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1. INTRODUCTION

1.1. A brief overview of the article. In this paper we give a short presentation of

our results on the Morse‐Novikov theory for 2‐knots and surface‐links (see the articles

\mathrm{a}\mathrm{r}\mathrm{X}\mathrm{i}\mathrm{v}:1502.06352 and \mathrm{a}\mathrm{r}\mathrm{X}\mathrm{i}\mathrm{v}:1605.04532 for more details and full proofs.)
Let N^{k}\subset S^{k+2} be a closed oriented submanifold, let C(N)=S^{k+2}\backslash N be its comple‐

ment. The orientation of N determines a cohomology class  $\xi$\in H^{1}(C(N))\approx[C(N), S^{1}].
We say that N is fibred if there is a Morse map f : C(N)\rightarrow S^{1} homotopic to  $\xi$ which is

regular nearby  N (see Definition 1.1) and has no critical points. In general a Morse map

C(N)\rightarrow S^{1} has some critical points, the minimal number of these critical points will be

called the Morse‐Novikov number of N and denoted by \mathcal{M}\mathcal{N}(C(N)) .

In the first part of this paper we study this invariant in relation with constructions

of spinning. The classical Artin�s spinning construction [2] associates to each classical

knot K\subset S^{3} a2‐knot S(K)\subset S^{4} . A twisted version of this construction is due to

E.C. Zeeman [12]. In [10] D. Roseman introduced a frame spinning construction, and G.

Friedman [3] gave a generalization of D. Roseman�s construction to include twisting. Let

M be a framed closed submanifold of the (m+k)‐dimensional sphere, K be an m‐knot

and  $\lambda$ :  M\rightarrow S^{1} a C^{\infty} map. The twist spinning construction associates to these data

an n‐knot  $\sigma$(M, K,  $\lambda$) (where n=k+m ). In Section 2 we give an upper bound for the

Morse‐Novikov number of the twist spun knot in terms of Morse‐Novikov invariants of M

and K.

Section 3 is about Morse‐Novikov theory for surface‐links. In Subsection 3.1 we intro‐

duce a related invariant of surface‐links, namely the saddle number sd(F) (Definition 3.1)
and prove the formula

(1) \mathcal{M}\mathcal{N}(C(F))\leq 2sd(F)+ $\chi$(F)-2.
In Subsection 3.2 we discuss the case of spun knots. In subsection 3.3 we determine the

Morse‐Novikov numbers of certain surface‐links.

1.2. Basic definitions. We start with the definition of a regular Morse map.

Definition 1.1. Let N^{k}\subset S^{k+2} be a closed oriented submanifold. Denote by  $\xi$\in
 H^{1}(C(N))\approx[C(N), S^{1}] the cohomology class dual to the orientation class of N. \mathrm{A}

Morse map f : C(N)\rightarrow S^{1} is said to be regular if there is an orientation preserving C^{\infty}

trivialisation

(2)  $\Phi$ :  T(N)\rightarrow N\times B^{2} (0, č)

of a tubular neighbourhood T(N) of N such that the restriction f|(T(N)\backslash N) satisfies

f\mathrm{o}$\Phi$^{-1}(x, z)=z/|z|.
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An f‐gradient v of a regular Morse map f : C(N)\rightarrow S^{1} will be called regular if

there is a C^{\infty} trivialisation (2) such that $\Phi$^{*}(v) equals (0, v_{0}) where v_{0} is the Riemannian

gradient of the function z\mapsto z/|z|.

If f is a Morse map of a manifold to \mathrm{R} or to S^{1} , then we denote by m_{p}(f) the number

of critical points of f of index p . The number of all critical points of f is denoted by
m(f) .

Definition 1.2. The minimal number m(f) where f : C(N)\rightarrow S^{1} is a regular Morse

map is called the Morse‐Novikov number of N and denoted by \mathcal{M}\mathcal{N}(C(N)) .

To obtain lower bounds for numbers m_{p}(f) one uses the Novikov homology. Let L=

\mathbb{Z}[t, t^{-1}] ; denote by \hat{L}=\mathbb{Z}((t)) and \hat{L}_{\mathbb{Q}}=\mathbb{Q}((t)) the rings of all series in one variable t

with integer (respectively rational) coeffcients and finite negative part. Recall that \hat{L} is a

PID, and \hat{L}_{\mathbb{Q}} is a field. Consider the infinite cyclic covering \overline{C(N)}\rightarrow C(N) ; the Novikov

homology of C(N) is defined as follows:

\displaystyle \hat{H}_{*}(C(N))=H_{*}(\overline{C(N)})\bigotimes_{L}\hat{L}.
The rank and torsion number of the \hat{L}‐module \hat{H}_{k}(C(N)) will be denoted by \hat{b}_{k}(C(N)) ,

respectively \hat{q}_{k}(C(N)) . For any regular Morse function f there is a Novikov complex \mathcal{N}_{*}
over \hat{L} generated in degree k by critical points of f of index k and such that  H_{*}(\mathcal{N}_{*})\approx
\hat{H}_{*}(C(N)) (see [8]). Therefore we have the Novikov inequalities

\displaystyle \sum_{k}(\hat{b}_{k}(C(N))+\hat{q}_{k}(C(N))+\hat{q}_{k-1}(C(N)))\leq \mathcal{M}\mathcal{N}(C(N)) .

These inequalities, which are far from being exact in general, are however very useful in

the case of surface‐links (see Section 3).

2. SPINNING AND RELATED CONSTRUCTIONS

2.1. Frame twist spun knots: the construction. In this subsection we recall the

Artin‐Zeeman‐Roseman‐Fkiedman frame twist spinning construction. The input data for

this construction is:

(TFSI) A closed manifold M^{k}\subset S^{m+k} with trivial (and framed) normal bundle.

(TFS2) An m‐knot K^{m}\subset S^{m+2}.

(TFS3) A C^{\infty} map  $\lambda$ :  M\rightarrow S^{1}.

To these data one associates an n‐knot  $\sigma$(M, K,  $\lambda$) , where n=k+m When  $\lambda$ is a

constant map we denote this knot by  $\sigma$(M, K) ; this is the Roseman�s frame spun knot.

Let a\in K^{m} . Removing a small open disk D(a) from S^{m+2} we obtain an embedded

(knotted) disk K_{0} in the disk D^{m+2}\approx S^{m+2}\backslash D(a) . We identify D^{m+2} with the standard

Euclidean disk of radius 1 and center 0 in \mathbb{R}^{m+2}
,

then \partial D^{m+2}=S^{m+1} . We have the usual

diffeomorphism

 $\chi$ :  S^{m+1}\times]0 ,
1 ] \rightarrow^{\approx}D^{m+2}\backslash \{0\}, (x, t)\mapsto tx.
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We can assume that K_{0}\cap\partial D^{m+2} is an equatorial sphere  $\dagger$ S^{m-1} in \partial D^{m+2}=S^{m+1}.

Moreover, we can assume that the intersection of K_{0} with a neighbourhood of \partial D^{m+2} is

also standard, that is,

K_{0}\cap $\chi$(S^{m+1}\times[1- $\epsilon$, 1])= $\chi$(S^{m-1}\times[1- $\epsilon$, 1]) .

We have a framing of M in S^{n} (recall that n=m+k ); combining this with the standard

framing of S^{n} in S^{n+2} we obtain a diffeomorphism

 $\Phi$ :  N(M, S^{n+2})\rightarrow^{\approx}M\times D^{m}\times D^{2}
where N(M, S^{n+2}) is a regular neighbourhood of M in S^{n+2} . We can assume that the

restriction of  $\Phi$ to  N(M, S^{n}) is a diffeomorphism

 $\Phi$ :  N(M, S^{n})\rightarrow^{\approx}M\times D^{m}\times\{0\}
induced by the given framing of M . The Euclidean disc D^{m+2} is a subset of D^{m}\times D^{2}

,
so

that K_{0}\subset D^{m}\times D^{2}.
For  $\theta$\in S^{1} denote by R_{ $\theta$} the rotation of D^{2} around its center. The disc D^{m+2}\subset D^{m}\times D^{2}

is invariant with respect to this rotation as well as the intersection of K_{0} with a small

neighbourhood of \partial D^{m+2} . We have  $\Phi$(S^{n}\cap N(M, S^{n+2}))=M\times D^{m}\times\{0\} . Let

Z=\{(x, y, z)|(y, z)\in R_{ $\lambda$(x)}(K0)\}.
This is an n‐dimensional submanifold of M\times D^{m}\times D^{2} . We define  $\sigma$(M, K,  $\lambda$) as follows

 $\sigma$(M, K,  $\lambda$)=(S^{n+2}\backslash N(M, S^{n+2}))\cup$\Phi$^{-1}(Z) .

This is the image of an embedded n‐sphere, knotted in general.

Examples and particular cases.

1) Let \dim M=0 ,
so that M is a finite set; denote by p its cardinality. Then the

n‐knot  $\sigma$(M, K,  $\lambda$) is equivalent to the connected sum of p copies of K.

2) If M is the equatorial circle of the sphere S^{2} , which is in turn considered as an

equatorial sphere of S^{4} , and  $\lambda$(x)=1 for all x
, we obtain the classical Artin�s

construction. If  $\lambda$ :  S^{1}\rightarrow S^{1} is a map of degree d
, we obtain the Zeeman�s twist‐

spinning construction [12].
3) If  $\lambda$(x)=1 for all x\in M we obtain the Roseman�s construction of spinning around

the manifold M[10] . In this case we will denote  $\sigma$(M, K,  $\lambda$) by  $\sigma$(M, K) .

2.2. Morse‐Novikov numbers of twist spun knots.

Theorem 2.1.

\mathcal{M}\mathcal{N}(C( $\sigma$(M, K,  $\lambda$ \leq \mathcal{M}\mathcal{N}(C(K))\cdot \mathcal{M}\mathcal{N}(M, [ $\lambda$]) .

(where [ $\lambda$]\in H^{1}(M, \mathbb{Z})\approx[M, S^{1}] is the homotopy class of  $\lambda$).

\uparrow \mathrm{B}\mathrm{y} equatorial sphere in S^{N}\subset \mathbb{R}^{N+1} we mean the intersection of a linear subspace L\subset \mathbb{R}^{N+1} with S^{N} ; this

intersection is a Euclidean sphere of dimension \dim L-1.
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Corollary 2.2. Let K\subset S^{3} be a classical knot, denote by S(K) the spun knot of K.

Then

(3) \mathcal{M}\mathcal{N}(C(S(K)))\leq 2\mathcal{M}\mathcal{N}(C(K)) .

Proof. In this case M=S^{1} and [A] = O. We have \mathcal{M}\mathcal{N}(S^{1},0)=2 and the result

follows.

The classical theorems concerning fibrations of spun knots follow from Theorem 2.1:

Corollary 2.3. (D. Roseman [10]) If K is fibred, then  $\sigma$(M, K) is fibred.

Proof. Since \mathcal{M}\mathcal{N}(C(K))=0 , Theorem 2.1 implies \mathcal{M}\mathcal{N}(C( $\sigma$(M, K =0.

Corollary 2.4. (E. C. Zeeman [12]) The d‐twist spun knot of any classical knot K is

fibred for d\geq 1.

Proof. Let  $\Sigma$ be an equatorial circle in  S^{2} . The d‐twist spun knot of K is by definition

the 2‐knot  $\sigma$( $\Sigma$, K,  $\lambda$) in S^{4} where  $\lambda$ :  $\Sigma$\rightarrow $\Sigma$ is a map of degree  d . The assertion follows,
since \mathcal{M}\mathcal{N}(S^{1}, [ $\lambda$])=0.

Remark 2.5. The Zeeman�s theorem above generalizes immediately to the following
statement: If \mathcal{M}\mathcal{N}(M, [ $\lambda$])=0 , then the knot  $\sigma$(M, K,  $\lambda$) is fibred for any knot K.

2.3. Rotation. In this subsection we present one more geometric construction related to

spinning techinques. Let  $\Sigma$ be an equatorial  n‐sphere of S^{n+1} . We can view the sphere
S^{n+1} as the union of two (n+1) ‐dimensional discs D_{+}\cup D_{-} intersecting by  $\Sigma$ . Consider

 S^{n+1} as the equatorial sphere of S^{n+2} . The sphere S^{n+2} can be considered as the result of

rotation of the disc D_{+} around its boundary  $\Sigma$ . We have the (linear orthogonal) action

of  S^{1} on S^{n+2} , such that  $\Sigma$ is the fixed point set of the action, and the action is free on

the rest of the sphere  S^{n+2} . Let K^{n-1} be an (n-1)‐knot in S^{n+1} . We can assume that

 K^{n-1}\subset Int  D_{+} . Rotation of K^{n-1} around  $\Sigma$ gives a submanifold  R(K) of codimension 2

in S^{n+2} . The manifold R(K) is diffeomorphic to S^{1}\times K . We call this constrution rotation.

When \dim K=1 , the manifold R(K) is sometimes called the spun torus of K . In this

section we relate the Morse‐Novikov numbers of R(K) with those of K.

Theorem 2.6.

\mathcal{M}\mathcal{N}(C(R(K)))\leq 2\mathcal{M}\mathcal{N}(C(K))+2.

3. MORSE NOVIKOV NUMBERS OF SURFACE‐LINKS

In this section we develop circle‐valued Morse theory for surface‐links.

3.1. Motion pictures and saddle numbers. Let F be a surface‐link, that is, a closed

oriented 2‐dimensional C^{\infty} submanifold of S^{4} . We can assume F\subset \mathbb{R}^{4}.
Choose a projection p of \mathbb{R}^{4} onto a line. Assume that the critical points of the function

p|F are non‐degenerate. Denote by sdl(F) the minimal number of saddle points of p|F
over all the projections p.

Definition 3.1. A saddle number sd(F) is the minimum of numbers sdl(F') where F'

ranges over all surface‐links F' ambiently isotopic to F.
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The invariant sd(F) is closely related to the ch‐index of F
,

introduced and studied

by K. Yoshikawa in [11]. In particular, we have sd(F)\leq ch(F) . In order to relate the

number sd(F) to \mathcal{M}\mathcal{N}(S^{4}\backslash F) we will reformulate the definition of the saddle number.

Let F\subset S^{4} be a surface‐link. The equatorial 3‐sphere $\Sigma$^{3} of the standard Euclidean

sphere S^{4} divides S^{4} into two parts:

S^{4}=D_{+}^{4}\cup D_{-}^{4} , with D_{+}^{4}\cap D_{-}^{4}=$\Sigma$^{3}.
We assume that F is included in Int(D) and F does not contain the centre of D_{-}^{4} . Per‐

turbing the embedding F\subset D^{\underline{4}} if necessary, we can assume that the restriction  $\rho$=r|_{F} of

the radius function r:D^{\underline{4}}\rightarrow[0 ,
1 ] is a Morse function. The family \{(r^{-1}(t), $\rho$^{-1}(t))\}_{t\in[0,1]}

of possibly singular links can be drawn as a motion picture (see [5], Chapter 8). Each

singularity of a link in the family corresponds to a critical point of  $\rho$ . A critical point
of  $\rho$ of index  0 (1, 2, respectively) is called minimal point (saddle point, maximal point,
respectively) of  $\rho$ ,

which is represented by a minimal band (saddle band, maximal band,
respectively) in (a modification of) the motion picture.

It is clear that the minimal number of the saddle points for all such Morse functions  $\rho$

and all surface‐links ambiently isotopic to  F is equal to sd(F) .

Theorem 3.2. \mathcal{M}\mathcal{N}(C(F))\leq 2sd(F)+ $\chi$(F)-2.

Corollary 3.3. Let K\subset S^{4} be a 2‐knot. Then \mathcal{M}\mathcal{N}(C(K))\leq 2sd(K) .

Proposition 3.4. Let F\subset S^{4} be the trivial k ‐component surface‐link. Then

\mathcal{M}\mathcal{N}(C(F))=4k-2- $\chi$(F) .

Proof. It is not diffcult to show that \hat{b}_{1}(C(F))\geq k-1, \hat{b}_{3}(C(F))\geq k-1 . Therefore

for every regular Morse map f : C(F)\rightarrow S^{1} we have m_{1}(f)+m_{3}(f)\geq 2(k-1) . Assuming
m_{0}(f)=m_{4}(f)=0 we have m_{1}(f)-m_{2}(f)+m_{3}(f)=2- $\chi$(F) ,

and \mathcal{M}\mathcal{N}(C(F))\geq
 4k-2- $\chi$(F) ; this lower bound coincides with the upper bound derived from Theorem

3.2.

3.2. Spun knots. Let K be a classical knot in S^{3} ; denote by S(K) the corresponding
spun knot.

Proposition 3.5. If K is a non‐fibered knot of tunnel number 1, then \mathcal{M}\mathcal{N}(S^{4}\backslash S(K))=
4.

Proof. Recall that \mathcal{M}\mathcal{N}(S^{4}\backslash S(K))\leq 2\mathcal{M}\mathcal{N}(K) (Corollary 2.2). In the paper [7] of

the second author it is shown that \mathcal{M}\mathcal{N}(C(K))\leq 2t(K) , hence \mathcal{M}\mathcal{N}(C(S(K)))\leq 4
by Corollary 2.2. Put G=$\pi$_{1}(S^{3}\backslash K) , then $\pi$_{1}(S^{4}\backslash S(K))\approx G ; let H=[G, G] . Let

f : S^{4}\backslash S(K)\rightarrow S^{1} be a regular Morse map without minima and maxima. If m_{1}(f)=0,
then a standard Morse‐theoretic argument applied to the infinite cyclic cover of S^{4}\backslash S(K)
implies that H is finitely generated, which is impossible, since K is not fibred. Therefore

m_{1}(f)\geq 1 , and similarly, m_{3}(f)\geq 1 ,
hence m_{2}(f)\geq 2 and the proposition is proved. \square 

3.3. Surface‐links of Yoshikawa�s table. A. Kawauchi, T. Shibuya and S. Suzuki [6]
developed a method of representing surface‐links by diagrams. Based on this method K.

Yoshikawa [11] introduced a numerical invariant ch(F) of surface‐links F and enumerated

all the (weakly prime) surface‐links F with ch(F)\leq 10.
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FIGURE 1

It is clear from the definition of the invariant ch(F) that we have sd(F)\leq ch(F) . In

the rest of this section we assume that the reader is familiar with Yoshikawa�s work, and

with his terminology. There are 6 two‐knots in Yoshikawa�s table, namely

0_{1}, 8_{1}, 9_{1}, 10_{1}, 10_{2}, 10_{3}.

The trivial 2‐knot 0_{1} is obviously fibred. The knots 8_{1} and 10_{1} are spun knots of the

trefoil knot and respectively of the figure 8 knot, thus both 8_{1} and 10_{1} are fibred by [1].
The case of 9_{1} is more complicated. The saddle number of this 2‐knot is 2. Therefore

\mathcal{M}\mathcal{N}(9_{1})\leq 4 . Using the presentation of the fundamental group of the complement to 9_{1}

(see [11]) and Poincaré duality properties it is easy to compute the Novikov numbers of

9_{1} . Namely we have \hat{q}_{1}=1, \hat{q}_{2}=\hat{q}_{3}=0 . Therefore

2\leq \mathcal{M}\mathcal{N}(9_{1})\leq 4.
The 2‐knot 10_{2} is the 2‐twist spun knot of the trefoil knot, hence fibered by Zeeman�s

theorem [12]. Similarly, 10_{3} is fibered, being the 3‐twist spun of the trefoil knot.

The surface‐link 6_{1}^{0,1} is the result of spinning of the Hopf link which is fibred (see the

left of Figure 2) therefore \mathcal{M}\mathcal{N}(6_{1}^{0_{)}1})=0.
The surface‐link 8_{1}^{1,1} is the spun torus of the Hopf link. Applying Theorem 2.6 we get

the upper bound \mathcal{M}\mathcal{N}(8_{1}^{1,1})\leq 2 . Computing the Euler charcateristic implis the inverse

inequality, so \mathcal{M}\mathcal{N}(8_{1}^{1,1})=2.
The same argument applies to the surface‐link 10_{1}^{1} , which is the spun torus of the trefoil

knot, see the figure 2 (middle), so that \mathcal{M}\mathcal{N}(10_{1}^{1})=2.
The surface‐link 10_{1}^{0,1} is the result of spinning of the link 4_{1}^{2} which is fibred, therefore

\mathcal{M}\mathcal{N}(10_{1}^{0,1})=0.
The case of the surface‐link F=10_{1}^{0_{)}0,1} is more complicated. Applying a generalisation

of spinning constructions we prove that \mathcal{M}\mathcal{N}(10_{1}^{0,0,1})=2.
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