FINITE SIMPLE C*-ALGEBRAS OF LABELED SPACES

JA A JEONG, EUN JI KANG, SUN HO KIM, AND GI HYUN PARK

ABSTRACT. The C^* -algebras of directed graphs are introduced in the 1990s and its study is extended to larger classes of C^* -algebras in many ways, among which is the class of labeled graph C^* -algebras started by Bates and Pask. In this paper we survey some of our recent results on finite labeled graph C^* -algebras.

1. Introduction

A class of C^* -algebras $C^*(E)$ associated to directed graphs E was introduced in [14, 15]. Cuntz-Krieger algebras are now regarded as graph C^* -algebras of finite graphs (graphs with finitely many vertices and edges). The graph C^* -algebra $C^*(E)$ is the C^* -algebra generated by a universal Cuntz-Krieger E-family consisting of projections $\{p_v\}_{v\in E^0}$ and partial isometries $\{s_e\}_{e\in E^1}$, indexed by the vertex set E^0 and the edge set E^1 of E, which are subject to the relations determined by the graph E. If a graph E has condition (K), a condition on the loop structure of E, it is known [14] that the ideal structure of the C^* -algebra $C^*(E)$ can be fully understood from the graph E itself. Also, if $C^*(E)$ is simple, it must be either AF or purely infinite. Cuntz algebras and simple Cuntz Krieger algebras are standard examples of those simple purely infinite graph C^* -algebras.

By a labeled graph, we mean a graph E with a labeling map $\mathcal{L}: E^1 \to \mathcal{A}$ of E^1 onto the alphabet \mathcal{A} . If a set $\mathcal{B} \subset 2^{E^0}$ of vertex subsets satisfies certain conditions (see Chapter 2), we call it an accommodating set and the triple $(E, \mathcal{L}, \mathcal{B})$ a labeled space. With the alphabet $\mathcal{A} = E^1$ and the trivial labeling map $\mathcal{L}_{id} := id : E^1 \to \mathcal{A}$, we have a trivial labeled space $(E, \mathcal{L}_{id}, \mathcal{B})$ associated to a graph E, where E0 is the accommodating set of all vertex sets that are either finite or cofinite. To each labeled space $(E, \mathcal{L}, \mathcal{B})$ with some mild conditions, one can associate a C^* -algebra $C^*(E, \mathcal{L}, \mathcal{B})$ generated by a universal family of projections $p_A(A \in \mathcal{B})$ and partial isometries $s_a(a \in \mathcal{A})$ that obey some relations given by the labeled space $(E, \mathcal{L}, \mathcal{B})$. This is a similar but more complicated way to the construction of graph C^* -algebras associated with graphs, and by construction every graph C^* -algebra is the C^* -algebra of the trivial labeled space $(E, \mathcal{L}_{id}, \mathcal{B})$.

As for the simplicity of labeled graph C^* -algebra $C^*(E, \mathcal{L}, \mathcal{B})$, it is often enough to check the structure of labeled paths in the labeled space $(E, \mathcal{L}, \mathcal{B})$ as in the case of graph C^* -algebras which was well known back in the 1990s ([2, 7]).

While AF graph C^* -algebras are exactly the C^* -algebras $C^*(E)$ of graphs E with no loops, it is not so clear when a labeled graph C^* -algebra $C^*(E,\mathcal{L},\mathcal{B})$ is AF. We review the discussion on this problem given in [8] in Section 3 after setting up some notation in Section 2. Then in Section 4 we present the construction (given in [9]) of finite simple labeled graph C^* -algebras that are not AF, which shows that the class of simple labeled graph C^* -algebras is strictly larger than the simple graph C^* -algebras. For this construction we use generalized Morse sequences ω to label the uderlying graph $E_{\mathbb{Z}}$ with the vertices $E^0_{\mathbb{Z}} := \mathbb{Z}$ and the edges $E^1_{\mathbb{Z}} := \{e_n \mid s(e_n) = n, r(e_n) = n+1, n \in \mathbb{Z}\}$, and show that the C^* -algebras of these labeled graphs $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ are simple and non-AF (with non-zero K_1), but finite admitting unique tracial states.

²⁰¹⁰ Mathematics Subject Classification. 46L05, 46L55, 37A55. Key words and phrases. labeled graph C^* -algebra, finite C^* -algebra.

2. Preliminaries

2.1. Labeled spaces. For notational conventions we refer to [14], [2] and [3]. A (directed) graph $E=(E^0,E^1,r,s)$ consists of a countable set of vertices E^0 , a countable set of edges E^1 , and the range, source maps $r,s:E^1\to E^0$. E^n denotes the set of all finite paths $\lambda=\lambda_1\cdots\lambda_n$ of length n ($|\lambda|=n$). We write $E^{\leq n}$ and $E^{\geq n}$ for the sets $\bigcup_{i=1}^n E^i$ and $\bigcup_{i=n}^\infty E^i$, respectively. The maps r and s naturally extend to $E^{\geq 0}$, where r(v)=s(v)=v for $v\in E^0$. One can consider an infinite path $\lambda_1\lambda_2\lambda_3\cdots$ with the source $s(\lambda_1\lambda_2\lambda_3\cdots):=s(\lambda_1)$ if $r(\lambda_i)=s(\lambda_{i+1})$ for all i, and by E^∞ we denote the set of all infinite paths. For a vertex subset $A\subset E^0$, $A_{\rm sink}$ denotes the sinks $A\cap E^0_{\rm sink}$ in A, and for $B\subset 2^{E_0}$, we simply denote the set $\{A_{\rm sink}:A\in \mathcal{B}\}$ by $\mathcal{B}_{\rm sink}$. For $B\subset 2^{E_0}$ and $A\subset E_0$, with abuse of notation, we write

$$\mathcal{B} \cap A := \{ B \in \mathcal{B} : B \subset A \}.$$

A labeled graph (E, \mathcal{L}) over a countable alphabet \mathcal{A} consists of a graph E and a labeling map $\mathcal{L}: E^1 \to \mathcal{A}$. For $\lambda = \lambda_1 \cdots \lambda_n \in E^{\geq 1}$, we call $\mathcal{L}(\lambda) := \mathcal{L}(\lambda_1) \cdots \mathcal{L}(\lambda_n)$ a (labeled) path, and will use notation $\mathcal{L}^*(E) := \mathcal{L}(E^{\geq 1})$. Similarly we can define an infinite labeled path $\mathcal{L}(\lambda)$ for $\lambda \in E^{\infty}$. If a path α is of the form $\alpha = \beta \cdots \beta$ for some $\beta \in \mathcal{L}^*(E)$, we call α a repetition of β . A labeled graph (E, \mathcal{L}) is said to have a repeatable path β if $\beta^n := \beta \cdots \beta$ (repeated n-times) $\in \mathcal{L}^*(E)$ for all $n \geq 1$. The range $r(\alpha)$ and source $s(\alpha)$ of $\alpha \in \mathcal{L}^*(E)$ are subsets of E^0 defined by

$$r(\alpha) = \{ r(\lambda) : \lambda \in E^{\geq 1}, \mathcal{L}(\lambda) = \alpha \},$$

$$s(\alpha) = \{ s(\lambda) : \lambda \in E^{\geq 1}, \mathcal{L}(\lambda) = \alpha \}.$$

The relative range of $\alpha \in \mathcal{L}^*(E)$ with respect to $A \subset 2^{E^0}$ is defined to be

$$r(A, \alpha) = \{r(\lambda) : \lambda \in E^{\geq 1}, \ \mathcal{L}(\lambda) = \alpha, \ s(\lambda) \in A\}.$$

We denote the subpath $\alpha_i \cdots \alpha_j$ of $\alpha = \alpha_1 \alpha_2 \cdots \alpha_{|\alpha|} \in \mathcal{L}^*(E)$ by $\alpha_{[i,j]}$ for $1 \leq i \leq j \leq |\alpha|$. A subpath of the form $\alpha_{[1,j]}$ is called an *initial path* of α . The symbol ϵ is regarded as an initial path of every path.

path of every path.

Let $\mathcal{B} \subset 2^{E^0}$ be a collection of subsets of E^0 . If $r(A, \alpha) \in \mathcal{B}$ for all $A \in \mathcal{B}$ and $\alpha \in \mathcal{L}^*(E)$, \mathcal{B} is said to be closed under relative ranges for (E, \mathcal{L}) . We call \mathcal{B} an accommodating set for (E, \mathcal{L}) if it is closed under relative ranges, finite intersections and unions and contains $r(\alpha)$ for all $\alpha \in \mathcal{L}^*(E)$. The triple $(E, \mathcal{L}, \mathcal{B})$ is called a labeled space when \mathcal{B} is accommodating for (E, \mathcal{L}) . For $A, B \in 2^{E^0}$ and $n \geq 1$, let

$$AE^n = \{ \lambda \in E^n : s(\lambda) \in A \}, \quad E^n B = \{ \lambda \in E^n : r(\lambda) \in B \}.$$

We write $E^n v$ for $E^n \{v\}$ and vE^n for $\{v\}E^n$, and will use notations like $AE^{\geq k}$ and vE^{∞} which should have their obvious meaning. A labeled space $(E, \mathcal{L}, \mathcal{B})$ is set-finite (receiver set-finite, respectively) if for every $A \in \mathcal{B}$ and $l \geq 1$ the set $\mathcal{L}(AE^l)$ ($\mathcal{L}(E^lA)$, respectively) is finite. A labeled space $(E, \mathcal{L}, \mathcal{B})$ is finite if there are only finitely many labels.

We call $(E, \mathcal{L}, \mathcal{B})$ weakly left-resolving (left-resolving, respectively) if

$$r(A, \alpha) \cap r(B, \alpha) = r(A \cap B, \alpha)$$

for all $A, B \in \mathcal{B}$ and $\alpha \in \mathcal{L}^*(E)$ $(\mathcal{L} : r^{-1}(v) \to \mathcal{A}$ is injective for each $v \in E^0$, respectively). Every left-resolving labeled space is weakly left-resolving.

Assumptions. We assume that a labeled space $(E, \mathcal{L}, \mathcal{B})$ considered in this paper always satisfies the following:

- (i) $(E, \mathcal{L}, \mathcal{B})$ is weakly left-resolving.
- (ii) $(E, \mathcal{L}, \mathcal{B})$ is set-finite and receiver set-finite.

For $v,w\in E^0$, we write $v\sim_l w$ if $\mathcal{L}(E^{\leq l}v)=\mathcal{L}(E^{\leq l}w)$ as in [2]. Then \sim_l defines an equivalence relation on E^0 , and the equivalence class $[v]_l$ of v is called a *generalized vertex*. If k>l, $[v]_k\subset [v]_l$ is obvious and $[v]_l=\cup_{i=1}^m [v_i]_{l+1}$ for some vertices $v_1,\ldots,v_m\in [v]_l$ ([2, Proposition 2.4]).

Notation 2.1. Let (E, \mathcal{L}) be a labeled graph.

- (i) For a labeled space $(E, \mathcal{L}, \mathcal{B})$, we denote by $\overline{\mathcal{B}}$ the smallest accommodating set that contains $\mathcal{B} \cup \mathcal{B}_{\text{sink}}$ and is *normal* (closed under relative complements). The existence of $\overline{\mathcal{B}}$ follows clearly from considering the intersection of all those accommodating sets. $\overline{\mathcal{E}}$ will denote the smallest accommodating set that is closed under relative complements and contains the sets in $\{r(\alpha): \alpha \in \mathcal{L}^*(E)\}$.
- (ii) $\mathcal{L}^{\#}(E)$ will denote the union of all labeled paths $\mathcal{L}^{*}(E)$ and empty word ϵ , where ϵ is a symbol such that $r(\epsilon) = E^{0}$, $r(A, \epsilon) = A$ for all $A \subset E^{0}$.

Proposition 2.2. ([2, Remark 2.1 and Proposition 2.4.(ii)] and [8, Proposition 2.3]) Let (E, \mathcal{L}) be a labeled graph. Then $A \in \overline{\mathcal{E}}$ is of the form

$$A = \left(\cup_{i=1}^{n_1} [v_i]_l \right) \cup \left(\cup_{j=1}^{n_2} ([u_j]_l)_{\operatorname{sink}} \right) \cup \left(\cup_{k=1}^{n_3} [w_k]_l \setminus ([w_k]_l)_{\operatorname{sink}} \right)$$

for some $v_i, u_j, w_k \in \Omega_0(E) := E^0 \setminus \{source \ vertices\} \ and \ l \geq 1, \ n_1, n_2, n_3 \geq 0.$ If (E, \mathcal{L}) has no sinks and sources, $\overline{\mathcal{E}}$ contains all generalized vertices; moreover every $A \in \overline{\mathcal{E}}$ is a finite union of generalized vertices, that is $A = \bigcup_{i=1}^n [v_i]_l$ for some $v_i \in E^0$, $l \geq 1$, and $n \geq 1$.

2.2. Labeled graph C^* -algebras.

Definition 2.3. ([1, Definition 4.1], [2, Remark 3.2], [3, Definition 2.1], and [8, Definition 2.4]) Let $(E, \mathcal{L}, \mathcal{B})$ be a labeled space such that $\overline{\mathcal{E}} \subset \mathcal{B}$. A representation of $(E, \mathcal{L}, \mathcal{B})$ consists of projections $\{p_A : A \in \mathcal{B}\}$ and partial isometries $\{s_a : a \in \mathcal{A}\}$ such that for $A, B \in \mathcal{B}$ and $a, b \in \mathcal{A}$,

- (i) $p_{\emptyset} = 0$, $p_A p_B = p_{A \cap B}$, and $p_{A \cup B} = p_A + p_B p_{A \cap B}$,
- (ii) $p_A s_a = s_a p_{r(A,a)},$
- (iii) $s_a^* s_a = p_{r(a)}$ and $s_a^* s_b = 0$ unless a = b,
- (iv) for each $A \in \mathcal{B}$,

$$p_A = \sum_{a \in \mathcal{L}(AE^1)} s_a p_{r(A,a)} s_a^* + p_{A_{\mathrm{sink}}}.$$

By $C^*(p_A, s_a)$ we denote the C^* -algebra generated by $\{s_a, p_A : a \in \mathcal{A}, A \in \mathcal{B}\}$.

Remark 2.4. Let $(E, \mathcal{L}, \mathcal{B})$ be a labeled space such that $\overline{\mathcal{E}} \subset \mathcal{B}$.

(i) There exists a C^* -algebra generated by a universal representation $\{s_a, p_A\}$ of $(E, \mathcal{L}, \mathcal{B})$ (see the proof of [1, Theorem 4.5] and [7, Remark 2.5]). If $\{s_a, p_A\}$ is a universal representation of $(E, \mathcal{L}, \mathcal{B})$, we call $C^*(s_a, p_A)$, denoted $C^*(E, \mathcal{L}, \mathcal{B})$, the labeled graph C^* -algebra of $(E, \mathcal{L}, \mathcal{B})$. Note that $s_a \neq 0$ and $p_A \neq 0$ for $a \in \mathcal{A}$ and $A \in \mathcal{B}$, $A \neq \emptyset$, and that $s_\alpha p_A s_\beta^* \neq 0$ if and only if $A \cap r(\alpha) \cap r(\beta) \neq \emptyset$. By definition of representation and [1, Lemma 4.4],

$$C^*(E, \mathcal{L}, \mathcal{B}) = \overline{span} \{ s_{\alpha} p_A s_{\beta}^* : \alpha, \beta \in \mathcal{L}^{\#}(E), A \in \mathcal{B} \},$$
(1)

where s_{ϵ} is regarded as the unit of the multiplier algebra of $C^*(E, \mathcal{L}, \mathcal{B})$.

(ii) Universal property of $C^*(E, \mathcal{L}, \mathcal{B}) = C^*(s_a, p_A)$ defines a strongly continuous action $\gamma: \mathbb{T} \to Aut(C^*(E, \mathcal{L}, \mathcal{B}))$ such that

$$\gamma_z(s_a) = zs_a$$
 and $\gamma_z(p_A) = p_A$

for $a \in \mathcal{L}(E^1)$ and $A \in \mathcal{B}$, which we call the gauge action.

(iii) The fixed point algebra of the gauge action γ is equal to

$$C^*(E, \mathcal{L}, \mathcal{B})^{\gamma} = \overline{\operatorname{span}}\{s_{\alpha}p_A s_{\beta}^* : |\alpha| = |\beta|, \ A \in \mathcal{B}\},\tag{2}$$

and it is an AF algebra. Moreover, since $\mathbb T$ is a compact group, there exists a faithful conditional expectation

$$\Psi: C^*(E, \mathcal{L}, \mathcal{B}) \to C^*(E, \mathcal{L}, \mathcal{B})^{\gamma}.$$

(iv) From Definition 2.3(iv), we have for each $n \ge 1$,

$$p_A = \sum_{\alpha \in \mathcal{L}(AE^n)} s_\alpha p_{r(A,\alpha)} s_\alpha^* + \sum_{\gamma \in \mathcal{L}(AE^{\leq n-1})} s_\gamma p_{r(A,\gamma)_{\mathrm{sink}}} s_\gamma^*,$$

where $\sum_{\gamma \in \mathcal{L}(AE^0)} s_\gamma p_{r(A,\gamma)_{\rm sink}} s_\gamma^* := p_{{A_{\rm sink}}}$

Recall [2, 7] that for a labeled space $(E, \mathcal{L}, \overline{\mathcal{E}})$, a path $\alpha \in \mathcal{L}([v]_l E^{\geq 1})$ is agreeable for a generalized vertex $[v]_l$ if $\alpha = \beta^k \beta'$ for some $\beta \in \mathcal{L}([v]_l E^{\leq l})$ and its initial path β' , and $k \geq 1$. A labeled space $(E, \mathcal{L}, \overline{\mathcal{E}})$ is said to be disagreeable if every $[v]_l$, $l \geq 1$, $v \in E^0$, is disagreeable in the sense that there is an $N \geq 1$ such that for all $n \geq N$ there is a path $\alpha \in \mathcal{L}([v]_l E^{\geq n})$ which is not agreeable.

Remark 2.5. If $(E, \mathcal{L}, \overline{\mathcal{E}})$ is disagreeable, every representation $\{s_a, p_A\}$ such that $p_A \neq 0$ for all non-empty set $A \in \overline{\mathcal{E}}$ gives rise to a C^* -algebra $C^*(s_a, p_A)$ isomorphic to $C^*(E, \mathcal{L}, \overline{\mathcal{E}})$ ([2, Theorem 5.5] and [?, Corollary 2.5]). A labeled space $(E, \mathcal{L}, \overline{\mathcal{E}})$ is disagreeable if there is no repeatable paths in (E, \mathcal{L}) ([8, Proposition 4.12]).

2.3. K-theory of labeled graph C^* -algebras. K-theory of labeled graph C^* -algebras was obtained in [3]. Let E have no sinks and $(E, \mathcal{L}, \mathcal{B})$ be a normal labeled space. Then the set \mathcal{B}_J given in (2) of [3] coincides with \mathcal{B} , and by [3, Theorem 4.4] the linear map $(1 - \Phi) : \operatorname{span}_{\mathbb{Z}}\{\chi_A : A \in \mathcal{B}\} \to \operatorname{span}_{\mathbb{Z}}\{\chi_A : A \in \mathcal{B}\}$ given by

$$(1 - \Phi)(\chi_A) = \chi_A - \sum_{a \in \mathcal{L}(AE^1)} \chi_{r(A,a)}, \quad A \in \mathcal{B}$$
 (3)

determines the K-groups of $C^*(E, \mathcal{L}, \mathcal{B})$ as follows:

$$K_0(C^*(E, \mathcal{L}, \mathcal{B})) \cong \operatorname{span}_{\mathbb{Z}} \{ \chi_A : A \in \mathcal{B} \} / \operatorname{Im}(1 - \Phi)$$
 (4)

$$K_1(C^*(E,\mathcal{L},\mathcal{B})) \cong \ker(1-\Phi).$$
 (5)

In (4), the isomorphism is given by $[p_A]_0 \mapsto \chi_A + \operatorname{Im}(1 - \Phi)$ for $A \in \mathcal{B}$.

2.4. Generalized Morse sequences. We review from [10] definitions and basic properties of (generalized) Morse sequences. Let

$$\Omega := \{ \omega = \cdots \omega_{-2} \omega_{-1} \omega_0 \omega_1 \cdots : \omega_i \in \{0, 1\}, i \in \mathbb{Z} \}$$

be the space of all two-sided sequences of zeros and ones, and let

$$\Omega_+ := \{ x = x_0 x_1 \cdots : x_i \in \{0, 1\}, i \ge 0 \}$$

the space of one-sided sequences. $\mathfrak B$ denotes the set of all finite blocks (finite sequences) of zeros and ones. For $b=b_0\cdots b_n\in \mathfrak B$, its length is |b|:=n+1. For $\omega\in\Omega$ ($x\in\Omega_+$, respectively), the

set of all finite blocks appearing in ω (x, respectively) will be denoted by \mathfrak{B}_{ω} (\mathfrak{B}_{x} , respectively). For $x \in \Omega_{+}$, the set of all two-sided sequences ω such that $\mathfrak{B}_{\omega} \subset \mathfrak{B}_{x}$ is denoted by

$$\mathscr{O}_x := \{ \omega \in \Omega : \mathfrak{B}_\omega \subset \mathfrak{B}_x \}.$$

For $\omega \in \Omega$, we write $\omega_{[t_1,t_2]} := \omega_{t_1} \cdots \omega_{t_2} \in \mathfrak{B}_{\omega}$ which is a block at the position t_1 $(t_1 \leq t_2)$ of ω . Similarly, $\omega_{[t_1,\infty)}$ and $\omega_{(-\infty,t_2]}$ mean the infinite sequences $\omega_{t_1}\omega_{t_1+1}\cdots$ and $\cdots\omega_{t_2-1}\omega_{t_2}$, respectively.

The space Ω (and similarly Ω_+) endowed with the product topology becomes a totally disconnected compact Hausdorff space such that the clopen *cylinder sets*

$$_{t}[b] := \{\omega \in \Omega : \omega_{[t,t+n]} = b\},$$

 $t \in \mathbb{Z}, b \in \mathfrak{B}, |b| = n + 1 \ge 1$, form a base for the topology. For convenience, we use the following notation:

$$[.b] := {}_{0}[b], \quad [b.] := {}_{-|b|}[b], \quad [b.c] := {}_{-|b|}[bc]$$

for $b, c \in \mathfrak{B}$. Note that on the right side of the dot is the zeroth position.

The shift, map

$$T: \Omega \to \Omega$$
 given by $(T\omega)_i = \omega_{i+1}$,

 $\omega \in \Omega$, $i \in \mathbb{Z}$, is easily seen to be a homeomorphism. For $\omega \in \Omega$, the closure of the orbit of ω will be denoted by $\mathscr{O}_{\omega} := \overline{\{T^i(\omega) : i \in \mathbb{Z}\}} \subset \Omega$.

Each block $b \in \mathfrak{B}$ defines a block \tilde{b} , the mirror image of b, such that $\tilde{b}_i = b_i + 1 \pmod{2}$. For $c = c_0 \cdots c_n \in \mathfrak{B}$, the product $b \times c$ of b and c denotes the block (of length $|b| \times |c|$) obtained by putting n+1 copies of either b or \tilde{b} next to each other according to the rule of choosing the ith copy as b if $c_i = 0$ and \tilde{b} if $c_i = 1$.

Let $\{b^i := b_0^i \cdots b_{|b^i|-1}^i\}_{i \ge 1} \subset \mathfrak{B}$ be a sequence of blocks with length $|b^i| \ge 2$ such that $b_0^i = 0$ for all $i \ge 0$. Then one can consider a (one-sided) recurrent sequence of the form

$$x = b^0 \times b^1 \times b^2 \times \cdots \in \Omega_+$$

(see [10, Definition 7]). We call such an $x = b^0 \times b^1 \times b^2 \times \cdots \in \Omega_+$ a (generalized) one-sided Morse sequence if it is non-periodic and $\sum_{i=0}^{\infty} \min(r_0(b^i), r_1(b^i)) = \infty$, where $r_a(b)$ is the relative frequency of occurrence of a (a = 0 or 1) in $b \in \mathfrak{B}$ (see [10, p.338]).

Recall that \mathscr{O}_{ω} is uniquely ergodic if \mathscr{O}_{ω} admits exactly one T-invariant probability measure m_{ω} . Such a unique measure is automatically ergodic.

Theorem 2.6. ([10, Lemma 2, Lemma 4, Theorem 3]) Let $x \in \Omega_+$ be a non-periodic recurrent sequence. Then we have the following:

- (i) x is almost periodic; for any cylinder set [.b], $b \in \mathfrak{B}_x$, there exists $d \geq 1$ such that for any $n \geq 0$, $T^{n+j}x \in [.b]$ for some $0 \leq j \leq d$.
- (ii) There exists $\omega \in \mathscr{O}_x$ with $x = \omega_{[0,\infty)}$. Moreover, x is a one-sided Morse sequence if and only if \mathscr{O}_{ω} is minimal and uniquely ergodic, and if this is the case, then $\mathscr{O}_{\omega} = \mathscr{O}_x$.

Definition 2.7. By a generalized Morse sequence, we mean a two-sided sequence $\omega \in \Omega$ such that $x := \omega_{[0,\infty)}$ is a one-sided Morse sequence and $\mathfrak{B}_{\omega} = \mathfrak{B}_{x}$.

Remark 2.8. For a generalized Morse sequence ω , the unital commutative AF algebra $C(\mathscr{O}_{\omega})$ of all continuous functions on \mathscr{O}_{ω} admits a (tracial) state

$$f\mapsto \int_{\mathscr{O}_{\omega}}f\mathrm{d}m_{\omega}:C(\mathscr{O}_{\omega})\to\mathbb{C}$$

which we also write m_{ω} . Since m_{ω} is T-invariant, it easily follows that $m_{\omega}(\chi_{t[b]}) = m_{\omega}(\chi_{t[b]} \circ T) = m_{\omega}(\chi_{t+1[b]})$, and hence

$$m_{\omega}(\chi_{t[b]}) = m_{\omega}(\chi_{[.b]}) \tag{6}$$

holds for all $t \in \mathbb{Z}$ and $b \in \mathfrak{B}_{\omega}$.

Example 2.9. (Thue-Morse sequence) Let $b^i := 01 \in \mathfrak{B}$ for all $i \geq 0$. Then the recurrent sequence

$$x := b^0 \times b^1 \times b^2 \times \cdots = 01 \times b^1 \times \cdots = 0110 \times b^2 \times \cdots = 01101001 \times b^3 \times \cdots$$

is a one-sided Morse sequence called the Thue-Morse sequence and

$$\omega := x^{-1}.x = \cdots 10010110.011010011001 \cdots \in \mathscr{O}_x$$

is a generalized Morse sequence, where $x^{-1} := \cdots x_2 x_1 x_0$ is the sequence obtained by writing $x = x_0 x_1 \cdots$ in reverse order. In fact, ω is the sequence constructed from the proof of Theorem 2.6(ii) (see [10, Lemma 4]), and it is well known [6] that ω has no blocks of the form bbb_0 for any $b = b_0 \cdots b_{|b|-1} \in \mathfrak{B}_{\omega}$.

3. AF LABELED GRAPH C^* -ALGEBRAS

Recall that a path $x \in E^{\geq 1}$ in a directed graph E is a loop if s(x) = r(x). It is well known [14, Theorem 2.4] that for a graph C^* -algebra $C^*(E)$ to be AF it is a sufficient and necessary condition that E has no loops. To find conditions of a labeled space which arises an AF C^* -algebras, we define following generalized notion of loop.

Definition 3.1. Let $(E, \mathcal{L}, \mathcal{B})$ be a labeled space and $\alpha \in \mathcal{L}^*(E)$ a labeled path.

- (a) α is a generalized loop at $A \in \mathcal{B}$ if $\alpha \in \mathcal{L}(AE^{\geq 1}A)$.
- (b) α is a loop at $A \in \mathcal{B}$ if it is a generalized loop such that $A \subset r(A, \alpha)$.
- (c) A loop α at $A \in \mathcal{B}$ has an *exit* if one of the following holds:
 - (i) $\{\alpha_{[1,k]}: 1 \le k \le |\alpha|\} \subsetneq \mathcal{L}(AE^{\le |\alpha|}),$
 - (ii) $r(A, \alpha_{[1,i]})_{\text{sink}} \neq \emptyset$ for some $i = 1, ..., |\alpha|$,
 - (iii) $A \subseteq r(A, \alpha)$.

Remark 3.2. Let (s_a, p_A) be a representation of $(E, \mathcal{L}, \mathcal{B})$.

- (i) A generalized loop α at a minimal set $A \in \mathcal{B}$ is necessarily a loop. A labeled graph (E,\mathcal{L}) might have a (generalized) loop α even when the underlying graph E has no loops at all.
- (ii) If α is a loop at $A \in \mathcal{B}$ then $p_A \leq p_{r(A,\alpha)}$.

Proposition 3.3. Let (E, \mathcal{L}) be a labeled graph and α be a loop at $A \in \overline{\mathcal{E}}$ with an exit. Then $p_{r(A,\alpha)}$ is an infinite projection in $C^*(E, \mathcal{L}, \overline{\mathcal{E}})$.

Theorem 3.4. If $C^*(E, \mathcal{L}, \overline{\mathcal{E}})$ is an AF algebra, the labeled space $(E, \mathcal{L}, \overline{\mathcal{E}})$ has no loops.

Since the accommodating set $\overline{\mathcal{E}}$ of a labled graph (E, \mathcal{L}_{id}) with the trivial labeling \mathcal{L}_{id} contains all the single vertex sets $\{v\}$, $v \in E^0$, the following are equivalent for a path $x = x_1 \cdots x_m \in E^{\geq 1}(=\mathcal{L}_{id}^*(E))$:

- (i) x is a loop in E,
- (ii) $\{r(x)\} = r(\{r(x)\}, x),$

- (iii) x is repeatable, that is, $x^n \in E^{\geq 1}$ for all $n \geq 1$,
- (iv) $(A_1x_1A_2x_2\cdots A_mx_m)^n(A_1x_1A_2x_2\cdots A_ix_i)\in \mathcal{L}_{id}^*(E)$ for all $n\geq 1$ and $1\leq i\leq m$, where $A_i=\{s(x_i)\}\in \overline{\mathcal{E}}$.

From this we can obtain several equivalent conditions for a graph C^* -algebra $C^*(E)$ to be AF as follows.

Proposition 3.5. Let $(E, \mathcal{L}_{id}, \overline{\mathcal{E}})$ be a labeled space with the trivial labeling \mathcal{L}_{id} so that $C^*(E, \mathcal{L}_{id}, \overline{\mathcal{E}}) \cong C^*(E)$. Then the following are equivalent:

- (i) $C^*(E, \mathcal{L}_{id}, \overline{\mathcal{E}})$ is AF,
- (ii) E has no loops,
- (iii) $A \not\subset r(A, x)$ for all $A \in \overline{\mathcal{E}}$ and $x \in \mathcal{L}_{id}^*(E)$,
- (iv) there are no repeatable paths in $\mathcal{L}_{id}^*(\bar{E})$,
- (v) if $\{A_1, \ldots, A_m\}$ is a finite collection of sets from $\overline{\mathcal{E}^0}$ and $K \geq 1$, there is an $m_0 \geq 1$ such that $A_{i_1}E^{\leq K}A_{i_2}\cdots E^{\leq K}A_{i_{n+1}} = \emptyset$ for all $n > m_0$.

Let $A_1 E^{\geq 1} A_2 \cdots E^{\geq 1} A_{n+1}$ denote the following set

$${x = x_1 x_2 \cdots x_n \in E^{\geq 1} : x_k \in A_k E^{\geq 1} A_{k+1}, \ 1 \leq k \leq n}.$$

Theorem 3.6. Let (E,\mathcal{L}) be a labeled graph. Assume that if A_1, A_2, \ldots is a sequence of sets in $\overline{\mathcal{E}}$ such that

$$A_1 E^{\geq 1} A_2 E^{\geq 1} A_3 \cdots E^{\geq 1} A_n \neq \emptyset$$

for all $n \geq 1$, the set $\{A_1, A_2, \dots\}$ is infinite. Then $C^*(E, \mathcal{L}, \overline{\mathcal{E}})$ is AF.

For a labeled graph C^* -algebra $C^*(E, \mathcal{L}, \overline{\mathcal{E}}) = C^*(s_a, p_A)$ and a set $A \in \overline{\mathcal{E}}$, we denote by I_A the ideal of $C^*(E, \mathcal{L}, \overline{\mathcal{E}})$ generated by the projection p_A as before.

Lemma 3.7. Let $C^*(E, \mathcal{L}, \overline{\mathcal{E}}) = C^*(s_a, p_A)$ be the C^* -algebra of a labeled graph (E, \mathcal{L}) with no sinks or sources. For $A, B \in \overline{\mathcal{E}}$, we have $p_A \in I_B$ if and only if there exist an $N \geq 1$ and finitely many paths $\{\mu_i\}_{i=1}^n$ in $\mathcal{L}(BE^{\geq 0})$ such that

$$\bigcup_{|\beta|=N} r(A,\beta) \subset \bigcup_{i=1}^n r(B,\mu_i).$$

Lemma 3.8. Let $C^*(E, \mathcal{L}, \overline{\mathcal{E}}) = C^*(s_a, p_A)$ be the C^* -algebra of a labeled graph (E, \mathcal{L}) and let $\alpha \in \mathcal{L}^*(E)$ satisfy $\alpha^n \in \mathcal{L}^*(E)$ for all $n \geq 1$. If $p_{r(\alpha^m)}$ does not belong to the ideal generated by a projection $p_{r(\alpha^m)\setminus r(\alpha^{m+1})}$ for some $m \geq 1$, then $C^*(E, \mathcal{L}, \overline{\mathcal{E}})$ is not AF.

Recall that the set $[v]_{l_{\text{sink}}}$ of all sinks of $[v]_l$ is a member of $\overline{\mathcal{E}}$ and that $\overline{\mathcal{E}} \cap [v]_{l_{\text{sink}}}$ denotes the set $\{A \in \overline{\mathcal{E}} : A \subset [v]_{l_{\text{sink}}}\}$. The ideal $I_{[v]_{l_{\text{sink}}}}$ of $C^*(E, \mathcal{L}, \overline{\mathcal{E}}) = C^*(p_A, s_a)$ generated by the projection $p_{[v]_{l_{\text{sink}}}}$ is equal to

$$\overline{\operatorname{span}}\big\{s_{\alpha}p_{A}s_{\beta}^{*}:\,\alpha,\,\beta\in\mathcal{L}^{\#}(E)\text{ and }A\in\overline{\mathcal{E}}\cap[v]_{l_{\operatorname{sink}}}\big\}.$$

Lemma 3.9. Let $(E, \mathcal{L}, \overline{\mathcal{E}})$ be a labeled space and $v \in \Omega_0(E)$. If $[v]_{l_{sink}}$ is the disjoint union of finitely many minimal sets $A_i \in \overline{\mathcal{E}}$, i = 1, ..., N,

$$I_{[v]_{l_{\mathrm{sink}}}} = \bigoplus_{i=1}^{N} \overline{\mathrm{span}} \{ s_{\alpha} p_{A_{i}} s_{\beta}^{*} : \quad \alpha, \ \beta \in \mathcal{L}^{\#}(E) \} \cong \bigoplus_{i=1}^{N} \mathcal{K}(\ell^{2}(\mathcal{L}(E^{\geq 0}A_{i}))),$$
where $\mathcal{L}(E^{0}A_{i}) := \{\epsilon\}.$

Proposition 3.10. Let $(E, \mathcal{L}, \overline{\mathcal{E}})$ be a finite labeled space such that there exists an $l \geq 1$ for which $(E, \mathcal{L}, \overline{\mathcal{E}})$ has no generalized loops at $[v]_l$ for all $[v]_l \in \Omega_l(E)$. Then

$$C^*(E, \mathcal{L}, \overline{\mathcal{E}}) \cong \bigoplus_{[v]_l \in \Omega_l(E)} I_{[v]_{l \text{sink}}}.$$

Moreover, the ideal $I_{[v]_{l sink}}$ is finite dimensional whenever $\overline{\mathcal{E}} \cap [v]_{l sink}$ is a finite set.

4. Non-AF finite simple labeled graph C^* -algebras

Recall C^* -algebra is said to be *infinite* if it has an infinite projection. A unital C^* -algebra $A(\neq \mathbb{C})$ is purely infinite if for each nonzero positive element $a \in A$ there is a $b \in A$ satisfying $b^*ab = 1$. A purely infinite C^* -algebra A is always simple since the ideal generated by any positive nonzero element contains the unit of A. (For nonsimple purely infinite C^* -algebras see [11, 12].) It is an easy observation that a simple unital C^* -algebra A is purely infinite if and only if every nonzero hereditary C^* -subalgebra \overline{aAa} of A has a projection $a^{1/2}b(a^{1/2}b)^*$ equivalent to the unit $1 = (a^{1/2}b)^*(a^{1/2}b)$. Thus if A is purely infinite, every nonzero projection is always infinite. A simple C^* -algebra without unit is called purely infinite if every nonzero hereditary C^* -subalgebra contains an infinite projection.

We call a C^* -algebra A finite when A has no infinite projections. A simple unital C^* -algebra A with a tracial state τ (τ is automatically faithful since A is simple) is always finite because the faithfulness of τ implies that if a projection $p \in A$ is equivalent to its subprojection $q \le p$ in A, with $p = vv^*$ and $q = v^*v$ for $v \in A$, then $\tau(p-q) = \tau(vv^* - v^*v) = 0$ and so p-q=0 by faithfulness of τ .

Besides commutative C^* -algebras, all finite dimensional C^* -algebras are obviously finite, and moreover all AF algebras are also finite. On the other hand, the Cuntz-algebras \mathcal{O}_n $(n=2,3,\ldots,\infty)$ [4] or more generally simple Cuntz-Krieger algebras are well known to be purely infinite.

In [2, Proposition 7.2], Bates and Pask provide an example of a simple unital purely infinite labeled graph C^* -algebra which is not isomorphic to any unital graph C^* -algebra. We also know from [16] that there exist simple higher rank graph C^* -algebras which are neither AF nor purely infinite; there exist such simple C^* -algebras which are stably isomorphic to irrational rotation algebras or Bunce-Deddens algebras. This fact leads us to ask if there exists a simple unital labeled graph C^* -algebra which is neither AF nor purely infinite. To this question we answer in Theorem 4.4 that there really exists a simple unital finite, but non-AF labeled graph C^* -algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$. This is a C^* -algebra associated to a labeled space $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ which is labeled by a generalized Morse sequence ω .

Throughout this section, $E_{\mathbb{Z}}$ will denote the following graph:

$$\cdots \underbrace{\overset{\bullet}{v_{-4}} \overset{-4}{v_{-3}} \overset{\bullet}{v_{-2}} \overset{-2}{v_{-1}} \overset{\bullet}{v_{0}} \overset{-1}{v_{0}} \overset{\bullet}{v_{1}} \overset{1}{v_{2}} \overset{\bullet}{v_{2}} \overset{2}{v_{3}} \overset{\bullet}{v_{4}} \cdots}$$

Given a two-sided sequence $\omega = \cdots \omega_{-1}\omega_0\omega_1\cdots \in \Omega$ of zeros and ones, we obtain a labeled graph $(E_{\mathbb{Z}}, \mathcal{L}_{\omega})$ shown below

$$(E_{\mathbb{Z}}, \mathcal{L}_{\omega}) \xrightarrow{v_{-4}} \underbrace{v_{-3}} \underbrace{v_{-3}} \underbrace{v_{-2}} \underbrace{v_{-1}} \underbrace{v_{-1}} \underbrace{v_{0}} \underbrace{v_{0}} \underbrace{v_{1}} \underbrace{v_{1}} \underbrace{v_{1}} \underbrace{v_{2}} \underbrace{v_{2}} \underbrace{v_{3}} \underbrace{v_{3}} \underbrace{v_{4}} \underbrace{v_{4}} \underbrace{v_{4}} \underbrace{v_{1}} \underbrace{v_{2}} \underbrace$$

where the labeling map $\mathcal{L}_{\omega}: E_{\mathbb{Z}}^1 \to \{0,1\}$ is given by $\mathcal{L}_{\omega}(n) = \omega_n$ for $n \in E_{\mathbb{Z}}^1$. Then we also have a labeled space $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ with the smallest accommodating set $\overline{\mathcal{E}}_{\mathbb{Z}}$ which is closed under relative complements.

Let $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}}) = C^*(s_a, p_A)$ be the labeled graph C^* -algebra associated with the labeled space $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ of a generalized Morse sequence ω . Then by (2) the fixed point algebra of the gauge action γ is generated by elements of the form $s_{\alpha}p_As_{\beta}^*$ ($|\alpha| = |\beta|$ and $A \subset r(\alpha) \cap r(\beta)$) which is nonzero only when $\alpha = \beta$, and hence

$$C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma} = \overline{\operatorname{span}}\{s_{\alpha}p_{A}s_{\alpha}^* : A \in \overline{\mathcal{E}}_{\mathbb{Z}}, \ A \subset r(\alpha)\}.$$

Moreover $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$ is easily seen to be a commutative C^* -algebra. For each $k \geq 1$, let

$$F_k := \operatorname{span}\{s_{\alpha}p_{r(\alpha'\alpha)}s_{\alpha}^* : \alpha, \alpha' \in \mathcal{L}_{\omega}(E_{\mathbb{Z}}^k)\}.$$

The (finitely many) elements $s_{\alpha}p_{r(\alpha'\alpha)}s_{\alpha}^{*}$ in F_{k} are linearly independent and actually orthogonal to each other so that F_{k} is a finite dimensional subalgebra of $C^{*}(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$. Moreover F_{k} is a subalgebra of F_{k+1} because

$$s_{\alpha}p_{r(\alpha'\alpha)}s_{\alpha}^* = \sum_{b \in \{0,1\}} s_{\alpha b}p_{r(\alpha'\alpha b)}s_{\alpha b}^* = \sum_{a,b \in \{0,1\}} s_{\alpha b}p_{r(a\alpha'\alpha b)}s_{\alpha b}^*.$$

This gives rise to an inductive sequence $F_1 \xrightarrow{\iota_1} F_2 \xrightarrow{\iota_2} \cdots$ of finite dimensional C^* -algebras, where the connecting maps $\iota_k : F_k \to F_{k+1}$ are inclusions for $k \geq 1$, from which we obtain an AF algebra $\varinjlim F_k$. Then

$$C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma} = \varinjlim F_k,$$

and thus the fixed point algebra is an AF algebra.

Proposition 4.1. Let $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ be the labeled space of a generalized Morse sequence ω . Then there is a surjective isomorphism

$$\rho: C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma} \to C(\mathscr{O}_{\omega})$$
(7)

such that $\rho(s_{\alpha}p_{r(\alpha'\alpha)}s_{\alpha}^*) = \chi_{[\alpha',\alpha]}$ for $s_{\alpha}p_{r(\alpha'\alpha)}s_{\alpha}^* \in F_k$, $k \ge 1$.

Lemma 4.2. Let $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ be the labeled space of a generalized Morse sequence ω and let $\rho: C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma} \to C(\mathscr{O}_{\omega})$ be the isomorphism in (7). Then the unique T-invariant ergodic measure $m_{\omega}: C(\mathscr{O}_{\omega}) \to \mathbb{C}$ defines a tracial state

$$\tau_0 := m_\omega \circ \rho : C^*(E_\mathbb{Z}, \mathcal{L}_\omega, \overline{\mathcal{E}}_\mathbb{Z})^\gamma \to \mathbb{C}$$

on the fixed point algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$ such that for $\alpha, \beta \in \mathcal{L}_{\omega}^*(E_{\mathbb{Z}})$,

$$\tau_0(s_{\alpha}p_{r(\beta\alpha)}s_{\alpha}^*) = \tau_0(p_{r(\beta\alpha)}).$$

The following lemma can be proved by straightforward computation.

Lemma 4.3. Let $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ be the labeled space of a generalized Morse sequence ω . Then

$$\tau_0 \circ \Psi : C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}}) \to \mathbb{C}$$

is a tracial state.

Theorem 4.4. Let ω be a generalized Morse sequence of zeros and ones. Then the C^* -algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ is

- (i) simple unital,
- (ii) non AF,
- (iii) finite with a unique tracial state τ which satisfies

$$\tau(s_{\alpha}p_{r(\sigma\alpha)}s_{\beta}^{*}) = \tau(\Psi(s_{\alpha}p_{r(\sigma\alpha)}s_{\beta}^{*})) = \delta_{\alpha,\beta}\tau(p_{r(\sigma\alpha)})$$

for $\alpha, \beta, \sigma \in \mathcal{L}^*_{\omega}(E_{\mathbb{Z}})$.

In particular, $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ is not stably isomorphic to a graph C^* -algebra.

Let $\omega \in \Omega$ be a generalized Morse sequence. Then the shift map $T: \mathscr{O}_{\omega} \to \mathscr{O}_{\omega}$ induces an automorphism $\sigma_T: C(\mathscr{O}_{\omega}) \to C(\mathscr{O}_{\omega})$, $\sigma_T(f) = f \circ T^{-1}$. In particular, for each $A \in \overline{\mathcal{E}}_{\mathbb{Z}}$ we have

$$\sigma_T(\chi_A) = \chi_A \circ T^{-1} = \chi_{T(A)}.$$

The following can be shown by universal property of the labeled graph C^* -algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ since one can find a representation of $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ in the crossed product $C(\mathscr{O}_{\omega}) \rtimes_{\sigma_T} \mathbb{Z}$. The proof will be contained in the revised version of [9]. Note that $(\mathscr{O}_{\omega}, T)$ is a Cantor system, so that we can apply the results known in [5] to identify the isomorphism classes of the crossed products.

Theorem 4.5. Let $\omega \in \Omega$ be a generalized Morse sequence and $T : \mathcal{O}_{\omega} \to \mathcal{O}_{\omega}$ be the shift map. There exists an isomorphism

$$\pi: C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}}) \to C(\mathscr{O}_{\omega}) \rtimes_{\sigma_{\mathcal{T}}} \mathbb{Z}.$$

REFERENCES

- [1] T. Bates and D. Pask, C*-algebras of labeled graphs, J. Operator Theory, 57(2007), 101-120.
- T. Bates and D. Pask, C*-algebras of labeled graphs II simplicity results, Math. Scand. 104(2009), no. 2, 249-274.
- [3] T. Bates, T. M. Carlsen, and D. Pask, C*-algebras of labeled graphs III K-theory computations, arXiv:1203.3072v2 [math.OA].
- [4] J. Cuntz, K-theory for certain C*-algebras, Ann. Math. 113(1981), no. 1, 181-197.
- [5] T. Giordano, I. F. Putnam, and C. F. Skau, Topological orbit equivalence and C*-crossed products, J. reine. angew. Math., 469 (1995), 51-111.
- [6] W. H. Gottschalk and G. A. Hedlund, A characterization of the Morse minimal set, Proc. Amer. Math. Soc., 15 (1964), 70-74.
- J. A Jeong and S. H. Kim, On simple labeled graph C*-algebras, J. Math. Anal. Appl. 386(2012), 631-640.
- [8] J. A Jeong, E. J. Kang and S. H. Kim, AF labeled graph C*-algebras, J. Funct. Anal. 266(2014), 2153-2173.
- [9] J. A Jeong, E. J. Kang, S. H. Kim, and G. H. Park, Finite simple unital non-AF labeled graph C*-algebras of generalized Morse sequences, arXiv:1504.03455.
- [10] M. Keane, Generalized Morse sequences, Z. Wahrscheinlichkeitstheorie verw. Geb. 10(1968), 335-353.
- [11] E. Kirchberg, M. Rørdam, Non-simple purely infinite C*-algebras, Amer. J. Math. 122(2000), 637-666.
- [12] E. Kirchberg, M. Rørdam, Infinite Non-simple C^* -algebras: Absorbing the Cuntz Algebra \mathcal{O}_{∞} , Adv. in Math. 167(2002), 195-264.
- [13] A. Kumjian and D. Pask, Higher rank graph C*-algebras, New York J. Math. 6(2000), 1-20.
- [14] A. Kumjian, D. Pask and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184(1998), 161-174.
- [15] A. Kumjian, D. Pask, I. Raeburn and J. Renault Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144(1997), 505-541.
- [16] D. Pask, I. Raeburn, M. Rørdam, and A. Sims, Rank-two graphs whose C*-algebras are direct limits of circle algebras, J. Funct. Anal. 239(2006), 137-178.

DEPARTMENT OF MATHEMATICAL SCIENCES AND RESEARCH INSTITUTE OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL, 151-747, KOREA

E-mail address: jajeong@snu.ac.kr

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul, 151–747, Korea

E-mail address: kkang33@snu.ac.kr

BK21 PLUS MATHEMATICAL SCIENCES DIVISION, SEOUL NATIONAL UNIVERSITY, SEOUL, 151-747, KOREA E-mail address: sunho.kim.math@gmail.com

DEPARTMENT OF FINANCIAL MATHEMATICS, HANSHIN UNIVERSITY, OSAN, 447-791, KOREA E-mail address: ghpark@hs.ac.kr