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1 A>vbO%o>ay

Let Z ~ Ny(8,1;). We are interested in estimation of the mean vector § with respect to the
quadratic loss function L(§,8) = le (6; — 6;)2. Obviously the risk of 2 is d. We shall say one
is as good as the other if the former has a risk no greater than the latter for every . Moreover,
one dominates the other if it is as good as the other and has smaller risk for some 6. In this
case, the latter is called inadmissible. Note that z is a minimax estimator, that is, it minimizes
supy E[L(8,0)] among all estimators . Consequently any § is as good as z if and only if it is
minimax.

Stein (1956) showed that z is inadmissible when d > 3. James and Stein (1961) explicitly found

a class of minimax estimators f5s = (1 — ¢/||z||3) z with 0 < ¢ < 2(d — 2) and ||2[ = X°&, 22.
Baranchik (1964) proposed the James-Stein positive-part estimator
6} = max (0,1 —c¢/||2}%) 2 (1.1)

*maruyama@csis.u-tokyo.ac.jp



96

with 0 < ¢ < 2(d—2) which dominates the James-Stein estimator. The problem with the James-
Stein positive-part estimator is, however, that it selects only between two models: the origin
and the full model. Zhou and Hwang (2005) overcome the difficulty by utilizing the so-called
£,-norm given by

1/p

d

Izl = {1 lalP} (12)
and in fact proposed minimax estimators 67 with the i-th component given by

6 = max (0,1 — o/ {I213=51%1°}) = (L3)

1ZH

where 0 < a < (d-2)/(d—1)and 0< ¢ < 2{(d—2) —a(d —1)}. When oo > 0 and

%) < {c/llz12=2}°, (1.4)

2—-a

the i-th component of the estimator is zero, which implies that the choice between a full model
and reduced models where some coefficients are reduced to zero is possible.

In this paper, we establish minimaxity of a new class of £,-norm based shrinkage estimators
6. with the i-th component given by

0, = max (0,1 — ¢/ {||2]27%|2|*}) = (1.5)

where 0 < a < (d—2)/(d—1),p>0,0<c<2(d~-2)y(d,p,a) and
7(d,p,@) = min(1, d>P~/?) {1 - a(d - 1)/(d - 2)} .

When « is strictly positive in (1.5), sparsity happens as in (1.4). In Zhou and Hwang (2005),
p = 2 — a was assumed and the £,-norm with

d/d-1)<p[=2-a]<2

seems only applicable for constructing estimators with minimaxity and sparsity simultaneously.
We show that it is not so but £,-norm with any positive p is available for that purpose. As an
extreme case (p = 00), we can show that

o d=2)—a(d-1)\
max (0,1 2d{max lZil}zha 'Zi!“) z

with 0 < a < (d—2)/(d—1) is minimax. A more general result of minimaxity, corresponding to
the result of Efron and Morris (1976), where c is replaced by ¢(]|z||p) in (1.5), is given in Section
2.

2 SNV AERN-AtGZHEROHER

In this section, we establish minimaxity result of the shrinkage estimators é¢ with the i-th
component given by

bip = (1 — ¢(llllp)/ {I121221°}) 2. 2.1)



Note the shrinkage factor of (2.1), 1 — ¢(l|zllp)/ {I|2l37%|2i|*} is symmetric with respect to 2;.
As shown in Theorem 4 of Zhou and Hwang (2005), the shrinkage estimator with the symmetry
is dominated by the positive-part estimator. Hence the minimaxity of 9; follows from the
minimaxity of d.

Under the assumption that ¢(v) is absolutely continuous, so called Stein’s (1981) unbiased
risk estimator is available.

Lemma 2.1 Assume ¢(v) is absolutely continuous.
1. The risk function of the estimator 9, is
B (1165~ 0113] = d+ B [g(lzl s (Ni2lig 2 Y lalP~] (22)
where

Nz 2(1-a) e
o) = (lepleAp R o e

= 2{a—2+|l2l,¢'(Ills)/#(l=ll0)} -
2. Assume 0 < o < 1. Then 94(2) < Uy(|2lp) where

U 4(v) = max(1, dPD/P)g(v) — 2 {d—2—a(d—1)} — 2v¢'(v)/d(v).

Assume d >3 and 0 < o < (d —2)/(d —1). Let
7(d,p, @) = min(1,d@P-/?) {1 — a(d — 1)/(d - 2)} (2.4)

which is positive from the assumptions. By Lemma 2.1, a sufficient condition for E[||§ —6||2] < d
with ¢ > 0 is ¥4(v) < 0 for all v > 0. Clearly ¢(v) = ¢ where 0 < ¢ < 2(d — 2)v(d, p, &) with
satisfies ¥4(v) < 0. More generally, by the derivative,

d { vPp(v) | _ v le(v) [ v¢'(v) ~
dv {a — ¢(v)} - {a — ¢(v)}? (a, o(v) +ba b¢‘(’”)) ) (2.5)

we have a following sufficient condition for minimaxity as in Efron and Morris (1976).

Theorem 2.1 Assumed >3 and0 < a < (d—2)/(d—1). Assume ¢(v) is absolutely continuous
and
0 < ¢(v) < 2(d - 2)v(d,p, )

where v(d, p, ) is given by (2.4). Further, for all v with ¢(v) < 2(d — 2)v(d, p, )

L ptraldlg )
9%0) = T 2@ pa) - o(0)

is assumed to be non-decreasing. Purther if there ezists v, > 0 such that ¢(v) = 2(d—2)v(d, p, @),
then ¢(v) is assumed equal to 2(d — 2)v(d,p, @) for allv > v,. Then §¢ is minimaz.
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Recall that £, norm with any positive p is available in Lemma 2.1 and Theorem 2.1. As an
extreme case (p = 00), we have limp, , Y(d,p, ) = {1 — a(d — 1)/(d — 2)}/d and hence

(d-m-au-l))

d {max |z;[}*~* ||

(]

ma.x(O,l—-Z

with 0 < a < (d —2)/(d — 1) is minimax.
Remark 2.1 The solution of ¥y(v) =0 or g4(v) = 1/ for any A >0, is

2(d - 2)y(d,p, 0)
¢os(v) = 1+ \d—2-ad-1)’

under which Dasgupta and Strawderman (1997) showed the risk of the estimator with ¢ps(v)
is ezactly equal to d when p = 2 and o = 0. Actually it is related to the concept of “nearly
unbiasedness” or “approrimately unbiasedness” in the literature of SCAD (smootdly clipped ab-
solute deviation) including Antoniadis and Fan (2001). Since ¢pg(v) is monotone decreasing
and approaches 0 as v — 00, unnecessary modeling biases are effectively avoided with ¢ps(v).
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