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Abstract

In [6] and [8] the author studied the structure-preserving finite difference
scheme for the Falk model which is a thermoelastic system describing the
phase transition occurring in shape memory alloys, by using well-known trans-
formation to first order system with respect to time variable. We give several
scheme without the transformation for these results in order to apply the
theory to multi-dimensional problems. Here we only give the basic idea and
remarks. Precise proof and extended results will be given in [5].

1 Introduction

We study the following thermoelastic system:

Ou + 0w = 0, {F3(8,u) + 6F|(O;u)}, (1.1)
8,6 — 826 = OF](0,u)8,0,u, z € (0,L), t e (0,T], (1.2)
u(t,0) = u(t, L) = 82u(t,0) = 82u(t, L) = 8,6(t,0)

=9,0(t,L) =0, tel0,T], (1.3)

u(0,z) = uo(x), Owu(0,z) =wui(z), 6(0;,z) = Go(x), z € (0,L), (1.4)

where u and 6 are the displacement and absolute temperature respectively, and the
positive constant 6. represents a critical temperature of the phase transition. This
model called the Falk model represents the phase transition on lattice structure of
alloy. We normalize all physical parameters without 6. by unity. For the physical
background of the model we refer the reader to [1, Chapter 5]. If we set the energy



E and the entropy S as follows:
E(u,0) = = f 1622 + ~ / 1Byultde + / Fy(8,u)de + / bdz,
’ L
S(u,0) = / (log 6 — Fy(0yu)) dz,
0

we can easily check that the smooth solution of the system (1.1)-(1.3) satisfies the
energy conservation law and the law of increasing entropy:

0,0
6

d o d
3 Bu(e), o(0),60)) =0, ZS(0),6(0) = /

2 0. (15

where the latter one holds under the assumption § > 0.

Recently in [6] the author proposes a new finite difference scheme which satisfies
the discrete version of (1.5) and gives existence result of solution, and in (8] the
error estimate and another existence result of solution are shown by applying the
energy method given in [7]. In these results ([6], [8]) the author use the well-known
transformation (see e.g. [4]), namely he study the following 1st order system:

6tw = Bgv,
O = —0%w + Fy(w) + 6F|(w),
0,6 = 920 + OF|(w)d,v,

for a shear strain w := O,u and velocity potential v. However, when we con-
sider the multi-dimensional case, it seems to be difficult to extend directly. Indeed,
shear strain w in 1-dimensional case is no longer scalar but tensor valued in multi-
dimensional cases. Then we propose here the simple new schemes by applying the
result in [2] to the scheme for the original second order system (1.1)-(1.2). One of
these schemes is enable to prove the existence of solution and error estimate in a
similar manner to the previous result [8] though we need several modifications. Here
we only give an idea of the proofs of existence and error estimate. '

We will introduce two new structure-preserving numerical schemes for (1.1)-(1.2)
in Section 2. The idea of outline of proofs of error estimate and existence of solution
will be given in Sections 3. The precise explanation and their extended results
including the results will be submitted to another journal as [5].

2 Structure-Preserving Schemes

We denote by 9, and 8, partial differential operators with respect to variables ¢
and z, respectively. We split space interval [0, L] into K-th parts and time inter-
val [0,T] into N-th parts, and hence the following relations hold L = KAz and
T = NAt. For k=10,1,...,K and n = 0,1,..., N we write u,(c”) = u(kAz,nAt),
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o™ = v(kAz,nAt) and 8" = 8(kAz, nAt), for short. Let 0™, v ™) be an
approximate solution corresponding to the solution (ufc"‘),v,c ), 0 ")) Let us define
difference operators by

(n) (n) (n) (n)
sy . U = 207 + U sy = s~ Uit
k ko Ax? o 20z
U1 — U - Ur = Uk
+ - —e—
6k Uk s Aw ) (Sk Uk . A:L' )

and &1, 62, 65 and 682 are defined the same manner by replacing space-variable k

n? n?

and Az to time-variable n and At. We will also use the following difference operator

U(n+2) U)gn+1) _ U]En) + Uk(:n—l)
2A¢2

We approximate an integral by the trapezoidal rule

K K-1
Y "UiAz = ( Uo + ZUk + 2UK) Az.

k=0

s =

For these approximations the summation by parts formula:

= K (s+ + - -
Z" (5,(02)Uk) VilAz = — Z// (5]; Uk) (6Ic V}c) '; (5lc Uk) (5Ic V;c) Az
; -~ (2.1)

- \;"Uk (67w) Az

plays an important role in DVDM, which holds under suitable boundary condition
such as

Up = 82U = Vi = 6PVk = 0. (2.2)

Indeed, according to Proposxtlon 3.3 in [3], we have

K + + - -
S (820.) Vs + Zu (8¢ Uk) (Vi) + (5 Ux) (55 Vi)

k=0 k=0 2
K
+ Vit1+Vi - Vi-1+Vi
67U, - Gt oy, ViatVe
2
0

From (2.2) we see several facts such as

U—l =-U,, Ug= UK+1, Vo= —Vl, Vg1 = VK+1-
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Then the boundary term vanishes, namely,' we complete the proof of (2.1). Similarly,
it follows that under (2.2)

K + + -
) Vi Y
zn( kUk) (6k k)+( k k) 5ka 26+Uk6 ViAz.
2
k=0
For a smooth function F = F(U), the difference quotient OF/0(U,V) of F is
defined by
oF  [EEELC) gy,
oU,v) | FI(U), U=V.

For example in the case F(U) = 1 —=UP*! the difference quotient of F" is

OF 1 = i
8(U,V)~p+1§vv

from the easy calculation. For more precise information about the difference quotient
we refer to [7]. From now on, we give two schemes which are derived by applying
the idea given in [2] easily.

2.1 Semi-Explicit Scheme

The first scheme is so-called semi-explicit scheme:

(n+1) n)
SEPUT + (87 (———————-m———U ; U ) = Ny, (2.3)
5ol — sPet = Ny, k=0,1,...,K, (2.4)

with the boundary conditions corresponding to (1.3):
Ui = U =AU = sPUP = 6l = sVeR =o. (2.5)

Here we define N = N, (U™ UM, @) (3 = 1,2) by

& OF, oF,
Ny = Tk + (n+1) ‘l
T (aw;rf,ﬁ"*”,a U o6 U, 5. U(")
S ( 9F, (1) oF; )

asHUMY sru™y  TF arultY, s ul)

Ny = o, ok sror Ut + Ok 5+5+U(") ,
T2 et e Ut T oU Y, U
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Let the discrete energy E; = Ey(U®D, U™ U™~ ©™) be defined by

K K K
E;:= _;_ Z//(S:Uén')égUkn)Ax + Z I,ﬁz,k(DU)Ax + Z”@I(cn)Am’

where for i = 1,2 we set

(5 (57
Fou(pU) = SO0 T

Then the following conservation law
J:Ed(U("H), U("), U("”l), @(n)) =0
holds. Let the discrete entropy S;(U, ©) be defined by

K
Sa(U,©) =Y " {log & — F1,(DU)} Az.

k=0

Under the assumptions of positivity of temperature, the following increasing law:
&S, (U™, ™) >0

holds. We can check these easily in the same fashion as the proofs in [6].

2.2 Implicit Scheme

The other is implicit scheme:

(n+1) (n—1) " .
ST + (6)° (U"’ ZU" ) = N, (26)
st — 5Pt = Ny, k=0,1,...,K, (2.7)
where
Ny o= 5 oF; g+ oF
T2\ UM EUMT) T AU Ul
N oF, (n+1) OF;
+ o\ e ey T 9% U rey g ) N
O Uy .6 U ) 06, Uy oxU 7))
~ ety OF ) oF, (n)
Nz’k = k2 —pr{n+l) c—yr(n—-1) 5”(11)6'9 Uk + +rr(n+l) c4+77(n—1) 57(11)5I:-Uk ’
O Uy 76 U ) AUy 750 Uy ) :

with the boundary conditions (2.5).



Let the discrete energy and the discrete entropy be defined by

K K K
Ed(U(n), U(n«l)’ @(n)) - }j Z”]‘SEU(R)PA:U + _é_ Z ”iég(cz)U(n)tzAx 4 Z ”@in)A:l:
k=0 k=0 k=0

K o~
+Y " "Far(DU™, DU D) Ag,

k=0
K o~
Sy(U™, U=, 0m) .= " ( log O — Fyx(DU™, DU("°1>))Ax,
k=0
where for ¢ = 1,2
B Fy(8;Ux) + Fi(8; Ux) + Fi(6 Vi) + Fi(6; Vi)

Fix(DU,DV) = . :

Then it is easily seen that for any n € N conservation law:
SHELU™, UMY @) =,

and under the assumptions of positivity of temperature, the increasing law:
5:84(0'("), U ™) >0

hold.

3 Existence and Error Estimate

The semi-explicit scheme is uncoupled scheme. Then when we solve (2.3), U (n+2) can
be obtained explicitly. However for the scheme the bounded-from-below of the first
term in the energy (kinetic energy term) is not assured. Then the energy method
given in [7] and [8] can not be applied directly. On the other hand, we can easily
apply the method to the implicit scheme (2.6)-(2.7). Here we only give a remark
about the fact. Before stating the mathematical results we give some definition
~ and notation. We have used the expression in bold print to denote vectors such as

U = (U)K, V = (VK and © = (O,)K . Let us give a definition of several
norms by ;

K ;
" P K-1
“U“Lg = (Z |Uk| Ax) ) p € [1,00), |DU|| = \I Z |67 Ui|2Az.
- k=0

k=0
maxg=01,. .k |Ukl, p = 00,

Moreover we define the discrete Sobolev norm by
U1y = /U1 + | DU

We obtain the following results. The first theorem is related with the existence of
the implicit scheme (2.6)-(2.7).
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Theorem 3.1 (Existence of solution). Suppose that 6(0) >0 fork=0,1,.. K.
For sufficient small At there erists a unique global solutwn U™, v, 8(")) (

1,2,...,N) for the scheme (2.6)—(2.7) with (2.5) satisfying 6("') >0 for k =
0,1,...,K.
We can also show the error estimate. Let us denote
= UM —u, W=V e = e — gl

Theorem 3.2 (Error estimate). Assume that (u,v,8) is a smooth solution for
(1.1)-(1.4) satisfying (u,v,0) € L*®([0,T],H3 x H?® x H?) and (Oyu,0w,0,0) €
L>([0,T], H® x H® x H'), and denote the bounds by

1T 1V Uy, 1™ g 10, 167 |y < Ch.
Then there exists a constant Cepr = Cerr(C1) such that for At < 1/Ce,
ez + e 1y + leg? Iz < C(AL + Az?).

We prove these theorems in similar manner to the proofs of [8] with small mod-
ification. The key estimate of the modification is the following type of Sobolev
inequality which is well-known in the continuous case. More precisely we will give
exact proofs in [5].

Proposition 3.3 (Sobolev inequality). Assume that Uy = 5,‘62)Uk =0onk=0K.

It holds that
1 23/4 9
< (50 + ) (16201 1W1Ey).

Proof. We only show the case of sign + since the other case of sign — can be shown by
the same fashion. From the boundary condition, §; U_; = §; Up and 6; Uy = 6 Uk
hold. We obtain for any m and ¢ satisfying 0 <{<m< K -1

. (5;:Uk+1 + 5:Uk
2

jgoe,

m—1
16t Unl® = 165 Ue? = 2 82 Uk Axz.
k=¢
Then forany 0 <{m < K —1
K-1 K-1
|65 Unl? < 165U + Y 165Ul - 187 Ukl Az + Y 167 U - 167 Ul A

k=0 k=0

Y2 sk 4 1/2
< [6FU2 + (Z 15<2>Uk12m) (Z |5;:Uk|2Ax)

k=0

K-1 1/2 s 1/2
+ (Z |6,<C2)Uk+1[2Ax) (Z ngkPAx)

k=0 k=0
< |8 Uf* + 20168 U | 12| DU |
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holds. For fixed m, adding these through £ =0,1,..., K — 1 yields

K~-1
KI5 Unf? < " 165 Ul + 2K (167U | 12| DU
k=0
Then it holds that
05 Un|? < Lipui + 268 2U||all DU (3.1)

m=0 1, ,K——

Since we have

K K +17. 12 ~T7.12
2”5;?>Uk U Az = Z//wk Uki + ‘(Sk Ukl Az = HDU”Q,

k=0 k=0 2

we see that
2
IDU|? < 187U 131U || 2.

Therefore, by the Young inequality, the right hand side of (3.1) is estimated by
——néﬁuupnvuw + 2:|5<2>U113/’|:Uu”2

< 2 (15001, + 1U1E) + 57 (16001 + 1U1E)

which implies the result. O
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