a(B|A)~Ta(A|B) 2 ~Ti—a(BIA)-Sa(A|B) > 0
Vi Vi

Sa(A|B) — S(A|B) 2 Sa(A|B) — Tu(A|B)

VI VI
To(A|B) — S(A|B) 0

VI

0

The following are the results on A; and A,.

Theorem 2.2. For strictly positive operators A and B, the following hold:

(1) A = TAIB)- S(AIB) = ~Dy(AlA L B) fora e (0,1],

(2) By = Sa(A|B) - Tu(A|B) = éDo(A fa BIA) for o € (0,1].

Proof. (1) By (1) in Lemma 2.1, we have

(2)

At B-A
(¢4
1 1
= —~(Afa B~ A-S(AlA s B)) = —Do(Al4 fa B).

T.(A|B) — S(A|B)

(AIB) = =(Afo B~ A~ aS(4]B))

By Lemma 2.1, we have

&mm—nmm)=§L%E£+&mw)=§m_AmB+mumm)

= é(A — A fla B+ S1(A|A §o B))
= 21;(‘4 — A e B~ S(A t BlA)) = éDO(A fo B|A).

O

Remark 1. By exchanging A for B and replacing o with 1 — a for (1) and (2), we
have the following relations:

(1)
(2)

1
l—«o

~T1_a(BIA) - Sa(AIB) = ——Do(A ta BIB) fora€[0,1).

—

Ay = Si(A|B) + Ti_o(B|A) = Do(B|A o B) fora € [0,1),

I

Az



We give a geometrical interpretation for (1) in Theorem 2.2. Figure 2 and Figure 3
show T, (A|B)—S(A|B) and Dy(A|A i, B) appeared in (1) in Theorem 2.2, respectively.

Figure 4 is an image of (1) in Theorem 2.2.
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Figure 2: An interpretation of T,(A|B) — S(A|B).
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Figure 3: An interpretation of Do(A|A §, B) = A §o B — A— S(A|A §. B).
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Figure 4: An image of To(A|B) — S(A|B) = 2Do(A|A b, B).

Theorem 2.2 leads the next theorem.
Theorem 2.3. For strictly positive operators A and B, the following holds:

1
Da(AlB) = - iaDo(A te BIB) + = Do(A b BlA) fora€ (0,1).
Proof. By (2) in Theorem 2.2 and (2) in Remark 1, we have
Do(A|B) = ~Ti-o(B|A) ~ To(A|B)

(~Ti-a(BIA) - S2(A1B)) + (Sa(A[B) — Ta(A]B)
~—Do(A f BIB) + ~Do(A 1 BIA).

l1—ao

By Theorem 2.3, we have
o(1 — @) Da(AlB) = aDo(A fa BIB) + (1 — o) Do(A ta B|A)
= O!(B—A ﬂa B — S(A ﬁa B|B)) + (1 - a)(Am A ﬁa B - S(A ﬁa B[A))
= AV, B—Als B—((1-a)S(A o B|A) +aS(A {a B|B)),

and then
(1~ 0)S(A fa BIA) +aS(A to BIB) = 0,

since Dy(A|B) = A vzg : 2)110: B

(1 — a)S(X|A) + aS(X|B) = 0 which is the Karcher equation concerning two op-
erators A and B. In this case, we can rewrite the result of Lawson-Lim [16] as follows:

This means that A §, B is a solution of



Theorem 2.4 ([16]). For strictly positive operators A, B and X, and for o € [0, 1],
(1-a)S(X|A)+aS(X|B)=0 ifand only if X = A flo B.

For readers’ convenience, we give a direct proof of this theorem.

Proof. It is obvious if o = 0. Otherwise, we have
(1-a)S(X|A)+aS(X|B)=0
= log(X FAXTE)* +1og(XTIBX 1) =0

1

== (XTIBX7E)* = (XiATIXE)e

Remark 2. This theorem holds even if o is any real number [14].

3. U-Bregman divergences on the differences of relative opera-
tor entropies

In this section, we consider W-Bregman divergence in the case C = R as follows:
For an operator valued smooth function ¥ : R — B(H) and z,y € R,

D\I/(.’E,y) = ‘I’(CL') _ \Il(y) . a]-i)rilo \If(y+ a(*lz’. ; y)) - \Il(y)

From the following theorem, it is natural that we consider Dg(1,0) as a divergence of
operators A and B.

Theorem 3.1. Let U(t) = A by B for strictly positive operators A and B. Then for
T,y €R,

Dy(z,y) = Do(A y B|A i B).
In particular, Dg(1,0) = Do(A|B).
Proof.
QL - A B

a—+0

o
= AthmM"B"aEIEO(A%B) be (At B)— Al B

8
— Af, B-Ab, B-S(At, BlAt, B) = Do(Al, BlA b, B).

by [11, Lemma 2.2]

O

In the rest of this section, we obtain Dg(1,0) for functions ¥ which relate to the
operator divergences Ay, Ay, Ay and Ag in section 2.



Theorem 3.2. For strictly positive operators A and B, the following hold:

(1) If U(t) = TJ(A|B) - S(A|B), then

Dg(1,0) = DO(A|B)~‘—;—S(AIB)A‘IS(A{B).

2) If U(t) = S,(A|B) - S(A|B), then

Dy(1,0) = Do(A|B) + Do(B|A) — S(A|B)A-S(A|B).
(3) If ¥(t) = Si(A|B)~Ti(A|B), then
Dg(1,0) = DO(BIA)-—%S(A[B)A*S(AlB).
(4) If W(t) = Di(AIB) fort € [0,1], then

Dy(1,0) = Do(BI4) — 2Do(A|B) + 5S(A|B) A~ S(4]B)

Here, we give a proof of (1). The others are obtained similarly.

Proof. (1) For a > 0, we have

a®*—1—-aloga 1

: - 2
alg{go =3 = 2(log a)®.
Replacing a by A~ BA~3, we have
. To(A|B) - S(A|B) . AI((A"3BAT3)®— ] — alog(A"2 BA™1)) A3
lim = lim
a—+0 a a—+0 a?
- %A%(log(A‘%BA“%))QA% - -;-S(AIB)A‘ls(AlB),
then

Dy(1,0) = Ti(A|B) — S(A|B) — (Tv(A|B) — S(A|B))
_ i Ta(41B) - 5(A|B) — (To(A|B) - S(A|B))

a—+0 o

- TAB) - S(AIB) - i, TelAIE) = S(AIE)

— Do(A|B) - %S(AiB)A‘ls(AlB).



4. Divergences given by the differences of expanded relative

operator entropies

In this section, we try to generalize Theorems 2.2 and 2.3 in section 2 for operator
power mean. For A, B >0, z € [0,1] and r € [—1, 1], operator power mean A i, B is
defined as follows:

Aty B=aH{(1-0)I+2 (A”%BA”%)T}%A% = Ap{AV. (A4 B)}.

We remark that A #,, B = B #1_,, A holds for z € [0,1] and 7 € [-1,1] (cf. [9],
[11]). To preserve (1 —z)I +x (A“%BA‘% > 0, we have to impose z in [0,1]. The
operator power mean is a path passing through A = A ffo, B and B = A f};, B, and

combines arithmetic, geometric and harmonic means, that is, A ;1 B = A V, B,
Atf,0o B= 11_15(1) Afy, B=At, Band A,y B=A A, B=(A"1V, B )" For

a € [0,1] and r € [~1, 1], expanded relative operator entropy S, (A|B) and expanded
Tsallis relative operator entropy Ty, (A|B) are defined as follows (cf. [9]):

Sur(AIB) = A} ({(1~—a)l+a< "%BA*%)T}%_I <A'§Bﬁ“§)r‘1) Ab

_ % Abeg B| = (Atar B)(A Va(Alr B)So,(41B) (r £0).
SaolAlB) = lmSar(AlB) = Sa(AIB)

_ A ﬁa,r B—-A .
1, a8) = Mo BZA (o2 0) 1y,(415) = I T, (A1B) = T.(AIB).

We remark that Sy.(A|B) = T,(4|B), S1,(A|B) = —T.(B|A) and T} ,(A|B) = B — A
hold for 7 € [~1,1]. A similar inequality to (x) also holds for these expanded relative
operator entropies, which is given as follows [9]:

(**) SO,T(AIB) < Ta,r(A[B) < Sa,'r(AIB) < "‘Tlua,r(BlA) < Sl,r(A‘B),
a€l0,1], re[-1,1].

If r = 0, then this inequality becomes ().

We defined expanded operator valued a-divergence Do ,(A|B) as follows [11]:
Dor(A|B) = ~Ti_ar(B|A) — Tor(A|B), acl0,1], re[~1,1].
For o € (0,1), we can represent D, ,(A|B) as follows:

AV,B~-Af,, B
a(l — ) '

We gave the following relations on expanded operator valued a-divergence.

Dy .(AB) =

Proposition 4.1 ([11], Proposition 4.4). For strictly positive operators A and B, the
following hold:

(1) Da,O(A‘B) = Do(A|B) forac [0, 1],
(2) Da,l('AiB) = 0 fO’I"C! € [07 1])
(3) Do (A|B) = B—A-—S50,(A|B) forre[~1,1],

(4)  Di(A|B) = A—B—S,(BlA) = Do.(BlA) forre[~1,1].
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We call Dy, (A|B) = B — A — Sy-(A|B) expanded Petz-Bregman divergence.

Similarly to section 2, we consider the differences between two expanded relative
operator entropies in (*) as operator divergence. There are 10 such divergences.

Tar(AIB) — Sor(A|B), Sar(A|B) — Tor(A|B),

~Ti-or(BJA) = Sar(AlB), S17(A|B) + T1-a,(B|A),

Sar(A|B) — Sor(A|B), —Ti—ar(BlA) = Tor(A|B) = Doy (A|B),
S1,r(A|B) — Sar(A|B), ~Ti—ar(BlA) — Sor(A|B),

S1,-(A|B) — T+ (A|B), S1-(A|B) — So.(A|B).

The relations of these differences are given as in Table 2. If r = 0, then this table

coincides with Table 1.
- Table 2

S1,r(AlB) = Sor(A|B) 2 S1r(A|B) ~ Tor(AlB) 2 51,+(A|B) — Sar (AIB) 2 S1,r(A|B) + T1—a,r(B|4) > 0

Vi VI Vi
~T1-a,r(BlA)=50,r(AIB) 2 ~T1-a,r(B|A)~Ta,r(AlB) 2 ~T1-a,r(B|A)~Sar(A|1B) 2 0
Vi Vi

Sa,r(A|B)—So,r(A|B) 2 Sar(A|B)—Tar(A|B)

Vi Vi
Tor(A|B)~So.(A|B) 0
VI
| 0
N\ Y,

We represent these operator divergences by using expanded Petz-Bregman diver-
gence. Theorems 4.2 and 4.3 correspond to Theorems 2.2 and 2.3, respectively.

Theorem 4.2. For strictly positive operators A and B and r € [~1, 1], the following
hold:

(1) Tor(A|B) — Sor(A|B) = %DO,,,(AIA for B) fora € (0,1],

1

2) Sar(A|B) = Tus(AIB) = —Dos(A far BIA) fora € (0,1]

Theorem 4.3. For strictly positive operators A and B and r € [~1,1], the following
holds:

1
—a

, 1
Dy r(A|B) = I Do, (A bay B|B) + —&DO,T(A fo,r B|A) fora € (0,1).
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