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1 Introduction

The mechanism of pattern formation is one of the most interesting subjects in

mathematical biology. A. M. Turing proposed a notion of the diffusion‐driven in‐

stability in the seminal paper [13]. It means that a reaction between two chemicals

with different diffusion rates may cause a destabilization of a spatially homoge‐
neous state, thus leading to the formation of nontrivial spatial structure. This is

a bifurcation that arises in a reaction‐diffusion system, when there exists a spa‐

tially homogeneous stationary solution which is asymptotically stable with respect
to spatially homogeneous perturbations but unstable to spatially heterogeneous
perturbations. Models with the diffusion‐driven instability describe a process of a

destabilization of stationary spatially homogeneous steady states and evolution of

the system towards spatially heterogeneous steady states.

Recently, the diffusion‐driven instability has been observed in models describing
a coupling of cell‐localized processes with a cell‐to‐cell communication via diffusion.

Such models are of a form of systems consisting of a single ordinary differential

equation coupled with a reaction‐diffusion equation:

u_{t}=f(u, v) , v_{t}=D\triangle v+g(u, v) , (1.1)

such as in Refs. [4, 8, 10, 12]. We call the system in the form of (1.1) reaction‐

diffusion‐ODE system. Simulations of different models of this type indicate a

formation of dynamical, multimodal, and apparently irregular and unbounded

structures, the shape of which depends strongly on initial conditions [1, 9, 10, 12].
A scalar reaction‐diffusion equation (in a bounded, convex domain and the

Neumann boundary conditions) cannot exhibit stable spatially heterogeneous pat‐
terns. Coupling it to an ODE fulfilling the following autocatalysis condition at the

equilibrium (\overline{u},\overline{v})
f_{u}(\overline{u},\overline{v})>0 (1.2)

leads to the diffusion‐driven instability. However, in such a case, all regular Tur‐

ing patterns are unstable, because the same mechanism which destabilizes constant
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solutions, destabilizes also all continuous spatially heterogeneous stationary solu‐

tions, [5, 6]. This instability result holds also for discontinuous patterns in case of

a specific class of nonlinearities, see also [5, 6].
In this paper, we present two examples of (1.1) to understand the dynamics

of non‐constant solutions of the reaction‐diffusion‐ODE systems exhibiting the

diffusion‐driven instability. In both cases, we show that they have solutions which

become unbounded (blow up) in a finite time.

This is ajoint work with A. Marciniak‐Czochra (University of Heidelberg), G.

Karch (University of Wroclaw) and J. Zienkiewicz (University of Wroclaw).
We begin our study by stating a result on the existence and boundedness of a

solution to the initial boundary value problem for (1.1).

2 Existence of solutions

We consider the following system

u_{t}=f(u, v) , for x\in\overline{ $\Omega$}, t>0 , (2.1)
v_{t}=\triangle v+g(u, v) for x\in $\Omega$, t>0 (2.2)

in a bounded domain  $\Omega$\subset \mathbb{R}^{n} for n\geq 1 ,
with a C^{2}‐boundary \partial $\Omega$ , supplemented

with the Neumann boundary condition

\partial_{ $\nu$}v=0 for x\in\partial $\Omega$, t>0 , (2.3)

where \displaystyle \partial_{ $\nu$}=\frac{\partial}{\partial $\nu$} and  $\nu$ denotes the unit outer normal vector to \partial $\Omega$
,

and with initial

data

 u(x, 0)=u_{0}(x) , v(x, 0)=v_{0}(x) . (2.4)

The nonlinearities f=f(u, v) and g=g(u, v) are arbitrary C^{3}‐functions. Notice

that equation (2.2) may contain an arbitrary diffusion coefficient which, however,
can be rescaled and assumed to be equal to one.

Theorem 2.1 (Local‐in‐time solution). Assume that u_{0}, v_{0}\in L^{\infty}( $\Omega$) . Then, there

exists T=T(\Vert u_{0}\Vert_{\infty}, \Vert v_{0}\Vert_{\infty})>0 such that the initial‐boundary value problem
(2.1) -(2.4) has a unique local‐in‐time mild solution u, v\in L^{\infty}([0, T], L^{\infty}( $\Omega$)) .

We recall that a mild solution of problem (2.1)-(2.4) is a pair of measurable

functions u, v:[0, T]\mathrm{x}\overline{ $\Omega$}\mapsto \mathbb{R} satisfying the following system of integral equations

u(x, t)=u_{0}(x)+\displaystyle \int_{0}^{t}f(u(x, s), v(x, s))ds , (2.5)

v(x, t)=e^{t\triangle}v_{0}(x)+\displaystyle \int_{0}^{t}e^{(t-s)\triangle}g(u(x, s), v(x, s))ds , (2.6)
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where e^{t\triangle} is the semigroup of linear operators generated by Laplacian with the

Neumann boundary condition. Since our nonlinearities f=f(u, v) and g=g(u, v)
are locally Lipschitz continuous, to construct a local‐in‐time unique solution of

system (2.5)-(2.6) ,
it suffices to apply the Banach fixed point theorem.

If u_{0} and v_{0} are more regular, i.e . if for some  $\alpha$\in(0,1) we have u_{0}\in C^{ $\alpha$}(\overline{ $\Omega$}) ,

v_{0}\in C^{2+ $\alpha$}(\overline{ $\Omega$}) and \partial_{ $\nu$}v_{0}=0 on \partial $\Omega$
,

then the mild solution of problem (2.1)-(2.4)
is smooth and satisfies u\in C^{1, $\alpha$}([0, T]\times\overline{ $\Omega$}) and v\in C^{1+ $\alpha$/2}, 2+ $\alpha$([0, T]\times\overline{ $\Omega$}) .

3 Blowup solutions

Throughout this section, we let  $\Omega$ be a bounded domain in \mathbb{R}^{n} with a sufficiently
regular boundary \partial $\Omega$ . The unit outer normal vector to \partial $\Omega$ is denoted by  $\nu$

,
and

let \displaystyle \partial_{ $\nu$}=\frac{\partial}{\partial $\nu$}.

3.1 Resource‐consumer type reaction

We consider the following system of equations

u_{t}=-au+u^{p}f(v) , for  x\in St,  t>0 , (3.1)
 v_{t}=D\triangle v-bv-u^{p}f(v)+ $\kappa$ for  x\in $\Omega$, t>0 , (3.2)

where D>0, p>1, a, b\in(0, \infty) and  $\kappa$\in[0, \infty ). In equations (3.1)-(3.2) ,
an

arbitrary function f=f(v) satisfies

f\in C^{1}([0, \infty f(v)>0 for v>0 , and f(0)=0 . (3.3)

We supplement system (3.1)-(3.2) with the homogeneous Neumann boundary con‐

dition for v :

\partial_{ $\nu$}v=0 for x\in\partial $\Omega$, t>0 , (3.4)
and with bounded, nonnegative, and continuous initial data

u(x, 0)=u_{0}(x) , v(x, 0)=v_{0}(x) for  x\in $\Omega$ . (3.5)

When  u has a diffusion term on the right‐hand side of (3.1), the model (3.1)-
(3.5) can be found in literature in context of several applications. Let us mention

a few of them. For p=2, f(v)=v ,
and suitably chosen coefficients, we obtain

either the, so‐called, Brussellator appearing in the modeling of chemical morpho‐
genetic processes, the Gray‐Scott model (also known as a model of glycolysis, or

the Schnackenberg model.

Nonnegative solutions to the following initial value problem for the system of

ordinary differential equations:

\displaystyle \frac{d}{dt}\overline{u}=-a\overline{u}+\overline{u}^{p}f(\overline{v}) , \frac{d}{dt}\overline{v}=-b\overline{v}-\overline{u}^{p}f(\overline{v})+ $\kappa$ , (3.6)

\overline{u}(0)=\overline{u}_{0}\geq 0, \overline{v}(0)=\overline{v}_{0}\geq 0 . (3.7)
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are global‐in‐time and bounded on [0, \infty ).
A behavior of solutions the system of ODEs from (3.6) depends essentially on

its parameters. Let  p=2 and f(v)=v . For a>0 and b>0 ,
this particular

system has the trivial stationary nonnegative solution (\overline{u},\overline{v})=(0,  $\kappa$/b) which is

an asymptotically stable solution. If, moreover, $\kappa$^{2}>4a^{2}b ,
we have two other

nontrivial nonnegative stationary solutions which satisfy the following system of

equations

\displaystyle \overline{u}=\frac{a}{\overline{v}} and −bv— \displaystyle \frac{a^{2}}{\overline{v}}+ $\kappa$=0.
Every such a constant nontrivial and stable solution of ODEs is an unstable solution

of the reaction‐diffusion‐ODE problem (3.1)-(3.5) ,
which means that it has the

diffusion‐driven instability due to the autocatalysis f_{u}(\overline{u},\overline{v})=-a+2\overline{u}\overline{v}=a>0.
We show that there are non‐constant initial conditions such that the corre‐

sponding solution to the reaction‐diffusion‐ODE problem (3.1)-(3.5) blows up at

one point and in a finite time.

Here, without loss of generality, we assume that  0\in $\Omega$ ,
where  $\Omega$\subseteq \mathbb{R}^{n} is

an arbitrary bounded domain with a smooth boundary, and we rescale system

(3.1)-(3.2) in such a way that the diffusion coefficient in equation (3.2) is equal to

one.

In the following theorem, we prove that if u_{0} is concentrated around an ar‐

bitrary point  x_{0}\in $\Omega$ (we choose  x_{0}=0 ,
for simplicity) and if v_{0}(x)=\overline{v}_{0} is a

constant function, then the corresponding solution to problem (3.1)-(3.5) blows

up in a finite time.

Theorem 3.1. Assume that f\in C^{1}([0, \infty)) satisfies \displaystyle \inf_{v\geq R}f(v)>0 for each

R>0 . Let p>1 and a, b,  $\kappa$\in(0, \infty) be arbitrary. There exist numbers  $\alpha$\in(0,1) ,

 $\epsilon$>0_{f} and R_{0}>0 (depending on parameters ofproblem (3.1)-(3.5) and determined

in the proof) such that if initial conditions u_{0}, v_{0}\in C(\overline{ $\Omega$}) satisfy

0<u_{0}(x)<(u_{0}(0)^{1-p}+2$\epsilon$^{-(p-1)}|x|^{ $\alpha$})^{-\frac{1}{p-1}} for all  x\in $\Omega$ (3.8)

 u_{0}(0)\displaystyle \geq(\frac{a}{(1-e^{(1-p)a})F_{0}})^{\frac{1}{p-1}} where F_{0}=\displaystyle \inf_{v\geq R_{0}}f(v) , (3.9)

v_{0}(x)\equiv\overline{v}_{0}>R_{0}>0 for all  x\in $\Omega$ , (3.10)

then the corresponding solution to problem (3.1)-(3.5) blows up at certain time

T_{\max}\leq 1 . Moreover, the following uniform estimates are valid

0<u(x, t)< $\epsilon$|x|^{-\frac{ $\alpha$}{p-1}} and v(x, t)\geq R_{0} for all (x, t)\in $\Omega$\times[0, T_{\max} ).
(3.11)

Total mass \displaystyle \int_{ $\Omega$}(u(x, t)+v(x, t))dx of each nonnegative solution to the reaction‐

diffusion problem (3.1)-(3.5) with D\geq 0 does not blow up, and stays uniformly
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bounded in t>0 . Indeed, we obtain that

\displaystyle \frac{d}{dt}\int_{ $\Omega$}(u(x, t)+v(x, t))dx=-\int_{ $\Omega$}(au(x, t)+bv(x, t))dx+\int_{ $\Omega$} $\kappa$ dx
\displaystyle \leq-\min\{a, b\}\int_{ $\Omega$}(u(x, t)+v(x, t))dx+ $\kappa$| $\Omega$|.

Theorem 3.1 shows that this a priori estimate is not sufficient to prevent the

blow‐up of solutions in a finite time.

3.1.1 Idea for proof of Theorem 3.1

We would like to give a sketch of the proof of Theorem 3.1. There are more details

in [7].
It is an important key to solve the equation (3.1) with respect to u(x, t) ,

which

leads to the following formula for all (x, t)\in $\Omega$\times[0, T_{\max} ):

u(x, t)=\displaystyle \frac{e^{-at}}{(\frac{1}{u\mathrm{o}(x)^{p-1}}-(p-1)\int_{0}^{t}f(v(x,s))e^{(1-p)as}ds)^{\frac{1}{p-1}}} . (3.12)

Thus, it is clear that if we have an uniform lower bound for v(x, t) and the initial

condition satisfies (3.9), then the equation (3.12) leads to the following lower bound

u(x, t)\displaystyle \geq\frac{e^{-at}}{(\frac{1}{u_{0}(x)^{p-1}}-(1-e^{(1-p)at})a^{-1}F_{0})^{\frac{1}{p-1}}} . (3.13)

This implies that u(0, t) blows up in finite time because the right‐hand side of

inequality (3.13) for x=0 blows up at some t\leq 1 under the assumption (3.9).
Therefore, it is sufficient to show the existence of a lower bound for v for all

(x, t)\in $\Omega$\times[0, T_{\max}) in order to finish the proof of Theorem 3.1. We have the

following lemma.

Lemma 3.2. Assume that v(x, t) is a solution of the reaction‐diffusion equation
(3.2) with an arbitrary function u(x, t) and with a constant initial condition satis‐

fying v_{0}(x)\equiv\overline{v}_{0}>0 . Suppose that there are numbers  $\epsilon$>0 and

 $\alpha$\displaystyle \in(0, \frac{2(p-1)}{p}) if n\geq 2 and  $\alpha$\displaystyle \in(0,\frac{p-1}{p}) if n=1 (3.14)

such that

0<u(x, t)< $\epsilon$|x|^{-\frac{ $\alpha$}{p-1}} for all (x, t)\in $\Omega$\times[0, T_{\max} ). (3.15)

Then, there is an explicit number C_{0}>0 independent of  $\epsilon$ such that for all  $\epsilon$>0

we have

v(x, t)\displaystyle \geq\min\{\overline{v}_{0}, \displaystyle \frac{ $\kappa$}{b}\}-$\epsilon$^{p}C_{0} for all (x, t)\in $\Omega$\times[0, T_{\max} ). (3.16)
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Proof of Lemma 3.2. Let z(t) be a solution of the problem

z_{t}=\triangle z-bz+ $\kappa$, z(x, 0)=\overline{v}_{0} (3.17)

with the homogeneous Neumann boundary conditions. Then, we can rewrite equa‐

tion (3.2) in the integral form

v(t)=z(t)-\displaystyle \int_{0}^{t}e^{(t-s)(\triangle-bI)}(u^{p}f(v))(s)ds . (3.18)

Here, we have a lower bound for z(t) :

z(t)=e^{-bt}\displaystyle \overline{v}_{0}+\frac{ $\kappa$}{b}(1-e^{-bt})\geq\min\{\overline{v}_{0}, \displaystyle \frac{ $\kappa$}{b}\} for all t\in[0, T_{\max} ). (3.19)

Moreover, it is easy to see that there exists an upper bound for v(x, t) :

0\displaystyle \leq v(x, t)\leq\max\{\Vert v_{0}\Vert_{\infty}, \displaystyle \frac{ $\kappa$}{b}\}\equiv R_{1} for all (x, t)\in $\Omega$\times[0, T_{\max} ). (3.20)

Therefore, we compute the L^{\infty} ‐norm of equation (3.18) using (3.19) and (3.20), as

well as the a priori assumption on u in (3.15) to obtain that

v(x, t)\displaystyle \geq z(t)-\int_{0}^{t}\Vert e^{(t-s)(\triangle-b)}(u^{p}f(v))(s)\Vert_{\infty}ds
\displaystyle \geq\min\{\overline{v}_{0}, \frac{ $\kappa$}{b}\}-$\epsilon$^{p}C_{q}(\sup_{0\leq v\leq R_{1}}f(v))\int_{0}^{t}(1+(t-s)^{-\frac{n}{2q}})\Vert|x|^{-\frac{ $\alpha$ p}{\mathrm{p}-1}}\Vert_{q}ds.

(3.21)

Here, we have used the following well‐known estimate

\Vert e^{t(\triangle-bI)}w_{0}\Vert_{\infty}\leq C_{q}(1+t^{-\frac{n}{2q}})\Vert w_{0}\Vert_{q} for all t>0 , (3.22)

which is satisfied for each w_{0}\in L^{q}( $\Omega$) ,
each q\in[1, \infty] ,

and with a constant

C_{q}=C(q, n,  $\Omega$) independent of w_{0} and of t.

Hence, choosing n/2<q<n(p-1)/( $\alpha$ p) to have n/(2q)<1 and |x|^{-\frac{ $\alpha$ p}{p-1}}\in
 L^{q}( $\Omega$) ,

we finish the proof of this lemma. \square 

By Lemma 3.2, the proof of Theorem 3.1 can be finished by showing an estimate

(3.15). To do so, we need the following result on the Hölder continuity of v(x, t) .

Lemma 3.3. Let v(x, t) be a nonnegative solution of the problem

 v_{t}=\triangle v-bv-u^{p}f(v)+ $\kappa$ for

\displaystyle \frac{\partial v}{\partial n}=0 on

v(x, 0)=\overline{v}_{0} for

x\in $\Omega$, t\in[0, T_{\max}) (3.23)

\partial $\Omega$\times[0, T_{\max}) , (3.24)

x\in $\Omega$, t\in[0, T_{\max}) , (3.25)
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where \overline{v}_{0} is a positive constant and u(x, t) is a nonnegative function. There exists

a constant  $\alpha$\in(0,1) satisfying also (3.14), such that if the a priori estimate (3.15)
for u(x, t) holds true with some  $\epsilon$>0 ,

then

|v(x, t)-v(y, t)|\leq$\epsilon$^{p}C|x-y|^{ $\alpha$} for all (x, t)\in $\Omega$\times[0, T_{\max} ),

where the constant C>0 is independent of  $\epsilon$.

This lemma follows from a classical result on the Hölder continuity of solutions

to the inhomogeneous heat equation.

Proof of Theorem 3.1. By assumption (3.8), we have 0<u_{0}(x)< $\epsilon$|x|^{-\frac{ $\alpha$}{p-1}} for all

 x\in $\Omega$ . Suppose that there exists  T_{1}\in(0,1) such that the solution of problem
(3.1)-(3.5) exists on the interval [0, T_{1}] and satisfies

\displaystyle \sup_{x\in $\Omega$}|x|^{\frac{ $\alpha$}{p-1}}u(x, t)< $\epsilon$ for all  t<T_{1}, \displaystyle \sup_{x\in $\Omega$}|x|^{\frac{ $\alpha$}{p-1}}u(x, T_{1})= $\epsilon$ . (3.26)

First, we estimate the denominator of the fraction in (3.12) using assumption (3.8)
as follows

\displaystyle \frac{1}{u_{0}(x)^{p-1}}-(p-1)\int_{0}^{t}f(v(x, s))e^{(1-p)as}ds
\displaystyle \geq 2$\epsilon$^{1-p}|x|^{ $\alpha$}+\frac{1}{u_{0}(0)^{p-1}}-(p-1)\int_{0}^{t}f(v(0, s))e^{(1-p)as}ds (3.27)

+(p-1)\displaystyle \int_{0}^{t}(f(v(0, s))-f(v(x, s)))e^{(1-p)as}ds.
By the definition of T_{\max} and formula (3.12), we immediately obtain

\displaystyle \frac{1}{u_{0}(0)^{p-1}}-(p-1)\int_{0}^{t}f(v(0, s))e^{(1-p)as}ds>0 for all t\in[0, T_{\max} ). (3.28)

Next, we use our hypothesis (3.26) together with the Hölder continuity of v(x, t)
established in Lemma 3.3 to find constants C>0 and  $\alpha$\in(0,1) ,

the both inde‐

pendent of  $\epsilon$\geq 0 ,
such that

(p-1)\displaystyle \int_{0}^{t}|f(v(0, s))-f(v(x, s))|e^{(1-p)as}ds\leq$\epsilon$^{p}Ca^{-1}|x|^{ $\alpha$} (3.29)

for all (x, t)\in $\Omega$\times[0, T_{1}] . Consequently, we obtain the lower bound for the

denominator in (3.12)

\displaystyle \frac{1}{u_{0}(x)^{p-1}}-(p-1)\int_{0}^{t}f(v(x, s))e^{(1-p)as}ds\geq(2$\epsilon$^{-(p-1)}-$\epsilon$^{p}Ca^{-1})|x|^{ $\alpha$} (3.30)
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for all (x, t)\in $\Omega$\times[0, T_{1}] . Finally, we choose  $\epsilon$>0 so small that 2$\epsilon$^{-(p-1)}-$\epsilon$^{p}Ca^{-1}>
$\epsilon$^{-(p-1)} and we substitute estimate (3.30) in equation (3.12) to obtain

0<u(x, t)\displaystyle \leq\frac{e^{-at}}{((2$\epsilon$^{-(p-1)}-$\epsilon$^{p}Ca^{-1})|x|^{ $\alpha$})^{\frac{1}{p-1}}}<\frac{ $\epsilon$}{|x|^{\frac{ $\alpha$}{p-1}}} for all (x, t)\in $\Omega$ \mathrm{x}[0, T_{1}].
This inequality for t=T_{1} contradicts our hypothesis (3.26). \square 

3.2 Activator‐inhibitor type reaction

We consider the following initial‐boundary value problem for a reaction‐diffusion‐

ODE system:

u_{t}=-au+\displaystyle \frac{u^{p}}{v^{q}},
v_{t}=D\displaystyle \triangle v-bv+ $\gamma$\frac{u^{r}}{v^{s}}

for x\in\overline{ $\Omega$}, t>0 , (3.31)

for x\in $\Omega$, t>0 , (3.32)

supplemented with the the initial data u_{0}, v_{0}\in C(\overline{ $\Omega$}) such that

u(x, 0)=u_{0}(x)>0, v(x, 0)=v_{0}(x)>0 for all x\in\overline{ $\Omega$} (3.33)

and with the Neumann boundary conditions for v ;

\partial_{ $\nu$}v=0 for x\in\partial $\Omega$, t>0 . (3.34)

Here, D>0, a, b,  $\gamma$ are nonnegative constants, and the nonlinearity exponents in

(3.31)-(3.32) satisfy

p>1, q>0, r>0, s\geq 0 . (3.35)

From the initial conditions, we have infu0 \displaystyle \equiv\inf_{x\in $\Omega$}u_{0}(x)>0 and infv0 \equiv

\displaystyle \inf_{x\in $\Omega$}v_{0}(x)>0.
In the following, for simplicity of notation, we use the quantities

f_{0,T}\displaystyle \equiv\inf_{t\in[0,T]}e^{a(1-p+q)t} and g_{1,T}\displaystyle \equiv\sup_{t\in[0,T]}e^{b(1-r+s)t} . (3.36)

For p>1 ,
it is easy to see that the reaction‐diffusion‐ODE system (3.31)-(3.32)

has the diffusion‐driven instability at a constant steady state. When the right‐hand
side of the equation (3.31) has a diffusion term and the exponents satisfy

0<\displaystyle \frac{p-1}{r}<\frac{q}{s+1} , (3.37)

the system (3.31)-(3.32) is an activator‐inhiUitor system proposed by Gierer and

Meinhardt. It has been widely used to model various biological pattern formations.
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First, we consider the the kinetic system of ordinary differential equations as‐

sociated with (3.31)-(3.32) :

\displaystyle \frac{d}{dt}\overline{u}=-a\overline{u}+\frac{\overline{u}^{p}}{\overline{v}^{q}}, \frac{d}{dt}\overline{v}=-b\overline{v}+ $\gamma$\frac{\overline{u}^{r}}{\overline{v}^{s}} . (3.38)

When a=b= $\gamma$=1 ,
it turns out that this dynamics already exhibits various

kinds of interesting behaviors including the convergence to the equilibria (0,0) and

(1, 1), periodic solutions, unbounded oscillating global solutions, and a blowup of

solutions in finite time [11]. In particular, if inequalities (3.37) and p-1\leq r
are satisfied, then solutions of (3.38) are global‐in‐time, while there are solutions

blowing up in finite time under the conditions (3.37) and p-1>r . Thus, our

Theorem 3.4 shows that the diffusion of the inhibitor described by v(x, t) induces

a blowup of the space‐inhomogeneous and non‐diffusing activator u(x, t)- also in

the case when space‐homogeneous solutions are global‐in‐time.
In the following, without loss of generality, we assume that  0\in $\Omega$ . Moreover,

system (3.31)-(3.32) is rescaled in such a way so that the diffusion coefficient in

equation (3.32) is equal to one.

We prove that if u_{0} is sufficiently well concentrated around an arbitrary point
 x_{0}\in $\Omega$ (here, for simplicity of notation, we choose  x_{0}=0), if v_{0} is a constant func‐

tion, and if  $\gamma$>0 is sufficiently small then the corresponding solution to problem
(3.31)-(3.34) blows up in a finite time T_{\max}>0 ,

without additional restrictions on

the exponents in nonlinearities.

Theorem 3.4. Assume the nonlinearity exponents satisfy (3.35) and let T>0 be

arbitrary. Suppose that  0\in $\Omega$ and

there exists a number

 $\alpha$\displaystyle \in(0, \frac{2(p-1)}{r}) if n\geq 2 and  $\alpha$\displaystyle \in(0,\frac{p-1}{r}) if n=1

such that u_{0}\in C(\overline{ $\Omega$}) satisfies

0<u_{0}(x)\displaystyle \leq\frac{1}{(u_{0}(0)^{1-p}+2|x|^{ $\alpha$})^{\frac{1}{p-1}}} for all  x\in $\Omega$ , (3.39)

 v(x, 0)=\overline{v}_{0} is a constant such that

0<\displaystyle \overline{v}_{0}<R_{0}\equiv(T(p-1)f_{0,T}(\inf_{x\in $\Omega$}u_{0}(x))^{p-1})^{\frac{1}{q}} for all  x\in $\Omega$ , (3.40)

 $\gamma$\in[0, $\gamma$_{0}) , where $\gamma$_{0}=$\gamma$_{0}(u_{0}, \overline{v}_{0}, T,p, q, r, s, n) is a certain number deter‐

mined in the proof.
Then the corresponding solution to problem (3.31)-(3.34) blows up at some  T_{\max}\leq
T. Moreover, the following uniform estimates are valid

 0<u(x, t)<|x|^{-\frac{ $\alpha$}{\mathrm{p}-1}} and 0<v(x, t)<R_{0} (3.41)

for all (x, t)\in $\Omega$\times[0, T_{\max} ).
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3.2.1 Idea for proof of Theorem 3.4

To show that some solutions to problems (3.31)-(3.34) blow up in a finite time, we

first notice that if (u(x, t), v(x, t)) is their solution, then the functions u(x, t)e^{at}
and v(x, t)e^{bt} satisfy the following boundary‐value problem

u_{t}=\displaystyle \frac{u^{p}}{v^{q}}f(t)
v_{t}=D\displaystyle \triangle v+ $\gamma$\frac{u^{r}}{v^{s}}g(t)
\partial_{ $\nu$}v=0

u(x, 0)=u_{0}(x) , v(x, 0)=v_{0}(x) ,

for x\in\overline{ $\Omega$}, t>0 , (3.42)

for x\in $\Omega$, t>0 , (3.43)

for x\in\partial $\Omega$, t>0 , (3.44)
(3.45)

where

f(t)=e^{a(1-p+q)t} and g(t)=e^{b(1-r+s)t} (3.46)

Obviously, it suffices to prove a blowup of solutions to the new problem (3.42)‐
(3.45).

In the following, we would like to give a sketch of the proof of Theorem 3.4.

There are more details in [2].
First, we note that, for every nonnegative u_{0}, v_{0}\in C(\overline{ $\Omega$}) , u(x, t) and v(x, t)

satisfy

u(x, t)\displaystyle \geq\inf u_{0} and v(x, t)\displaystyle \geq\inf v_{0} for all (x, t)\in $\Omega$\times[0, T_{\max} ). (3.47)

Now, for a given function v(x, t) ,
we solve equation (3.31) with respect to u(x, t)

to obtain the explicit formula for u(x, t) :

u(x, t)=\displaystyle \frac{1}{(\frac{1}{u_{0}(x)^{p-1}}-(p-1)\int_{0}^{t}\frac{f( $\tau$)}{v(x, $\tau$)^{q}}d $\tau$)^{\frac{1}{p-1}}} . (3.48)

From the assumption (3.39) for u_{0}(x) ,
we can obtain the blowup of u(x, t) at x=0

in finite time if v(x, t) is uniformly bounded from above. Next lemma shows that

an upper bound for v(x, t) leads to the blowup of u(x, t) in a finite time indeed.

Lemma 3.5. Let (u(x, t), v(x, t)) be a nonnegative solution to (3.42)-(3.45) with

 $\epsilon$\geq 0 and D>0 . Suppose that for some constant T>0 we have

0<v(x, t)<R_{0}=(T(p-1)f_{0,T}(\displaystyle \inf u_{0})^{p-1})^{\frac{1}{q}} for all (x, t)\in $\Omega$\times[0, T_{\max} ).
(3.49)

Then u(x, t) blows up at certain T_{\max}\leq T.
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Proof of Lemma 3.5. Applying the comparison principle to equation (3.42), we

obtain the estimate

u(x, t)\geq\overline{u}_{1}(t) for all (x, t)\in $\Omega$\times[0, T_{\max} ), (3.50)

where \overline{u}_{1}=\overline{u}_{1}(t) is the solution of the Cauchy problem

\displaystyle \frac{d}{dt}\overline{u}_{1}=\frac{\overline{u}_{1}^{p}}{R_{0}^{q}}f_{0,T}, \overline{u}(0)=\inf u_{0} . (3.51)

The function \overline{u}_{1} may be computed explicitly:

\displaystyle \overline{u}_{1}(t)=\frac{1}{((\inf u_{0})^{1-p}-t(p-1)R_{0}^{-q}f_{0,T})^{\frac{1}{p-1}}} . (3.52)

Recalling the definition of the number R_{0} in (3.49), we obtain that \overline{u}_{1}(t) blows up

at t=T
,

which due to inequality (3.50) implies that T_{\max}\leq T. \square 

From Lemma 3.5, it is sufficient to obtain an upper bound for v(x, t) to finish

the proof of Theorem 3.4. The following lemma shows that a priori estimate for

u(x, t) similar to (3.15) is important to lead to the upper bound for v(x, t) .

Lemma 3.6. Let u(x, t) and v(x, t) be a solution to problem (3.31)-(3.33) . Suppose
that there is a number

 $\alpha$\displaystyle \in(0, \frac{2(p-1)}{r}) if n\geq 2 and  $\alpha$\displaystyle \in(0,\frac{p-1}{r}) if n=1 (3.53)

such that, a priori, the following inequality holds true

0<u(x, t)<|x|^{-\frac{ $\alpha$}{p-1}} for all (x, t)\in $\Omega$\times[0, T_{\max} ). (3.54)

Then, there is an explicit number C_{0}>0 such that for all  $\gamma$\geq 0 we have

\Vert v(t)\Vert_{\infty}\leq\Vert v_{0}\Vert_{\infty}+ $\gamma$ C_{0} for all (x, t)\in $\Omega$\times[0, T_{\max} ). (3.55)

Proof of Lemma 3.6. We use the following integral formulation of equation (3.32)

 v(t)=e^{t\triangle}v_{0}+ $\gamma$\displaystyle \int_{0}^{t}e^{(t- $\tau$)\triangle}(\frac{u^{r}( $\tau$)}{v^{s}( $\tau$)}g( $\tau$))d $\tau$ . (3.56)

Here, we recall the following well‐known estimates for the heat semigroup which

are valid for all  t>0, D>0 , and all w_{0}\in L^{\infty}( $\Omega$) :

\Vert e^{tD\triangle}w_{0}\Vert_{\infty}\leq\Vert w_{0}\Vert_{\infty} and \Vert e^{tD\triangle}w_{0}\Vert_{\infty}\leq C_{l}(1+t^{-\frac{n}{2\ell}})\Vert w_{0}\Vert_{\ell} (3.57)

for each \ell\in[1, \infty] ,
with a constant C_{\ell}=C(\ell, n, D,  $\Omega$) independent of w_{0} and of t.
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Now, we compute the L^{\infty} ‐norm of equation (3.56). Using inequalities (3.57),
the lower bound of v in (3.47) as well as the a priori assumption on u in (3.54) we

obtain the estimate

\displaystyle \Vert v(t)\Vert_{\infty}\leq\Vert v_{0}\Vert_{\infty}+ $\gamma$\int_{0}^{t}\Vert e^{(t- $\tau$)\triangle}(\frac{u^{r}( $\tau$)}{v^{s}( $\tau$)}g( $\tau$))\Vert_{\infty}d $\tau$
(3.58)

\displaystyle \leq\Vert v_{0}\Vert_{\infty}+ $\gamma$ C_{p}(\inf v_{0})^{-s}g_{1,T}\int_{0}^{t}(1+(t- $\tau$)^{-\frac{n}{2\ell}})\Vert|x|^{-\frac{ $\alpha$ r}{p-1}}\Vert_{\ell}d $\tau$,
where the constant g_{1,T} is defined in (3.36). Here, we choose n/2<\ell<n(p-
1)/( $\alpha$ r) to have n/(2P)<1 and |x|^{-\frac{ $\alpha$ r}{p-1}}\in L^{\ell}( $\Omega$) to finish the proof of lemma. \square 

We can show the Hölder continuity of v
,
which is similar to Lemma 3.3. Indeed,

there exists a constant  $\alpha$\in(0,1) satisfying also (3.53) and a number C>0 , the

both independent of  $\gamma$>0 , such that

|v(x, t)-v(y, t)|\leq $\gamma$ C|x-y|^{ $\alpha$} for all (x, t)\in $\Omega$\times[0, T_{\max} ).

We are ready to prove a result on the one‐point blowup of solutions to the

reaction‐diffusion‐ODE problem (3.31)-(3.34) .

Proof of Theorem 3.4. Let (u(x, t), v(x, t)) be a solution to the problem (3.42)‐
(3.45). By Lemmas 3.5 and 3.6, it suffices to show the following estimate

0<u(x, t)<|x|^{-\frac{ $\alpha$}{p-1}} for all (x, t)\in $\Omega$\times[0, T_{\max} ), (3.59)

under the assumption that  $\gamma$>0 is sufficiently small. Let T>0 be a number such

that inequality (3.40) holds true.

By assumption (3.39), we have 0<u_{0}(x)<|x|^{-\frac{ $\alpha$}{p-1}} for all  x\in $\Omega$ , hence, by a

continuity argument, inequality (3.59) is satisfied on a certain initial time interval.

Suppose that there exists  T_{1}\displaystyle \in(0, \min\{T_{\max}, T\}) such that the solution of problem
(3.42)-(3.45) exists on the interval [0, T_{1}] and satisfies

\displaystyle \sup_{x\in $\Omega$}|x|^{\frac{ $\alpha$}{p-1}}u(x, t)<1 for all t<T_{1}, \displaystyle \sup_{x\in $\Omega$}|x|^{\frac{ $\alpha$}{p-1}}u(x, T_{1})=1 . (3.60)

We are going to use the explicit formula (3.48) for u(x, t) and the Hölder

continuity of v(x, t) to obtain a contradiction with equality (3.60).
First, notice that assumption (3.39) can be written as u_{0}(x)^{1-p}\geq 2|x|^{ $\alpha$}+

u_{0}(0)^{1-p} . Thus, we may estimate the denominator of the fraction in (3.48) using
this assumption as follows

\displaystyle \frac{1}{u_{0}(x)^{p-1}}-(p-1)\int_{0}^{t}\frac{f( $\tau$)}{v(x, $\tau$)^{q}}d $\tau$
\displaystyle \geq 2|x|^{ $\alpha$}+\frac{1}{u_{0}(0)^{p-1}}-(p-1)\int_{0}^{t}\frac{f( $\tau$)}{v(0, $\tau$)^{q}}d $\tau$ (3.61)

+(p-1)\displaystyle \int_{0}^{t}(\frac{1}{v(0, $\tau$)^{q}}-\frac{1}{v(x, $\tau$)^{q}})f( $\tau$)d $\tau$.
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By the definition of T_{\max} and due to formula (3.48), we immediately obtain

\displaystyle \frac{1}{u_{0}(0)^{p-1}}-(p-1)\int_{0}^{t}\frac{f( $\tau$)}{v(0, $\tau$)^{q}}d $\tau$>0 for all t\in[0, T_{\max} ). (3.62)

Next, we use our hypotheses (3.60) implying estimate (3.55) and the Hölder con‐

tinuity of v(x, t) as well as the lower bound of v(x, t) in (3.47), to find constants

C>0 and  $\alpha$\in(0,1) , satisfying also (3.53), such that the following inequality is

satisfied:

(p-1)\displaystyle \int_{0}^{t}|\frac{1}{v(0, $\tau$)^{q}}-\frac{1}{v(x, $\tau$)^{q}}|f( $\tau$)d $\tau$\leq $\gamma$ C(T)|x|^{ $\alpha$} (3.63)

for all (x, t)\in $\Omega$\times[0, T_{1}] . Consequently, applying inequalities (3.62) and (3.63) in

(3.61) we obtain the following lower bound for the denominator in (3.48)

\displaystyle \frac{1}{u_{0}(x)^{p-1}}-(p-1)\int_{0}^{t}\frac{f( $\tau$)}{v(x, $\tau$)^{q}}d $\tau$\geq(2- $\gamma$ C)|x|^{ $\alpha$} (3.64)

for all (x, t)\in $\Omega$\times[0, T_{1}] . Finally, we choose  $\gamma$>0 so small that  $\gamma$ C<1 (hence
2- $\gamma$ C>1) and we substitute estimate (3.64) into equation (3.52) to obtain

0<u(x, t)\displaystyle \leq\frac{1}{((2- $\gamma$ C)|x|^{ $\alpha$})^{\frac{1}{p-1}}}<\frac{1}{|x|^{\frac{ $\alpha$}{p-1}}} for all (x, t)\in $\Omega$\times[0, T_{1}].
This inequality for t=T_{1} contradicts our hypothesis (3.60). \square 
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