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1 Remainder terms of a critical Hardy inequality

The purpose of this note is to announce the recent results in [20] and [19] which
studies scale invariant structure of critical Hardy inequalities and its remainder term.

Let n > 2 and By C R™ be the n-dimensional unit ball centered at the origin.
The critical Hardy inequality with the sharp constant is the following:
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The particular interest for (1.1) comes from the best-possible embedding of Sobolev
spaces in the framework of rearrangement invariant spaces, where a Banach space
X is said to be a rearrangement invariant space if ||u||x = ||v|]|x whenever uf = o¥.
Typical examples of such spaces are Lebesgue spaces, Lorentz spaces, and Orlicz
spaces. See [5, Chapter 2] for more details on rearrangement invariant spaces. In view
of the best-possible embedding of Sobolev spaces into rearrangement invariant spaces,
the important feature of (1.1) is the monotonicity of the potential function m
for 0 < |z| < 1, since (1.1) is usually proved by the use of the symmetrization
argument which requires this monotonicity. We remark that there exist a large
amount of literature on applications, generalizations, and improvements of (1.1) (see
eg. [1,4,6,9, 10, 11, 12, 13, 14, 15, 16, 22] and references therein).
There is another version of the Hardy inequality slightly different from (1.1):
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which is essentially proved by Leray [21]. The main difference between (1.2) and

(1.1) is that the potential function W(lolg—l)” in (1.2) is non-monotone while that
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in (1.1) is monotone. Moreover, there is a significant difference between (1.1) and
(1.2) on the scaling property. Indeed, it is shown in [18] that the inequality (1.2) is
invariant under the following power-type scaling;:

ux(z) = )\_nT_lu(,xP_lx), A >0, (1.3)

while (1.1) is not invariant. Moreover, non-attainability of the sharp constant of (1.2)
in W, (B) is proved in [18] by applying the invariance of (1.2) under (1.3). Namely,
if there is an extremal function U € W,"(B;) which attain the sharp constant, then

n—1
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should follow by the simplicity of the first eigenvalue (if exists) and the scale in-
variance of (1.2) under the power-type scaling (1.3). Note that U cannot be a real
minimizer since ||VU||1~(5,) = oo and we will call U as a virtual minimizer.

As in the generalizations of (1.1) like [1, 4, 6, 9, 10, 11, 12, 16], one can expect
the existence of the remainder terms in (1.2) because of the absence of the extremal
functions. Here we summarize some results on the remainder terms of (1.2) proved
in [20] and [19]. First we show the equality proved in [20].

Theorem 1.1 ([20]). For a,b € R, we define
Rn(a,b) = (n — 1)|a|™ + |b]™ — n|a|" *ab.

Then the equality
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holds for every u € WOI’"(Bl). Moreover, the remainder term (the right hand side of
(1.5)) vanishes if and only if u takes the form

(1.5)

n—1
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We should mention a relation between (1.2) and (1.5). Pointwise Young’s in-
equality implies

1
log —

for some function ¢ : S*71 — R.

R,(a,b) = (n —1)|a|" + |b]* — nla|* 'ab >0
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for all a,b € R. Therefore (1.5) yields (1.2) by neglecting R,,. Furthermore, non-
attainability of the sharp constant of (1.2) can be obtained from Theorem 1.1.
Namely, if the sharp constant attained by some function u € W, "(B;), then u

satisfies R,(u) = 0, hence
n—1
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for some function ¢ : S®! — R by the second assertion in the theorem. This
contradicts to u € W, "(B,).

Since (1.5) is an equality, there is no more improvement of the remainder term of
(1.2). However, it seems important to characterize the remainder term R, in (1.5)
by a meaningful term. For instance, we give a characterization of the remainder
term in (1.5) by a ratio and a distance from the virtual extremal function U(|z|) =

(log ﬁ)nT_l

Let us state an expression by a ratio of u to (log ﬁ)

u(x) = |log

n—1

n

Theorem 1.2 ([19]). Let n > 2. Then there exists a positive constant C > 0 such

that there holds
() e,
n—1 B |g|n (log ﬁ)
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Next Theorem is an expression by a distance of u to (log ﬁ)

x n
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for every u € Wy™(B).

Theorem 1.3 ([19]). Let n > 2. Define

d(f,g) == sup M, a(r) = /Sn_1 u(r, 6)d6.

0<r<1 (log%) n

Then there exists C > 0 such that the inequality
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holds for every u € Wy™(By).
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Some studies in which a remainder term is estimated by a distance can be found
in [3] for the Sobolev inequality and in [9] for Hardy inequalities. Similar character-
ization by a ratio can be found in [15, 12] for Hardy inequalities. See [20] for the
proof of Theorem 1.1. A proof of Theorems 1.2, 1.3 and its generalization can be
found in [19].

2 Scale invariant structure of the critical Hardy
inequality

In this section, we survey the relation between the standard dilation scaling  — Az
for A > 0 and the power-type scaling (1.3), which is pointed out in [19]. Actually,
they are equivalent by virtue of the transformation

T

Bi(0)\{0} 2z~ y= (log i) 2 e R"\ {0} (2.8)
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and the associated transformation on functions:
0o (oM 00 1\? ¢
T, : C°(R™\ {0}) — C5°(B1(0) \ {0}) 5 Tu(z) = u | | log Tl ol

introduced by Horiuchi and Kumlin in [17, Definition 3.1 and 3.2]. Note that a
transformation (2.8) sends a dilation z — Az to a power-type scaling = +— |z|*~1z
as follows.

Proposition 2.1 ([19]). Define

Dyu(z) :==u(Mz), uw:R*—=>R, X>0,
Syv(z) == v(jz*x), wv:Bi(0) =R, A>0.

Then there holds
Tp (Dr-»u) (z) = Sa(Tpu)(z), u:R*—=>R, A>0, 0<p<oo.

By using the relation in Proposition 2.1, we have the following equivalence be-
tween a standard Sobolev inequality with invariance under the dilation D, and a
Sobolev type inequality on By with invariance under a power-type scaling Sy. Re-
mark that d,u denotes a radial derivative defined by d,u = % - Vu.



Theorem 2.1 ([19]). Let 1 < ¢ <n and q% = % — L. The following inequalities are

equivalent:
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u € C3°(B1\ {0}).

(2.9)

where C; is the Sobolev best constant given by

_aoifa-1 -3 T'(1+2)0(n) g
Co=m"2n (n—q) (F(%)F<1+n‘§)) .

As a by-product of Theorem 2.1, one can obtain the Alvino inequality [2]

1 x
sup 4N < 2odnd (1 (H@))n( / |vu|ndx) L u € Wihy(By),
2€B (10 L)W 2 B; )
€ Tal
(2.10)

which is known as a critical Sobolev inequality with p = n in the sense that (2.10) im-
plies the best embedding of the Sobolev space W(} "(By) into Orlicz spaces framework
(see [8]). Namely, let u be a radially symmetric function belonging to Cg°(B; \ {0}).
It follows from Theorem 2.1 with p = Z;_; that
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Taking ¢ — n in (2.11), we obtain

since

q*
liTm / qu*dx = sup M, uwe Cy(B1\{0}). (2.12)
qTn n z€EB n
B g (Iog I—;—l) &5 (log ﬁ)

In particular, the relation in Theorem 2.1 shows us that Moser sequences which
are minimizers associated with the Alvino inequality (2.10) (or Trudinger-Moser
inequality, see [23] and [7]) and Talenti functions which are minimizers associated
with the Sobolev inequality (see [26]). Indeed, the best constant in the inequality
(I) in Theorem 2.1 is characterized by the following scaled Talenti functions

1\ =) e blogﬁ
Ugap(T) = blog — = —, a,b>0
" ] L\
(a (blog ﬁ) '+ 1)

since the sharp constant of the inequality (II) in Theorem 2.1 is characterized by the
Talenti functions

1-2
Vgas(®) = (a+ OlDTT) 7, ab>0,
Now taking the limit ¢ 1 n, we obtain

1

n= 1
=t = blog —, |z| < e7?,

hTm (blog Iz |) +1 = |z|
1, 2| > et

for any a > 0. Therefore, we have a limit function of u,,; independently on a,

1, 2] < e7F,

up(x) 1= lqlTIB Ugap(T) = (2.13)

Normalizing (2.13) by ||Vu|| =, we obtain the Moser sequence (m;) with a parameter
b>0: )
-1 1 _1
nnlbn l ‘$|<6 b,
my(z) =

nlb log et < |z| < 1.

|=|”

In this view, we see that the Moser sequence is derived from the Talenti functions
via Horiuchi-Kumlin transformation (2.8). Proofs and further remarks of Section 3
can be found in [19].
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