
A Case Study:
Meyer�s Formulation of a Specification and

Theorem Proving with an SMT Solver Z3

Keishi Okamoto

Abstract

An SMT solver is a program to solve satisfiability problems described

in restricted first‐order formulas. Recently, SMT solvers are becoming
powerful and applied to solve concrete problems in many research ar‐

eas. But a concrete problem requires a complex first‐order formula, then

the satisfiability of the resulting formula often cannot be solved with an

SMT solver. In these cases, we must use some model‐theoretic techniques
(Skolemization, quantifier‐elimination, etc.) to reduce the complexity of

a given first‐order formula.

Our future goal is to propose a simple formal specification language
and a validation method, which is based on a model‐theoretic method,
to fill a gap in natural languages and standard formal languages. In this

paper, we show a case study. In the case study, we formalize a specification
and its properties with Meyer�s formulation, and then we prove some

theorems for specifications with an SMT solver Z3.

1 Introduction

Formal verification of programs with SAT/SMT solvers are active research topic,
since SAT/SMT solvers are becoming powerful for actual applications[l]. But

formalization of a program and its properties are required for verification of

programs. In [2], Meyer introduce semantics of programs and specifications
based on sets. Meyer�s formalization is a unified formalization framework for

programs and specifications. Moreover, the formalization can be described in a

language of the first‐order logic.
In this paper, we show a case study. In the case study, we formalize a

program and a specification as a first‐order logic formula with [2]. Then we

prove some theorems on programs and specifications with an SMT solver Z3[4],
i.e., we solve satisfiability problems of first‐order formulas.

In this chapter, we also introduce formalization of a program and a specifi‐
cation in [2] and an SMT solver Z3. In chapter 2, we formalize a program and

a specification, then we prove basic theorems with Z3. In chapter 3, we for‐

malize operations on programs and specifications, then we prove the feasibility
preservation theorem with Z3. In chapter 4, we make concluding remarks.

数理解析研究所講究録
第2002巻 2016年 9-18

9

1.1 Formalization of a Program and a Specification

A program is a function from the set of (input) states to the set of (output) states

where a state is the tuple of values of variables in the program. For example,
for a given state (an input) (x=1) , a program x :=x+1 returns a state (\mathrm{a}
output) x=2 . On the other hand, in a software development, a developer make

a program from a specification document which consists of specifications. Then

a specifications can be considered as a abstract program and a program can be

considered as a refined specifications. Thus we can formulate a specification as a

relation on the set of (input) states and the set of (output) states. For example,
a specification of a calculator of the great common divisor can be formulated

as a relation R(x, y, z) which represents that a output z is the great common

divisor of inputs x and y . A developer develops a program, which meets the

given specification, that calculates the output from given inputs. In this paper

we consider a program is a specification as in [2].

In the �Design by Contract�� paradigm[3], a developer define a contract be‐

tween a caller program and a called program. A contract is defined with a

precondition and a postcondition of a program. A precondition is a condition

that must always be true just prior to the execution of some section of a pro‐

gram. A postcondition is a condition or a predicate that must always be true

just after the execution of some section of a program. Then a program is de‐

fined as the pair of a precondition and a postcondition. A developer of a called

program is expected to develop the called program which returns an output sat‐

isfying the postcondition of the called program whenever a caller program gives
the called program an input satisfying the precondition of the called program.

In [2], Meyer formalize programs in the Design by Contract paradigm. In

[2], a program is considered as a concrete specification and is defined as a triple
of a set of possible states, a precondition and a postcondition. We introduce

the formal definition of a program in [2]. Let S be a set of states (of programs).
And let Program be the triple \langle Set, Pre, Post) where Set\subseteq S , which is a set of

states, Pre\subseteq S , which is a set of preconditions and Post\in Pow(S\times S) ,
which

is a set of postconditions. The triple \langle\{(x, y, z)|x, y, z\in \mathrm{Z}\}, \{(x, y, z)|x, y>

0\}, \{(x, y, z, x, y, z)|z=GCD(x, y), x=x, y'=y\}\} is an example of a pro‐

gram which returns the greatest common divisor z
� of given inputs x and y.

1.2 An SMT Solver Z3

A SAT solver is a solver for solving satisfiability problems of propositional logic
formulas. A SAT solver returns sat and a witness if the given propositional logic
formula is satisfiable, and unsat if the formula is not satisfiable. An SMT (Sat‐
isfiability Modulo Theories) solver is a solver for solving satisfiability problems
of certain first‐order logic formulas. An SMT solver returns sat and a witness if

the given first‐order logic formula is satisfiable, and unsat if the formula is not

satisfiable. For example, An SMT solver returns sat and a witness x=1, y=0
for an input x=y+1 where x, y\in \mathrm{N} . In this paper, we use an SMT solver Z3

developed by Microsoft Research[4].

10

The formula \forall x\in U.\exists y\in U.R(x, y) is valid in a class of models (of size 3)
if and only if the formula \forall x\in U.R(x, f(x)) is satisfiable in the class where

f:U\rightarrow U[5] . (f is called a Skolem function.) Skolemization is important to

solve satisfiability problems. Because an SMT solver often returns unknown to

a formula of the form \forall x\in U.\exists y\in U.R(x, y) while it often returns sat or unsat

to a formula of the form \forall x\in U.R(x, f(x)) in those cases.

Formalization of a program and a specification often requires a predicate
having a Skolem function as an input. But, in general, higher‐order predicates
cannot be defined in Z3 except for the array type[4]. For instance, a function

map(f , [xl, x2, x3]) =[f(x1), f(x2), f(x3)] cannot be defined in Z3 for a usual

function f of a type ((U)U) . An element of a type Array XY , where X is a

index set and Y is a value set, can be considered as a function from X to Y.

Thus we can define a second‐order predicate with array types as follows:

; Valid definition of the feasibility relation

(define‐fun isfeasible ((\mathrm{p} Prog) (\mathrm{f} (Array UU))) Bool

(forall ((\mathrm{x}\mathrm{U})) (=> (select (pseudo‐pre p) x)
(select (post p) \mathrm{x} (select \mathrm{f}\mathrm{x})))))

; Invalid definition of the feasibility relation

(define‐fun isfeasible ((\mathrm{p} Prog) (\mathrm{f} ((\mathrm{U})\mathrm{U}))) Bool

(forall ((\mathrm{x}\mathrm{U})) (=> (select (pseudo‐pre p) x)

(select (post p) \mathrm{x} (select \mathrm{f}\mathrm{x})))))

2 Specifications and Basic Theorems

In this section, we formalize a specification (a program) as in [2], and prove the

refinement theorem and the implementation theorem with Z3.

2.1 Formalization of a Specification in Z3

With the formalization in [2] , we formalize a specification and their properties
in Z3 as follows:

(declare‐datatypes () ((\mathrm{U} A BC))) ; Universe $U =\backslash { \mathrm{A}, \mathrm{B} , C \backslash }$

(define‐sort Set () (Array U Bool)) ; $Set \backslash subseteq U$

(define‐sort Pre () (Array U Bool)) ; $Pre \backslash subseteq S$
(define‐sort Post () (Array UU Bool)) ; $Post : \mathrm{P}\mathrm{o}\mathrm{w} (\mathrm{S}\backslash times S)$

(declare‐datatypes () ((Prog (mk‐prog (set Set) (pre Pre) (post Post)))))

We note that the above definition of Pre is weaker than that in [2]. We use the

intersection of our Pre and Set for the definition of Pre in [2].
We also note that we will show that, in our proofs, theorems have no counter‐

example of size 3, i.e., the size of U is 3. In a software development, a well‐

known Small Scope Hypothesis tells us that �almost all of bugs have small

size counter‐examples� With the assumption, almost all of wrong theorems

(claims) have small size counter‐examples in this paper.

11

2.2 Refinement Theorem

In this subsection, we prove refinement theorem. We define feasibility of a speci‐
fication, equality of two specifications and a refinement relation on specifications,
and then we prove the refinement theorem with the SMT solver Z3.

We define feasibility of a specification as in [2]. Intuitively, feasibility of

a specification means that, for every valid input, there exists a corresponding
output.

Definition 1 A specification p is feasible if Pre_{p}\subseteq dom(post_{\mathrm{p}}) where Pre_{p} is

the precondition of p and postp is the postcondition of p.

Since the formula x\in dom(post_{p}) is equivalent to the formula \exists y\in U.(x, y)\in
postp, the formula \forall x.(x\in Pre_{p}\Rightarrow\exists y.\langle x, y\rangle\in postp) represents feasibility
of a specification p , which is equivalent to the formula \exists f.\forall x.(x\in Pre_{p}\Rightarrow
\{x, f(x)\}\in post_{p}) . Thus the above definition can be formalized as follows in Z3:

(define‐fun isfeasible ((\mathrm{p} Prog) (\mathrm{f} (Array UU))) Bool

(forall ((\mathrm{x}\mathrm{U})) (=> (select (pre p) x) (select (post p) \mathrm{x} (select \mathrm{f}\mathrm{x})))

Since the claim p is not feasible�� is equivalent to the formula \exists x\in U.(Pre_{p}(x) Λ
(\forall y\in U\neg post_{p}(x, y that claim can be formalized as follows:

(define‐fun isnotfeasible ((\mathrm{p} Prog)(x \mathrm{U})) Bool

(and (select (pre p) x) (forall ((\mathrm{y}\mathrm{U})) (not (select (post p) \mathrm{x}\mathrm{y})))))

We define an equality relation on specifications as in [2].

Definition 2 A specification p_{1} is equal to a specification p_{2} if Pre_{p1}=Pre_{\mathrm{p}2}
and postp 1/Pre_{p1}=post_{p2}/Pre_{p2} where post Pre=post\cap(Pre\times S)

The above definition can be formalized as follows in Z3:

(define‐fun eqprog ((\mathrm{p}1 Prog) (p2 Prog)) Bool

(and (= (pre pl) (pre p2))
(forall ((\mathrm{x}\mathrm{y} (Pair UU))) (=> (and (select (pre pl) (first xy)))
(= (select (post pl) (fst xy) (snd xy))

(select (post p2) (fst xy) (snd xy)))))))

We define a refinement relation on specifications as in [2]. \mathrm{A} (concrete)
specification p_{2} is a refinement of a specification p_{1} if

the set of acceptable inputs for p_{2} subsumes that of p_{1},

for each input, p_{1} and p_{2} return the same output.

The equality relation is an equivalence relation and then the refinement relation

on specifications modulo the equally relation is an order relation[2].
The informal definition of the refinement relation is formalized in [2] as

follows:

12

Definition 3 Let p_{i} be the tripe \langle S_{1} , Prel, posti (i=1,2). A specification p_{2}

refines a specification p_{1} (or p_{1} specifies (or abstracts) p_{2}) if

Extension: S_{2}\supseteq S_{1} (Pl in [21)

Weakening: Pre_{2}\supseteq Pre_{1} (P2)

Strengthening: post_{2}\cap(Pre_{1}\times S)\subseteq postl (P3)

Since the condition P3 can be formalized as the formula \forall x, y.[(x, y)\in post_{2} Λ x\in
 Pre_{1}\Rightarrow(x, y)\in post_{1}] , the above definition of the refinement relation can be

formalized as follows in Z3:

(define‐fun refines ((\mathrm{p}1 Prog) (p2 Prog)) Bool ; p2 refines pl.
(and (subseteq (set pl) (set p2)) ; Pl: S2 Sl ‐ Extension

(and (subseteq (pre pl)) (pre p2)) ; P2: Pre2 Prel ‐ Weakening
(forall ((\mathrm{x}\mathrm{y} (Pair UU)))

(=> (and (select (pre pl) (fst xy) (select (post p2) (fst xy) (snd xy)))
(select (post pl) (fst xy) (snd xy))))) ; P3

For example, a specification p_{2} : \{\mathrm{N}, x>0, x=x+1\} is a refinement of a

specification p_{1} : \{\mathrm{N}, x>0, x>x\} . We write p_{2}\subseteq p_{1} when p_{2} refines p_{1}.

Now we prove a refinement theorem with Z3.

Theorem 4 (P4) The refinement relation (\subseteq) is an order relation.

Proof. In Z3, the reflexive law can be formalized as follows:

(assert (forall ((\mathrm{p} Prog)) (refines pp)))

Z3 returns sat to the formula. Then the reflexive law for the refinement relation

holds.

When the formula, which is the negation of the antisymmetric law, (p_{42}\subseteq
 p_{41})\wedge(p_{41}\subseteq p_{42})\wedge\neg(p_{41}=p_{42}) is satisfiable in the class of our models, the

antisymmetric law for the refinement relation does not hold for the class. The

formula can be formalized as follows:

(declare‐const p41 Prog)
(declare‐const p42 Prog)
(assert (and (refines p41 p42)

(and (refines p42 p41)
(not (eqprog p41 p42)))))

in Z3. Since Z3 returns unsat for the formula, the symmetric law holds.

We note that Z3 returns unknown for the following formula which also rep‐
resents antisymmetric law in a naive way:

(declare‐const p41 Prog)
(declare‐const p42 Prog)
(assert (forall ((\mathrm{p}1 Prog)(p2 Prog))

(=> (and (refines pl p2) (refines p2 pl)) (eqprog pl p2)))).

13

The negation of the transitivity law for the refinement relation can be for‐
malized in Z3 as follows:

(declare‐const pll Prog)
(declare‐const p12 Prog)
(declare‐const p13 Prog)
(assert (and (refines pll p12) (and (refines p12 p13)

(not (refines pll p13)))))

Since Z3 returns unsat for the formula, the transitivity law holds. \square

2.3 Implementation Theorem

In this subsection, we prove the implementation theorem. We define implemen‐
tation relation on specifications, and then we prove implementation theorem in

the theorem prover Z3.

We define an implementation relation on specifications as in [2].

Definition 5 An implementation of a specification p is a feasible refinement of
p . There is a non‐feasiule refinement of a specification p if post(p)) is empty.

This implementation relation can be formalized in Z3 as follows:

(define‐fun IsImple ((\mathrm{p}1 Prog) (p2 Prog) (f2 (Array UU))) Bool

(and (isfeasible p2 f2) (refines p2 pl)))

which represents that a specification p_{2} is an implementation of a specification
p_{1} where the array f_{2} is a Skolem function required for the relation �isfeasible�

Now we prove an implementation theorem [2].

Theorem 6 (P5) A specification (p_{1}) having an implementation (p_{2}) is feasi‐
ble.

Proof. If there are specifications p_{1} and p_{2} such that p_{2} refines p_{1}
� and

p_{2} is feasible�� and p_{1} is not feasible� (in a class of models), then the im‐

plementation theorem does not hold (for the class). Thus the implementation
theorem can be proved by solving a satisfiability problem. We formalized the

implementation theorem as follows:

(declare‐const pl Prog)
(declare‐const p2 Prog)
(declare‐const f2 (Array UU))
(declare‐const xl U)

(assert (and (refines pl p2)
(and (isfeasible p2 f2) (isnotfeasible pl xl))))

Z3 returns unsat for the above formula, thus the implementation theorem holds.

\square

14

3Feasibility Preservation Theorems

In this section, we define three operations on specifications, i,e., choice, compo‐
sition and restriction. Then we prove feasibility preservation theorems for these

three operators.
We give informal and formal definitions of choice, composition and restric‐

tion operators. 1) Intuitively the the choice p_{1}\cup p_{2} of specifications p_{1} and

p_{2} performs like p_{1} or like p_{2} . For the choice p_{1}\cup p_{2} , the postcondition is

defined as postl \cup post_{2} and the precondition is defined as Pre_{1}\cup Pre_{2} . 2)
Intuitively the the composition p_{1};p_{2} of specifications p_{1} and p_{2} performs first

like p_{1} then like p_{2} . For the composition p_{1};p_{2} , the postcondition is defined as

(post_{1}\backslash Pre_{2}) ; post2 and the precondition is defined as Pre_{1}\cap post_{1}^{-1} (Pre2). 3)
Intuitively the the restriction C:p of a specification p to a set C performs like

p on C . For the composition p_{1};p_{2} ,
the postcondition is defined as post_{p}/C,

where post_{p}/C=post_{p}\cap(C\times S) , and the precondition is defined as Pre_{p}

3.1 Feasibility Preservation Theorem (Choice)
Theorem 7 (P6) If specifications p_{1} and p_{2} are feasible then the choice spec‐

ification p_{1}\cup p_{2} is feasible.

Proof. The feasibility preservation theorem for the choice operator (\cup) can

be formulated as the claim that there are no specifications p_{61} and p_{62} such that

p_{61} and p_{62} are feasible and the union p_{61}\cup p_{62} is not feasible.

We defined a relation ((isfeasible for a specification p . Then p is feasible

if isfeasible(p) is satisfiable in the class of models. Now we define a ternary
relation (�isnotfeasibleunion� Essentially the relation is binary, but technically
it is ternary in which the third argument is required for a witness of satisfiability
problem.

For given specifications p_{1} and p_{2} , the choice p_{1}\cup p_{2} is feasible (in the class of

models) if the formula \forall x.[(x\in Pre_{p1}\cup Pre_{p2})\Rightarrow\exists y.(\{x, y\}\in post_{p1}\cup post_{p2})]
valid (respectively for the class). Then p_{1}\cup p_{2} is not feasible (in the class

of models) if the formula x\in Pre_{p1}\cup Pre_{p2}\wedge\forall y.\neg(\{x, y\}\in post_{p1}\cup post_{p2})
is satisfiable (respectively in the class). Thus the (\langle isnotfeasibleunion can be

formalized in Z3 as follows:

(define‐fun isnotfeasibleunion ((\mathrm{p}1 Prog) (p2 Prog) (\mathrm{x}\mathrm{U})) Bool

(and (or (select (pre pl) x) (select (pre p2) \mathrm{x}))
(forall ((\mathrm{y}\mathrm{U})) (not (or (select (post pl) \mathrm{x}\mathrm{y}) (select (post p2) xy)))

With these definitions, the feasibility preservation theorem for the choice

operator can be formalized in Z3 as follows:

(declare‐const p61, p62 Prog)
(declare‐const f61, f62 (Array \mathrm{U}\mathrm{U}\rangle)

(declare‐const x63 \mathrm{U}\rangle

(assert (and (isfeasible p61 f61) (and (isfeasible p62 f62)

(isnotfeasibleunion p61 p62 x63))))

Since Z3 returns unsat for the above formula, the theorem holds. \square

15

3.2 Feasibility Preservation Theorem (Composition)
Theorem 8 (P6) If pl and p2 are feasible then the composition specification
pl; p2 is feasible.

Proof. The feasibility preservation theorem for the composition operator
can be formulated as the claim that there are no specifications p_{621} and

p_{622} such that p_{621} and p_{622} are feasible and their composition p_{621};p_{622} is not

feasible.

We defined the relation �isfeasible� for a specification p in Section 2.2. We

define a relation �IsNotFeasibleComp� for specifications p_{1} and p_{2} such that

p_{1};p_{2} is not feasible (in a class of models) if and only if IsNotFeasibleComp(pl, p_{2})
is valid (respectively for the class). On the other hand, The composition
pl; p2 is feasible (in a class of models) if and only if the formula \forall x.[x\in
 Pre_{\mathrm{p}1;p2}\Rightarrow\exists y.\langle x, y\rangle\in post_{p1;p2}] is valid (respectively for the class) where

Pre_{p1;p2}(post_{p1;p2}) is the precondition (respectively postcondition) of p_{1};p_{2}.

Then p_{1};p_{2} is feasible (in a class of models) if and only if the formula

x\in Pre_{1}\wedge x\in post_{1}^{-1}(Pre_{2})\wedge\forall y.\forall u.\neg\{\langle x, u\}\in post_{1}\cap(U\times Pre_{2})\wedge\langle u, y\rangle\in post_{2}\}

is satisfiable (respectively in the class)
Now we define a relation �IsNotFeasibleCompa� such that p_{1};p_{2} is not feasi‐

ble (in a class of models) if and only if the formula IsNotFeasibleComp (pl, p_{2}, u_{1}, u_{2})
is satisfiable (respectively in the class) as follows:

(define‐fun IsNotFeasibleComp ((\mathrm{p}1 Prog)(p2 Prog)(ul U)(u4 \mathrm{U})) Bool

(and (select (pre pl) ul)

(and (and (select (post pl) ul u4) (select (pre p2) \mathrm{u}4) \rangle

(and (forall ((\mathrm{u}2\mathrm{u}3 (Pair UU))) (not (and (select (post pl) ul (fst \mathrm{u}2\mathrm{u}3))

(and (select (pre p2) (fst \mathrm{u}2\mathrm{u}3)))) (select (post p2) (fst \mathrm{u}2\mathrm{u}3) (snd \mathrm{u}2\mathrm{u}3))

(declare‐const \mathrm{p}621,\mathrm{p}622 Prog)
(declare‐const f621, f622 (Array UU))

(declare‐const \mathrm{u}621,\mathrm{u}624\mathrm{U})

(assert (and (isfeasible p621 f621) (and (isfeasible p622 f622)

(IsNotFeasibleComp p621 p622 u621 \mathrm{u}624) \rangle))

Since Z3 returns unsat, the theorem holds. \square

3.3 Feasibility Preservation Theorem (Restriction)
Theorem 9 (P6) If p is feasible then C:p is feasible.

The feasibility preservation theorem for the restriction operator can be for‐

mulated as the claim that there are no specification p such that p is feasible and

its restriction C:p to C is not feasible. We will formalize the claim that C:p
is not feasible in Z3.

By the definition of the restriction operator, the claim \{x, y\}\in post_{C:p} is

equivalent to the claim \{x, y\}\in post_{p}\cap(C\times U) , and to the claim \{x, y\}\in
 post_{p}\wedge x\in C . Then the last claim can be formalized in Z3 as follow:

16

(define‐fun restriction‐rel ((\mathrm{x}\mathrm{U})(\mathrm{y}\mathrm{U})(\mathrm{p} Prog)(c Set)) Bool

(and (select cx) (select (post p) \mathrm{x}\mathrm{y})))

The feasibility of the restriction C : p of p to C can be formalized as the

formula \forall x.[x\in Prec:\mathrm{p}\Rightarrow\exists y.\{x, y\rangle\in post_{C:\mathrm{p}}]. Then C:p is feasible (for a class

of models) if and only if the formula is valid (respectively for the class). Thus

C : p is not feasible if and only if the formula x\in Pre_{p}\wedge\forall y.\neg\{x, y\}\in post_{C:p}
is satisfiable with respect to x.

(define‐fun isnotfeasiblerest ((\mathrm{p} Prog)(c Set) (\mathrm{x}\mathrm{U})) Bool

(and (select (pre p) x)

(forall ((\mathrm{y}\mathrm{U})) (not (restriction‐rel xypc)))))

Now we prove the feasibility preservation theorem for the restriction opera‐
tor. The theorem can be formulated in Z3 as follows:

(declare‐const p631 Prog)
(declare‐const f631 (Array UU))
(declare‐const c631 Set)

(declare‐const x631 U)

(assert (isfeasible p631 f631))
(assert (isnotfeasiblerest p631 c631 x631))

; additional assumption: \mathrm{C}\backslash \mathrm{c}\mathrm{u}\mathrm{p} pre(p) is not empty.
(declare‐const x632 U)

(assert (and (select c631 x632) (pre p631) x632))))

Since Z3 returns sat for the formula, the theorem does not hold. But it contra‐

dicts to the fact that the theorem indeed holds.

Z3 also shows a counterexample. We analyze the counterexample to find a

flaw in original definitions and our formalization. Analysis of the counterexam‐

ple shows the followings:

Counter Example

‐Assumption: U=\{a, b, c\}
-p=\{U, U, U\times U\}
-C=\{a, c\}
-f:U\rightarrow U as f(u)=a for any u\in U

Analysis

-p is feasible f(u)=a for any u\in U)
-C\cap Pre_{p} is not empty. witness a)

By the definition (C:p= {setp, Prep, post_{p}\cap(C\times U of the restriction, C:p=
{ \{a, b, c\}, \{a, b, c\}, \{\{a, U\}, \{c, U\} Thus C:p is not feasible since b\in Pre_{C:p}
and the formula \neg\exists y.\{b, y\rangle\in post_{C:p} holds for the counterexample.

We conjecture that the fact b\in Pre_{C:p} is a cause of failure of the theorem

since b is a witness of the fact that C:p is not feasible. Then we re‐define

Pre_{C:p}:=Pre_{p}\cap C (not Prep). With this definition, the feasibility preservation
theorem holds. Thus our conjecture is true.

17

4 Concluding Remarks

In this paper, with Meyer�s formalization[2] , we formalized specifications and

their properties (theorems) as first‐order logic formulas in the language of the

SMT solver Z3. Then we proved theorems, i.e., the refinement theorem, the

implementation theorem and the feasibility preservation theorems, with Z3.

Our aim is to show that automatic software verification (and theorem prov‐

ing in mathematics) with an SMT solver is useful and feasible. We automati‐

cally proved theorems while the theorems are proved manually in [2]. Manual

proofs are error prone and time consuming. On the other hand, the case study
shows an advantage of formalization. Engineers are familiar with automatic

theorem proving (verification) while manual proof requires expertise in mathe‐

matics. But automatic proof requires formalization of definitions and theorems.

Formalization is a time consuming manual task and requires expertise. But

manual formalization is less difficult than manual theorem proving. Moreover,
the formalization helps to gain a deeper understanding of definitions and theo‐

rems since the formalization requires strict statements.

Reuse of function definitions is difficult since Skolemization is not bottom‐

up. For example, a formula representing that x\in dom(p) cannot be uniformly
replaced with a formula representing that \exists y.(x, y)\in postp (or \exists f.(x, f(x))\in
postp) in general. A formula \exists x.x\in dom(p) is equivalent to a formula \exists x.\exists y.(x, y) \in

postp while a formula \forall x.x\in dom(p) is equivalent to a formula \exists f.\forall x.(x, f(x))\in
postp. Thus a framework for reusable functions definitions will be needed to de‐

scribe complicate theorems.

A counterexample generated by Z3 supported to identify flaws (typos) of

definitions in our case study. This counterexample‐guided error correction ap‐

proach will be applied to software verification in general. On the other hand,
we proved the theorems only for models of size 3, Small Scope Hypothesis tells

that almost all of bugs have small size counterexamples. But proofs for large
sizes models will be required when an SMT solver cannot find any flaws of def‐

initions. Thus we will prove other theorems in [2] to show the feasibility of the

approach.

References

[1] Handbook of Satisfiability, Armin Biere, Marijn Heule, Hans Van Maaren,
Toby Walsh (Ed.), IOS Press (2009)

[2] Theory of Programs, Bertrand Meyer, arXiv (2015)

[3] Object‐Oriented Software Construction 2nd ed., Bertrand Meyer, Prentice

Hall (2000)

[4] Z3 Prover, https://github.com/Z3Prover/z3/wiki

[5] Model Theory (Encyclopedia of Mathematics and its Applications), Wilfrid

Hodges, Cambridge University Press (1993)

18

