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FINITE SIMPLE C*-ALGEBRAS OF LABELED SPACES

JA A JEONG, EUN JI KANG, SUN HO KIM, AND GI HYUN PARK

ABSTRACT. The C"-algebras of directed graphs are introduced in the 1990s and its study is
extended to larger classes of C”-algebras in many ways, among which is the class of labeled
graph C*-algebras started by Bates and Pask. In this paper we survey some of our recent
results on finite labeled graph C*-algebras.

1. INTRODUCTION

A class of C*-algebras C*(E) associated to directed graphs F was introduced in {14, 15]. Cuntz-
Krieger algebras are now regarded as graph C*-algebras of finite graphs (graphs with finitely
many vertices and edges). The graph C*-algebra C*(E) is the C*-algebra generated by a univer-
sal Cuntz-Krieger F-family consisting of projections {py},ego and partial isometries {se}eep,
indexed by the vertex set E° and the edge set E' of E, which are subject to the relations deter-
mined by the graph E. If a graph FE has condition (K), a condition on the loop structure of E, it
is known [14] that the ideal structure of the C*-algebra C*(E) can be fully understood from the
graph F itself. Also, if C*(E) is simple, it must be either AF or purely infinite. Cuntz algebras
and simple Cuntz Krieger algebras are standard examples of those simple purely infinite graph
C*-algebras.

By a labeled graph, we mean a graph E with a labeling map £ : E' — A of E! onto the
alphabet A. If a set B C 2E° of vertex subsets satisfies certain conditions (see Chapter 2),
we call it an accommodating set and the triple (E, £, B) a labeled space. With the alphabet
A = E! and the trivial labeling map Lig := id : E! — A, we have a trivial labeled space
(E, Lig, B) associated to a graph E, where B is the accommodating set of all vertex sets that
are either finite or cofinite. To each labeled space (F, £, B) with some mild conditions, one can
associate a C*-algebra C*(E, L, B) generated by a universal family of projections ps(4 € B)
and partial isometries s,(a € A) that obey some relations given by the labeled space (E, L, B).
This is a similar but more complicated way to the construction of graph C*-algebras associated
with graphs, and by construction every graph C*-algebra is the C*-algebra of the trivial labeled
space (F, Lig, B). ’

As for the simplicity of labeled graph C*-algebra C*(E, L, B), it is often enough to check the
structure of labeled paths in the labeled space (E,L,B) as in the case of graph C*-algebras
which was well known back in the 1990s (2, 7]).

While AF graph C*-algebras are exactly the C*-algebras C*(E) of graphs E with no loops,
it is not so clear when a labeled graph C*-algebra C*(E, L, B) is AF. We review the discussion
on this problem given in [8] in Section 3 after setting up some notation in Section 2. Then in
Section 4 we present the construction (given in [9]) of finite simple labeled graph C*-algebras
that are not AF, which shows that the class of simple labeled graph C*-algebras is strictly larger
than the simple graph C*-algebras. For this construction we use generalized Morse sequences
w to label the uderlying graph Ez, with the vertices E := Z and the edges Ej := {ey | s(en) =
n, r(en) =n+ 1, n € Z}, and show that the C*-algebras of these labeled graphs (Ez, L., €7)
are simple and non-AF (with non-zero K1), but finite admitting unique tracial states.
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2. PRELIMINARIES

2.1. Labeled spaces. For notational conventions we refer to [14], [2] and [3]. A (directed)
graph E = (E° E',r, s) consists of a countable set of vertices E°, a countable set of edges E*,
and the range, source maps 7, s : E! — EC. E™ denotes the set of all finite paths A = A;--- X,
of lengthn (|A| = n). We write ES™ and E=" for the sets Ul E* and U2, E*, respectively. The
maps 7 and s naturally extend to E2°, where r(v) = s(v) = v for v € E°. One can consider an
infinite path A;AgA3--- with the source s(A1 Aoz ---) = s(A1) if 7(N\;) = s(Aij41) for all 4, and
by E® we denote the set of all infinite paths. For a vertex subset A C EP, Agpn denotes the
sinks AN Egink in A, and for B c 2B, we simply denote the set {Agink : A € B} by Bgink. For
B ¢ 2F0 and A C Ey, with abuse of notation, we write

BnA:={BeB: BC A}

A labeled graph (E, L) over a countable alphabet A consists of a graph F and a labeling map
L:E'— A For A=\ A, € B2, we call L(A) := L(A\1) - L(An) a (labeled) path, and will
use notation L£*(E) := L£(E21). Similarly we can define an infinite labeled path £()) for A € E®.
If a path « is of the form a = (- B for some B € L*(E), we call a a repetition of 8. A labeled
graph (E, L) is said to have a repeatable path B if B := j3 - - - B(repeated n-times) € L*(E) for
all n > 1. The range r(a) and source s(e) of @ € L*(E) are subsets of E° defined by

r(a) = {r(\) : A€ EZL, £L()\) = a},
s(a) = {s(\) : A€ EZL, L()\) = a}.

The relative range of a € L*(E) with respect to A C 25° is defined to be
r(A,a) = {r()) : A€ EZ!, L)) = o, s()) € A}

We denote the subpath a;---o;j of a = cuag--- ) € L*(E) by ofj for 1 <i<j< la. A
subpath of the form o, ;; is called an initial path of a. The symbol € is regarded as an initial
path of every path.

Let B C 2E° be a collection of subsets of E°, If 7(A4,) € B for all A € B and « € L*(E), B
is said to be closed under relative ranges for (E, L). We call B an accommodating set for (E, L)
if it is closed under relative ranges, finite intersections and unions and contains r(«) for all
a € L*(E). The triple (E, £, B) is called a labeled space when B is accommodating for (E, L).

For A,B€2F° and n>1, let
AE"={A€ E" : s(\) € A}, E"B={)€ E" : r()\) € B}.

We write E™v for E"{v} and vE™ for {v}E", and will use notations like AEZ* and vE> which
should have their obvious meaning. A labeled space (E, L, B) is set-finite (receiver set-finite,
respectively) if for every A € B and [ > 1 the set L(AE') (L(E'A), respectively) is finite. A
labeled space (E, L, B) is finite if there are only finitely many labels.

We call (E, £, B) weakly left-resolving (left-resolving, respectively) if

r(A,a)Nr(B,e) =r(AN B, )

for all A,B € B and a € L*(E) (L : 7~ (v) — A is injective for each v € EY, respectively).
Every left-resolving labeled space is weakly left-resolving.

Assumptions. We assume that a labeled space (E,L,B) considered in this paper always
satisfies the following:

(i) (B, L,B) is weakly left-resolving.

(i) (E,.L,B) is set-finite and receiver set-finite.
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For v,w € E° we write v ~; w if L(ESWw) = L(ESw) as in [2]. Then ~; defines an
equivalence relation on E°, and the equivalence class [v]; of v is called a generalized vertez.
If £ > 1, []g C [v]; is obvious and [v]; = UR,[v;];41 for some vertices vy,...,um € []; ([2,
Proposition 2.4]).

Notation 2.1. Let (E, L) be a labeled graph.

(i) For a labeled space (E,L,B), we denote by B the smallest accommodating set that
contains B U Bgni and is normal (closed under relative complements). The existence of
B follows clearly from considering the intersection of all those accommodating sets. &
will denote the smallest accommodating set that is closed under relative complements
and contains the sets in {r(a) : a € L*(E)}.

(ii) £#(E) will denote the union of all labeled paths L*(E) and empty word ¢, where € is a
symbol such that r(e) = E, r(A,¢) = A for all A C E°.

Proposition 2.2. ([2, Remark 2.1 and Proposition 2.4.(ii)] and [8, Proposition 2.3]) Let (E, £)
be a labeled graph. Then A € £ is of the form

A= (U2 [u)) u (U,?-z'l ([ui])sink) U (UR2y Twili \ ([wilt)sink)

for some v, uj, wg € Qo(E) := EO\{source vertices} and 1 > 1, ny,ng,n3 2 0. If (E, L) has no
sinks and sources, £ contains all generalized vertices; moreover every A € € is a finite union of
generalized vertices, that is A = Ul [vi]; for somev; € E°, 1> 1, and n > 1.

2.2. Labeled graph C*-algebras.

Definition 2.3. ([1, Definition 4.1}, [2, Remark 3.2], [3, Definition 2.1], and [8, Definition 2.4])
Let (E,L,B) be a labeled space such that £ C B. A representation of (E,L,B) consists of
projections {pa : A € B} and partial isometries {s, : a € A} such that for A, B € B and
a,be A,

(1) po =0, papB = Panp, and pauB = PA + DB — PanB,
(ii) PASa = SaPr(A,a)
(iil) 8384 = Pr(a) and s}sy = 0 unless a = b,
(iv) for each A € B,

ba = Z SaDr(A, a)'5 + Pagn
aeL(AEY)

By C*(pa, sa) we denote the C*-algebra generated by {sq,pa :a € A, A € B}.

Remark 2.4. Let (E, L, B) be a labeled space such that £ ¢ B.

(i) There exists a C*-algebra generated by a universal representation {s,,pa} of (E, L, B)
(see the proof of [1, Theorem 4.5 and [7, Remark 2.5)). If {s4,p4} is a universal
representation of (F, L, B), we call C*(sq,p4), denoted C*(E, L, B), the labeled graph
C*-algebra of (E,L,B). Note that s, # 0 and ps # 0 fora € A and A € B, A # (), and
that sapass # 0 if and only if ANr(a)Nr(B) # 0. By definition of representation and
[1, Lemma 4.4],

C*(E, L, B) = 5pom{sapas} : o, B € L*(E), A€ B}, (1)

where s, is regarded as the unit of the multiplier algebra of C*(E, L, B).
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(i) Universal property of C*(E,L,B) = C*(s4,pa) defines a strongly continuous action
v : T — Aut(C*(E, L,B)) such that

Y2(80) = 285 and Yz(pa) = pa

for a € £L(E") and A € B, which we call the gauge action.
(iii) The fixed point algebra of the gauge action - is equal to

C*(E,L,B)" = span{sapasp : la| = 8], A€ B}, 2)

and it is an AF algebra. Moreover, since T is a compact group, there exists a faithful
conditional expectation

v:C*(E,L,B) - C*(E,L,B).
(iv) From Definition 2.3(iv), we have for each n > 1,

PA = Z Sapr(A,a)s; + Z S'Yp"'(Av’Y)sinkS”;’
aEL(AE™) vEL(ABS 1)

where Zveﬁ(AEO) S'Yp"'(A)'Y)sinks; = Pa

sink

Recall [2, 7] that for a labeled space (E,L,£), a path o € L([v 1 EZY) is agreeable for a
generalized vertex [v]; if @ = ¥’ for some B € L({[v];E<!) and its initial path #/, and k> 1. A
labeled space (E, L, £) is said to be disagreeable if every [v];, I > 1, v € EY, is disagreeable in
the sense that there is an N > 1 such that for all n > N there is a path a € L([v);E2™) which
is not agreeable.

Remark 2.5. If (E, L, 6') is disagreeable, every representation {s,,pa} such that ps # 0 for
all non-empty set A € £ gives rise to a C*-algebra C*(sa,pa) isomorphic to C*(E, L, & (]2,
Theorem 5.5] and [?, Corollary 2.5]). A labeled space (E,L,£) is disagreeable if there is no
repeatable paths in (E, L) ([8, Proposition 4.12}).

2.3. K-theory of labeled graph C*-algebras. K-theory of labeled graph C*-algebras was
obtained in [3]. Let E have no sinks and (E, £, B) be a normal labeled space. Then the set B
given in (2) of [3] coincides with B, and by [3, Theorem 4.4] the linear map (1~ @) : spanz{xa :
A € B} — spang{xa : A € B} given by

(1 - q))(XA) =XA— Z Xr(A,a)» AeB (3)
acL(AEY)
determines the K-groups of C*(E, L, B) as follows:
Ko(C*(E, L,B)) = spang{xa : A € B}/Im(1 — @) (4)
K\(C*(B, L, B)) = ker(1 — ®). . (5)

In (4), the isomorphism is given by [palo — x4 + Im(1 — @) for A € B.
2.4. Generalized Morse sequences. We review from [10] definitions and basic properties of
(generalized) Morse sequences. Let
Q:={w="wow_qwow; -+ : w; € {0,1}, i € Z}
be the space of all two-sided sequences of zeros and ones, and let
Qp = {x==z0z1--- : z; € {0,1}, i > 0}

the space of one-sided sequences. B denotes the set of all finite blocks (finite sequences) of zeros
and ones. For b= bg---b, € B, its length is |b| := n+ 1. For w € Q (z € Q., respectively), the
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set of all finite blocks appearing in w (z, respectively) will be denoted by B, (B, respectively).
For z € 4, the set of all two-sided sequences w such that B, C B, is denoted by

Op :={weQ:B, CB,}

For w € (), we write wy, 4,] = wy, -+ -wy, € By, which is a block at the position 1 (t; < tp)
of w. Similarly, wit, ) and W(~c0,t;] Mean the infinite sequences wy wy +1 -+ and - wy, 1wy,
respectively.

The space ) (and similarly Q) endowed with the product topology becomes a totally dis-
connected compact Hausdorff space such that the clopen cylinder sets ‘

tlb] = {w € @ wig 11n = b},

t€Z be B, b =n+12>1, form a base for the topology. For convenience, we use the
following notation:

[0] == ob], [b]:= pi[b], [b-c] = _ppi[be]
for b,c € 8. Note that on the right side of the dot is the zeroth position.
The shift, map
T:0—-Q given by (Tw); = wiyy,

w e, i€ Z, is easily seen to be a homeomorphism. For w € 2, the closure of the orbit of w
will be denoted by &, := {T*(w):i€ Z} C Q.

Each block b € B defines a block b, the mirror image of b, such that b; = b; + 1 (mod 2). For
c=c¢y-"-cp € B, the product b x ¢ of b and ¢ denotes the block (of length [b| x |¢|) obtained
by putting n + 1 copies of either b or b next to each other according to the rule of choosing the
ith copy as bif ¢; =0 and bif ¢; = 1.

Let {b® := b« - b;ibig—-l}izl C B be a sequence of blocks with length [b| > 2 such that b =
for all i > 0. Then one can consider a (one-sided) recurrent sequence of the form

=" xb xb¥x.. ey

(see [10, Definition 7]). We call such an z = b% x b! x b2 x --- € Q. a (generalized) one-sided
Morse sequence if it is non-periodic and 3 oo, min(rg(b*), 71(8*)) = oo, where r4(b) is the relative
frequency of occurrence of a (a =0 or 1) in b € B (see [10, p.338]).

Recall that &, is uniquely ergodic if 6, admits exactly one T-invariant probability measure
my. Such a unique measure is automatically ergodic.

Theorem 2.6. ([10, Lemma 2, Lemma 4, Theorem 3|) Let x € Q4 be a non-periodic recurrent
sequence. Then we have the following:
(i) z is almost periodic; for any cylinder set [.b], b € B, there exists d > 1 such that for
any n >0, Tz € [b] for some 0 < j < d.
(i1) There exists w € O, with x = Wio,00)- Moreover, z is a one-sided Morse sequence if and
only if 0, is minimal and uniquely ergodic, and if this is the case, then O, = Oy,

Definition 2.7. By a generalized Morse sequence, we mean a two-sided sequence w € ) such
that = 1= wjg ) is a one-sided Morse sequence and B, = B,.

Remark 2.8. For a generalized Morse sequence w, the unital commutative AF algebra C(8,,)
of all continuous functions on &, admits a (tracial) state

f /ﬁ fdm,, : C(6,) = C
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which we also write m,,. Since m,, is T-invariant, it easily follows that m,(X,15) = Mw(X,oT) =
Mew(X,4, (), and hence

mw(Xt[b]) = mw(X[.b}) (6)
holds for all t € Z and b € ‘B,,.

Example 2.9. (Thue-Morse sequence) Let b := 01 € B for all i > 0. Then the recurrent
sequence

= x b x b x o =01 xb X+ =0110 x b? x -+ - = 01101001 x b x - -
is a one-sided Morse sequence called the Thue-Morse sequence and
w:=z t.z=...10010110.011010011001 - € &,
is a generalized Morse sequence, where 7! := - - - o117 is the sequence obtained by writing = =
Zox1 -+ - in reverse order. In fact, w is the sequence constructed from the proof of Theorem 2.6(ii)

(see [10, Lemma. 4]), and it is well known [6] that w has no blocks of the form bbby for any
b=1bg-- 'b‘b|_1 € B,.

3. AF LABELED GRAPH C*-ALGEBRAS

Recall that a path z € EZ! in a directed graph E is a loop if s(z) = r(z). It is well known
[14, Theorem 2.4] that for a graph C*-algebra C*(E) to be AF it is a sufficient and necessary
condition that E has no loops. To find conditions of a labeled space which arises an AF C*-
algebras, we define following generalized notion of loop.

Definition 3.1. Let (E, £, B) be a labeled space and o € L*(E) a labeled path.
(a) ais a generalized loop at A € B if a € L(AEZA).
(b) «is a loop at A € B if it is a generalized loop such that A C r(4, o).
(c) A loop o at A € B has an ezit if one of the following holds:
(i) {opy: 1<k < ol} § LAESK),
(ii) 7(A, ap,q))sink # @ for some i =1,...,]al,
(iii) ACr(4,a).

Remark 3.2. Let (s4,pa) be a representation of (E, L, B).

(i) A generalized loop « at a minimal set A € B is necessarily a loop. A labeled graph
(E, £) might have a (generalized) loop a even when the underlying graph E has no
loops at all.

(i) If o is a loop at A € B then pa < pr(a,q)-

Proposition 3.3. Let (E, L) be a labeled graph and o be a loop at A € £ with an exit. Then
Pr(Aq) 38 an infinite projection in C*(E, L, ).

Theorem 3.4. If C*(E, L,€) is an AF algebra, the labeled space (E, L,€) has no loops.

Since the accommodating set € of a labled graph (E, £;4) with the trivial labeling £;4 contains
all the single vertex sets {v}, v € E?, the following are equivalent for a path z = z1---2m €
E2Y (= L} (E)):

(i) z is a loop in E,

(i) {r(2)} =r({r(z)},2),
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(iii) z is repeatable, that is, 2" € E=! for alln > 1,
(iv) (A1z1dozy - Amam ) (A1z1 ATy - - Aiwy) € L34(E) for alln > 1 and 1 <4 < m, where
A= {s(z;)} € €.
From this we can obtain several equivalent conditions for a graph C*-algebra C*(E) to be AF
as follows.

Proposition 3.5. Let (E, Lig,&) be a labeled space with the trivial labeling Lig so that C*(E, Lig, ) =
C*(E). Then the following are equivalent:

(i) C*(E, L4, &) is AF,

(ii) E has no loops,

(i) A¢ r(A,z) for all A€ € and z € L}(E),

(iv) there are no repeatable paths in L},(E),

(v) if {41,..., A} is a finite collection of sets from &0 and K > 1, there is an mg > 1

such that A; ES¥ A, - - ES¥A; | =0 for all n > my.

Let AjE2'A;--- E21 A, denote the following set
{r=z20 2y € EZl: g€ AkEZIAkH, 1<k<n}.

Theorem 3.6. Let (E,L) be a labeled graph. Assume that if Ay, As,... is a sequence of sets
in € such that

A EPIAE? Ay E2YA, #0
for allm > 1, the set {Ay, Ag,...} is infinite. Then C*(E,L,E) is AF.

For a labeled graph C*-algebra C*(E, L, €) = C*(sq,pa) and a set A € £, we denote by I4
the ideal of C*(E, L, ) generated by the projection p4 as before.

Lemma 3.7. Let C*(E,£,€) = C*(s4,p4) be the C*-algebra of a labeled graph (E, L) with no
sinks or sources. For A, B € &, we have pa € Ip if and only if there exist an N > 1 and finitely
many paths {pi}%.; in L(BE2%) such that

Uigl=n 7(4, 8) C U m(B, ).

Lemma 3.8. Let C*(E,L,E) = C*(sq,pa) be the C*-algebra of a labeled graph (E, L) and let
a € LX(E) satisfy o™ € L*(E) for alln > 1. If pyomy does not belong to the ideal generated by
a projection pp(gmy\r(am+1) for some m > 1, then C*(E,L,E) is not AF.

Recall that the set [v];,, of all sinks of [v]; is a member of € and that € N [v]igy, denotes
the set {A €€ AC [v]lsmk}. The ideal Ijy; of C*(E, L,E) = C*(pa, sa) generated by the
projection pp,), . is equal to v

lsi
span{sapass : @, B € L#(E) and A € €0 [v)igy }-

Lgink

Lemma 38.9. Let (E,L,€) be a labeled space and v € Qo(E). If [V)igny is the disjoint union of
finitely many minimal sets A; €E,i=1,...,N,

i), = ®N 5Pan{sapa,sh © @, B € L¥(E)} = oL, K(E(L(EZ0A:))),
where L(E%A;) = {e}.
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Proposition 3.10. Let (E,L,€) be a finite labeled space such that there ezists an ! > 1 for
which (E, L, E) has no generalized loops at [v); for all [v]; € Y(E). Then

C*(E, L,€) = ®pjeu(®) T, -

Moreover, the ideal I, is finite dimensional whenever € N [v]ig,, is a finite set.

Isink

4. NON-AF FINITE SIMPLE LABELED GRAPH C*-ALGEBRAS

Recall C*-algebra is said to be infinite if it has an infinite projection. A unital C*-algebra
A(# C) is purely infinite if for each nonzero positive element a € A there is a b € A satisfying
b*ab = 1. A purely infinite C*-algebra A is always simple since the ideal generated by any
positive nonzero element contains the unit of A. (For nonsimple purely infinite C*-algebras see
[11,12].) It is an easy observation that a simple unital C*-algebra A is purely infinite if and only
if every nonzero hereditary C*-subalgebra ada of A has a projection a'/2b(a!/2b)* equivalent
to the unit 1 = (a'/2b)*(a/2b). Thus if A is purely infinite, every nonzero projection is always
infinite. A simple C*-algebra without unit is called purely infinite if every nonzero hereditary
C*-subalgebra contains an infinite projection.

We call a C*-algebra A finite when A has no infinite projections. A simple unital C*-algebra
A with a tracial state 7 (7 is automatically faithful since A is simple) is always finite because
the faithfulness of 7 implies that if a projection p € A is equivalent to its subprojection ¢ < p
in A, withp=wvv*and g =v*v for v € A, then 7(p— q) = 7{vv* —v*v) =0and sop— g =0
by faithfulness of 7.

Besides commutative C*-algebras, all finite dimensional C*-algebras are obviously finite, and
moreover all AF algebras are also finite. On the other hand, the Cuntz-algebras O, (n =
2,3,...,00) [4] or more generally simple Cuntz-Krieger algebras are well known to be purely
infinite.

In [2, Proposition 7.2], Bates and Pask provide an example of a simple unital purely infinite
labeled graph C*-algebra which is not isomorphic to any unital graph C*-algebra. We also know
from [16] that there exist simple higher rank graph C*-algebras which are neither AF nor purely
infinite; there exist such simple C*-algebras which are stably isomorphic to irrational rotation
algebras or Bunce-Deddens algebras. This fact leads us to ask if there exists a simple unital
labeled graph C*-algebra which is neither AF nor purely infinite. To this question we answer in
Theorem 4.4 that there really exists a simple unital finite, but non-AF labeled graph C*-algebra
C*(Eg, Ly, Ez). This is a C*-algebra associated to a labeled space (Ez, Ly, Ez) which is labeled
by a generalized Morse sequence w.

Throughout this section, Ez, will denote the following graph:

[ ] [ ] [ ] L] [} ® ® L ®
V-4 V-3 V-2 V-1 Vo V1 k%] U3 V4
Given a two-sided sequence w = ---w_jwowy -+ € Q of zeros and ones, we obtain a labeled

graph (Ez, L) shown below

W w... W W.. Wi w (29 W
(Fz,Ly) - ® Le23s Ze Lo 20, ol o 22, 4. 98, ...,
V-4 V-3 V-2 V-1 Vo (1 () v3 V4

where the labeling map £, : E} — {0,1} is given by L,(n) = wy for n € E}. Then we also
have a labeled space (Ez, L, £z) with the smallest accommodating set £z which is closed under
relative complements.
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Let C*(Ey, é,,-g_z) = C*(84,p4) be the labeled graph C*-algebra associated with the labeled
space (Ez, L., Ez) of a generalized Morse sequence w. Then by (2) the fixed point algebra of
the gauge action vy is generated by elements of the form sqpasy (Jo| = |B| and A C r(a)Nr(B))
which is nonzero only when « = 8, and hence

C'*(Ez,[:w,.g_z)ﬂ’ = —S—p_éﬁ{sap‘qsz A€ —5—2‘, AC r(a)}.
Moreover C*(Eg, L.,,£z)" is easily seen to be a commutative C*-algebra. For each k > 1, let
Fy, = span{saPr(ra) S : 0 &' € Lu(E)}-
The (finitely many) elements sopy(/a)Sy in Fy are linearly independent and actually orthogonal

to each other so that F}, is a finite dimensional subalgebra of C*(Fg, L, £z)". Moreover Fj is
a subalgebra of Fj41 because

Sapr(a’oe)szm Z Sabpr(a’ab)sz;bz z Sabpr(aa’ab)S:zb'

be{0,1} a,be{0,1}
This gives rise to an inductive sequence Fi =% Fy 2% ... of finite dimensional C*-algebras,

where the connecting maps ¢y : Fy ~ Fpy1 are inclusions for k > 1, from which we obtain an
AF algebra lim Fy,. Then

C* (EZ, E(m Z;Zyy = ];l_g Fka
and thus the fixed point algebra is an AF algebra.

Proposition 4.1. Let (Ez, L,,,Ez) be the labeled space of a generalized Morse sequencew. Then
there is a surjective isomorphism

p:C*(Ez, Ly, Ex) — C(O.) (7
such that p(8aPr(a/a)Sa) = Xjo'.o] fOT SaPr(ata)Sy € Fk, k 2 1.

Lemma 4.2. Let (Ez,L,,Ez) be the labeled space of a generalized Morse sequence w and let
p: C*(Eg, Ly, Ez)T — C(6,) be the isomorphism in (7). Then the unique T-invariant ergodic
measure my, : C(0,) — C defines a tracial state

10 =myop:C*(Eg, Ly, Ez)" = C
on the fized point algebra C*(Eg, Ly, Ez)" such that for o, B € LY (Eg),
TO(Sapr(ﬁa)sg) = TO(Pr(f}a))'

The following lemma can be proved by straightforward computation.

Lemma 4.3. Let (Ez,L,,Ez) be the labeled space of a generalized Morse sequence w. Then
100V : C*(Fyg, Ly, E7) = C

is a tracial state.

Theorem 4.4. Let w be a generalized Morse sequence of zeros and ones. Then the C* -algebra
O*(Ez, L:w, gz) 18
(i) simple unital,
(ii} non AF,
(ili) finite with o unigue tracial state T which satisfies
T(Sapr(aa)s;i') = T(\I’(Sapr(aa)s;i)) = 6a,57(pr(aa))
for o, B,0 € L} (Ez).
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In particular, C*(Eg, L,,€z) is not stably isomorphic to a graph C*-algebra.

Let w € Q be a generalized Morse sequence. Then the shift map T : 6, = 6, _induces an
automorphism o7 : C(6,) = C(6,), or(f) = f o T~L. In particular, for each A € £z we have

or(xa) = xa 0T = x4

The following can be shown by universal property of the labeled graph C*-algebra C*(Egz, L., £z)
since one can find a representation of (Fz, L,,z) in the crossed product C(6,,) Xgp Z. The
proof will be contained in the revised version of [9]. Note that (&,,,T) is a Cantor system, so
that we can apply the results known in [5] to identify the isomorphism classes of the crossed
products.

Theorem 4.5. Let w € ) be a generalized Morse sequence and T : 0, — O, be the shift map.
There exists an isomorphism

e C*(Ez, ﬂw,gz) - C(ﬁw) Aop Z.
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