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1 Introduction

This article summarizes the joint work with Takayuki Kubo (University of Tsukuba) and
Yoshihiro Shibata (Waseda University) [5], [6].

Two phase fluid systems appear in many situation, such as boiling water, carbon-
ated water, etc., accompanied by complicated physics. Lots of efforts have been made
to establish physically correct models of two phase fluid systems. Thermodynamically
consistent treatment (e.g., satisfaction of the entropy principle) of a two phase flow con-
sisting of multi components is very important in this argument. Thermodynamically
consistent modeling often provides complicated constitutive relations and forms of ther-
modynamical quantities, and therefore the final form of a system of equations would
be too complicated to be analyzed mathematically in the current stage. For an overall
picture of such modeling, see [1], [2], [3].

Instead of dealing with a physically correct model of two phase system, we consider
a simplified problem: two phase flows in a compact domain consisting of two different
compressible barotropic viscous fluids separated by a moving sharp interface under the
‘kinematic conditions, without phase transition, surface tension and body force. This kind
of simplification could be seen as idealization or approximation that is necessary to be
done as the first step, especially for possible mathematical analysis of a physically correct
full system. Our goal is to perform mathematical analysis on the above simplified system
showing local well-posedness [5] and global well-posedness with an additional assumption
on the viscosity coefficient and smallness of initial data [6].

We formulate our problem: Let €, 2, be connected open subsets of R such that
Qp CQand I'. = 00, ' := 00, are compact N — 1 dimensional manifolds. Set
Q_ =0\ (QuT).
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At time ¢t = 0, the two separated domains 2.+ are occupied by two barotropic viscous
fluids with

velocity:  ul.(€) (satisfying the kinematic condition on T',T"_),
density:  pi +6%(¢), B+ > 0: reference density (constant),
pressure:  Py(ps + 0%(€)), Pr € C®, P} >0,
Vv +TVv
= ——2— ,
ph >0, ph+ pd >0 in the case of local well-posedness,

stress tensor: Sy (ul) = 2ulD(ul) + 42 (V- ul)I, D(v):

2
ph >0, Nu:lt + #2 > 0 in the case of local well-posedness,

where [ is the identity matrix. The domains Q.+ and their bqundaries I, T'_ evolve as a
family of Lagrangian fluid parcels, where each fluid parcel starting at £ € Q0 U _ has
the velocity u(€,t) and density pl(¢,t). Let X? be the flow of fluid parcels,

Xtigmalet) =6+ [ uEohs, €€0,UD, 120,
)]

where z(£,t) stands for the position at time ¢ of the fluid parcel starting at £. Since
mass transfer is not taken into account, namely the family of fluid parcel starting from
Q. (resp. Q_) forms a moving domain with the kinematic condition

Qf = X'(Qy) (resp. Q8 = X*(Q)),

we have the sharp moving interface defined as I'* := 99, that separates the two fluids.
The outer boundary of Q' is denoted by I'* := 90! \ I'.

We introduce the notation uy. := ulg, and p% := p¥|q,. Suppose that u.. are smoothly
obtained and that | fot Vuy (€, s)ds| are small enough for ¢ € [0, T]. Then the Lagrangian
transformation can be defined to be a diffeomorphism from Qf, onto € for each ¢ € [0, T7:

(XH Qv Eey, XN =zs=(X")" ),
DeXYE) =1+ /t Vuy (€, s)ds, € € Qy: invertible,
0

DL((X)(0) = (DX (@) =1 +Ta( [ Vus (€, s)ds) with X¥(€) = o,
Vo(w) — O(w — 0).



We remark that for functions f(z,t), g(€,t) such that f(X'(£),t) = g(&,t), we have

T, f(XHE), 1) = Vea(&,) + Vegl&, Vi / Vs (€, 5)ds).

Through the Lagrangian transformation, the free boundary problem is transformed to
the fixed boundary problem defined on 2. UI'UI'_. This is the standard approach to free
boundary problems without mass transfer across an interface. The governing equations
are derived by continuum mechanics in the Eulerian description. The Eulerian fluid field
(va(z,t), p+(z,t), p+(z, t)) defined for z € QY is given by

vﬂ:(mvt) = ui((Xt)_l(:L'),t), pi(x’ t) = pi((Xt)_l(th)’
px(w,t) = Pr(pf((X*)'(2),1).

Let n*, n* be the unit outer normal of I'*, I'? respectively. The following are the equations
of motion of our system in the Eulerian description: For ¢ > 0,

( 8tpi +V- (pivi) =0 in Qi,
pi{é‘tvi + (’Ui . V)’Ui} + Vpi — DiVSi(’Ui) =0 in Qg:,

. t T _ ¢ t
61_1)r31+v_(z +en',t) = 51_1)1(1)14_1}4_(13 en',t) on I',

(B) lirélJr{S_ (v_(z +en',t)) —p_(z +en’, ) [}n'
- li%}'_{SJr(m(a; —en',t)) —pilxz—en', )[}n' =0 onT¥
lim {S_(v_(z —en’,t)) — p_(z —en’ ,t)I}n".

e—0+
=—-P (p_)n*  onT%,
[ pe(2,0) = pyp +0%(z), vi(z,0) =ul(2) in Qy.

The first equation is mass balance; the second one is momentum balance; the third one
is continuity of velocity across the interface, which means that fluid parcels never cross
the interface (kinematic condition); the fourth one is stress balance across the inner
interface; the fifth one is stress balance across the outer interface, where the external
pressure is assumed to be the reference pressure of the fluid in €_; the sixth one is the
initial condition. The system (E) is transformed into the following problem in the fixed
domains by the Lagrangian transformation: Let 0.(¢,t) := pk(&,t) — (ps + 6%.(€)) with
given 0% and n,n_ be the unit outer normals of I', '_. Then we have for t > 0,

( 8t0:|: + (ﬁi + Oi)V UL = Ndl: in Qi,
(Ps +09)Ous + V{PL(ps + 63)0:}
—DivSi(ui) = gg: +Nﬂ2: in Qi,
El_l&_ u_(E+en,t) = 61_1}(1)14_ uy (€ —en,t) on T,

(L) El_i)%zr{Sw(u_(g +en,t)) — PL(p- +0° (€ +en))0_(£ +en,t)In
—61_1)131+{S+(U+(§ —en,t)) = Pi(py +0%(6 — en))0y (€ —en, t)I}n

=R+ N3 on T,
T {S_(u (€ — zn_8) — P’ (- + 82 (6 — en_))0_(€ — e, )}
=h" + N onl_,

\ 0:!:(5, 0) = Oa Ui(g, O) = U(j:(g) in Q:l:a
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where

i j . 901 Our duy H%u t
1, N7 = [nonlinear terms of 0, T o e e Jo Vuds],

g%, k%KY = [terms of §°%, VY.

We prove well-posedness of (L) in a suitable function space so that the invertible La-
grangian transformation is well-defined, yielding well-posedness of (E) as well.

2 Result and idea of proof: local well-posedness

Let W;*(D) be the usual Sobolev space of functions defined on D, where W)(D) :=
Ly(D) is the Lebesgue space. Let W"((0,7),X) be the usual Sobolev space of X-
valued functions defined on the interval (0,7"). For 0 < § < 1 and [ = 1,2, let B%(D)
denote the real interpolation space defined by BLY(D) := (Ly(D), W}(D)), with the real
interpolation functor (-, -)g,. We say that I',I'_ are Wi'-manifolds, if they are manifolds
with charts of the W;"-class.

Theorem 2.1. Let N > 2, 2<p<oo, N<g< oo and [','_ be WqQ_l/q-mamfolds,
Let initial data (09,ul) satisfy 0% € W} (Qx), u € (BZ7Y?(Qu))N. For each R > 0,
there exists T = T'(R) > 0 such that if initial data satisfies
o 162 lwin) + Tul [l g2a-veq, < By
o compatibility conditions from (E),
o —P+/2 <01 < pi/2,
then (L) admits the unique solution (0+,u+) as
b € Wpl((ov T)v qu(Q:i:))a
ur € (W ((0,T), Ly(€22)) N1 Ly((0,T), W3 () .

Furthermore, the solution (0x,u+) yields the invertible Lagrangian transformation and
hence the unique solution (py,vy) to (E).

Note that [7], [8] showed similar results in the Holder space. Theorem 2.1 is proved
in the standard framework of the contraction mapping principle, where closed estimates
required by this argument is obtained through the maximal L,-L, regularity theory of
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the inhomogeneous linear problems:

(00 + 71OV - ux = fi(6,1) in Q4 x (0,7),
72 (€)0us + V{73 (£)0+} — DivSy(us) = g+(€,1)  in Qu x (0,7),
61_i)r51+ u_(§+en,t) = Elil%lJr Uy (€ —en,t) onT x (0,7),

eli%l+{5_ (u_(E+en,t)) — Y2 (E+en)d_(€ +en,t)I}n

BN Dl (56— en. 1) = 226 = en)0y € — en )T}
| — h(&,1) on T x (0,7),
Tim {5 (u-(€ — en_ 1)) = 7€ — en)p_(€ — en_, )T}
=h_(§1) onT'_ x (0,7,
| 060 =0, uile.0)=ul(©) in 0.

Here 74, f+, g+, h, h_ are given functions. In order to state the two key facts on (L);, we
introduce several function spaces:

Wy 4((0,00), X) == {f(t) € Ly*((0,00), X)) | e "0, f(t) € Ly((0,00),X), i =0,...,1},
Lp,’y((O: OO)? X) = Wz?,'y((oa 00)7 X)’

Hy (R, X):={f(t) € Ly(R, X)| e‘”’tAfy,f(t) € L,(R, X) for any v >~} with

Asf = L7 NL[f](N)], L: Fourier-Laplace transform (Bessel potential space),
H;,((0,00), X) = {fle0 | f € H,,(R, X)}.

The key facts are:

Lemma 2.2. Let f1 = 0,9+ =0,h = 0,h_ = 0. Then there exist vy > 0, C > 0 such
that, for any
0% € W) (Q1), ui € (B2 P(Qu))
satisfying the compatibility conditions from (L), we have the unique solution (0+,u) to
(L), as
Hi (S W;,n ((0, OO), W;(Qi)),
s € Ly, ((0,00), (W (Q))™) N W5, ((0,00), (Lg(Q24))Y)

M

with the estimate

| €7 (882, 70+) [l Ly(0.00)wi(s)) + | €7 (B, Yus) |l L, (0,00, Ea(20))

+ 1l e s (L0 wz@en< CLI 02 wpas) + 1l v [l p2a-vmq,}
for any v = .

Lemma 2.3. Let 0% =0, ul = 0. Then there exists 7o > 0, C > 0 such that, for each
fi € LP,’Yz((()’ OO), qu(Qi))f g+ € LP,"/z((O’ OO), (Lq(Qi))N))
1/2
hyh € Ly, ((0,00), (WES))N) N Hyl3 ((0,00), (Lg(2))Y),
(L), admits the unique solution (0, u+) to (L), as

0:&: S Wl ((O> Oo)qul(ﬂi))7

P2

uy € L y’Yz((Oa OO), (Wg(Qﬂ:))N) nw, ((0’ OO)’ (Lq(Qi))N)>

P72
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with the estimate

| € (08, 70) ||, (0,003 (1))
+ || e"’t(@ui,'yui,/\}/QVUi, V2us) |1, (0,000, L (24))
< C{ll e 0ufx lrpoo0rwi@en + I €70 [z, (000, (La@en™)
+ || e (AY2R, VR, AY2h_ Vh_) ||1, (0,00 La(22)) }

for any v > 7.

These two lemmas are proved by Weis’s operator valued Fourier multiplier theorem
and R-boundedness of the solution operator to the resolvent problem derived from (L),.
For this purpose we consider the generalized resolvent problem:

(M +92(OV - us = f2(€,N) in
() Aus + V{2 (€)0+} — DivSi(us) = g+(£,))  in Qx,
lir(1)1+ u_(E+en,A) = m& uy (& —en,A) on T,

(L), El_igl_'_{S_(u_(E +en,A) — Y2 (E+en)d_(E+en, NI In
=T 50, € e ) — 206~ en)0-(€ —em N

= h(g,N) on T,
El_i)r31+{S¥ (u-(§ —en_,A)) — Y2 (€ —en)f_(§ —en_, \I}in_
\ ' = h_(£&,)\) onT_.

The unknown functions 6, are removed through the first equation to obtain the following
problem: '

2 (E)Mur — AT VLNV - us}

—DivSi(ui) = g:l:(é-, )\) in Qi,
Elilg1+ u_(€+en, ) = 61_1)%1+ us (€ —en, \) on T,

B ] i LS (€ en, ) + NI (€ +en) (€ + en)V - u (€ +en) I

L
W — lim {Sy (uy (€ —en, \) + AT (€ — en)i (€ —en)V - uy(§ = en)in
= h(&,N) onT,
Jim {8 (u (€ —en, \) + AL (€ — en )72 (€ —en )V - u_(§ —en)I}n_
=f~L__(£’)\) on F_’

(L), is reduced to the superposition of solutions to whole or half-space problems by the
localization technique:
e Note that @ =Q, UQ_UTUT_ C RY is compact.
o Consider a (fine) covering {B;}ic; of Q, where B; are open balls.
e Take diffeomorphisms ®; : RN — ®(RY) such that
®;(RY) D B;, ®;(RY)YUB; C B;n (T UT_),
‘Di(Rf /_) = inside/outside across I','_, if ®;(RY), ', I'_ intersect each other,

N ._ PN N ._ N N ._ N
RY := R¥|,y—0, RY := RV|, o, RY := R¥|, 0.
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e Take [0, 1]-valued smooth indicator functions x;, X; on RY such that
suppy; Csuppx; C B;, X; = 1 on suppx;, in =1on .
iel
e For example, for B; such that B; N [" # ¢, we consider

[ ()Ml = ATV ) (i d)V - uh )

—DivSi(uh) = (xig+)  in O(RY),
Jim u' (E+en,\) = Jim u' (€ —en, \) on ®(RY),
E£%1+{S_ (u" (& +en, \) + )\_1()2,-71 VXYV -’ (€ +en)in
i (S0 (€~ en, ) + A (T D)XV - (€ - e
( = (xih) on ®(RY).

where 73, v%,72 are extended to be zero outside B;.

(L)r,i

D‘

e The other cases than (f))m are already solved in [4].

e The solutions of (L), is recovered through Z Xii, where u; are solutions of (fj)M
iel
e Changing variable by & = ®;(z) in (i)m., we obtain the so-called model problem
of the form
Yy + AV (V- ug)} — DivSe(uy) = g4 in RY,

. o _ — N
) 61_1&& u_(z +en) 51—1>I(§1+ up(z —en) =k on Ry,

(L) model Elix&{& (u_(z +en)) = A YL(V -u_(z +en))}In
- Jim (S @ en)) = X3 (V s o = en) )
=h onRY,

\

where n = (0,...,0,—1).

Following the point-wise treatment shown in [4], further reduction of (E)model into the
following problem with constant coefficients is available:
[ Y us +6.V(V - uy) — DivSi(ug) =0 in RY,
lim u_(x +en) — 1im+ ur(z —en) =k on RY,
(L)modet hm {S_(u_ (z+en))—6_(V-u_(z+en))}in
Tl (84 (o = ) = 84(V - (o = em))
| =h on RY.
By Fourier-Laplace transformation, solutions to (L)meqe are represented explicitly. Through

analysis of the Lopatinski determinant under the assumption pl + pd > 0 for the vis-
cosity coeflicients, we obtain a R-bounded solution operator defined on

Acpo ={A € C\ {0} : [arghA| < m —¢, [A] = Ao, -+ }-

We may go back to the original problem with this R-bounded solution operator, to
obtain Lemma 2.2 and Lemma 2.3. More details are shown in [5].
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3 Result and idea of proof: global well-posedness

‘Consider the Lagrangian transform of (E) into (L) with 64 := p% — p. instead of 04 :=
p% — (px + 6%) (we assume smallness of initial data in this section). Then we have

( 00+ piV - us =Nj1: in Qu,
POy + V{P;(ﬁi)é)i} — DivSy (ui) = Nj2: in Qg,
lirr:_ u_(§+en,t) = lim uy (€ —en,t) on T,

(L) lim (S (u_(€+en,1)) = PL(p_)0_(E +en, )}
- Egrgl+{5+(u+(§ —en,t)) = PL(p)0(E —en,t)[}n=N?  onT,
51_1}1&{5_ (u—(§ —en_,t)) = PL(p-)0-(§ —en_,t)[}n_ = N* onT_,
0:}:('5’ 0) = 00j: (5)7 ui(£7 ) u?l:(g)

where N are nonlinear terms. We put a stronger assumption on the viscosity coefficients
as )

in Q:b

2
S:l:(v) = Zlu’lf:D(v) +:U’§:(v ! U)Ia /J’:ll: > 07 N/J’:II: + N’i > 07

which is still physically standard.

Since we seek for fluid motion tending to zero, i.e., the motion without motion as a
rigid body, we assume the orthogonal condition of initial data: Set the rigid space

{v(z) : Q= RY | Vo + TV =0}
It is known that the rigid space has the orthogonal basis
{bi]’}i‘jzl,Z,...,N = {wiej - «'Ejez‘}i,jzl,Z,...,N~
The orthogonal condition of initial data is

Z((ﬁi + e?l:)u?b bij)Lz(Qi) = Oa Z?] = 17 2, e 7N~
+

For a fluid field (v4,ps+) in the Eulerian description, we have conservation of angular
momentum:

Z/ pi(x, t)ve(z,t) - bis( d:v—Z/ pivaiOx) bij(z)dz.
931 Qg
If initial data satisfies the orthogonal condition, we have for all ¢ > 0,
Z/ pi(x, t)ve(z,t) - bij(z)dr =0
T Yo
By the Lagrangian transformation
t
= X"¢), DX'(¢) = I+/ Vug (€, s)ds
0

detDXH(€) =1+ f/o(/ot Vui(€,s)ds), Vo(y) =0 (y — 0),
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we have the conservation of angular momentum in the Lagrangian description
S [ (s 04(6 s (€) (X (€It DX €)ldE =0
+ VO
Therefore, we see that

Z / prus(&,t) - bi;(€)dE = [quadratic terms of 0., uy, f/o],
£ V0

even though it is apparently a first order term.

Theorem 3.1. Let N > 2,2 < p < 0o, N < q < 0o and I',T_ be W2 V" -manifolds.
Let initial data (03,u})be such that 03 € W} (Qy), ul € (BE7YP(Q))N,

o compatibility conditions from (E),
o —pi/2 <0 < puf2,

e orthogonal condition.

Then there exists € > 0 such that, if initial data satisfies

163 llwces) + Il ud ||B§;;_1/p(gi)§ e (smallness condition),

(L) admits the unique global solution (0x,uy) as
s € Wpl((ov OO)> qu(Q:I:))z Ut € (Wpl((o) OO), LQ(Q:‘:)) N Lp((07 00)7 WqQ(Qi)))Nr

possessing the following estimate: for some v > 0,

D Al e0x lwpoeowis) + Il €t |l,(0.00,w202))
+

+ || € 0us ||z, ((0,00),Lq(22)) } < Ce (C > 0: independent of €).

This result yields the invertible Lagrangian transformation and therefore the unique
global solution (ps,v+) to (E).

Theorem 3.1 is proved by extending a time-local solution to any time interval through
a priori estimate and showing exponential stability of the analytic semigroup for the lin-
earized problem. For exponential stability of the semigroup, we study the corresponding
resolvent problem for A € {A € C|ReA > 0,|\| < Ao} with the following strategy:

e )\ £ 0 = existence: Fredholm alternative principle,
uniqueness: Ly-energy estimate with compactness of Qu, 2ul + p > 0,
~HE +

o )\ = (0 = generalized Cattabriga theorem.



For extension of a local solution (04, u+) to (L) defined on (0, T], we show the following
a priori estimate: Set

BT (0, us) =Y {]l €0 [lwomwis) + | €0 lwacom)a@s
+

+ |l e us ||z, 0m) w20}

IT(H:Q:’U:!:’N:!:’N:?:’N?) N4 Z{” Gi “Wl(&'li) + “ ud: ”321 P (qy)

+ [l e AL IILP((O,TLqu(ni»H I € NZ 1,007, La@an }
+ | N Ny omwien + 11 € ON? |1 om w1 2n))
+1 N ||Lp((0,T),W;(Qi)) + || eAﬂatj\f4 ”LP((O,T),Wq_l(Qd:)) :

Then, through the linearized problem of (L), we obtain for all v € [0,71),
/p
BT <CIT + Z / e”t Z/ et - b”dg‘> ds} :

Note that is quadratic with respect to 0., uL, f/o( fOT Vuads), through which we
obtain C,C > 0 independent of £ and T such that

o~
Ef <C(e+ (E$)2) and hence E, < Ce.

The quantities || 0(T) [lwa(ou), | ue(T) ||B§:;_1/p(9i) are estimated with || 62 [lwz(a.),
Il ud ”32'1—1/’)(9:&)’ ET, and we may continue to solve (L) up to t = T + T;. We still have
9P
the same estimates for £ 7%, || 0.(T +T7) [lwyau)» || us(T+T:) [l g21-10 ) to extend
q9,p
the solution up to t = T + 27.. Thus we obtain the time-global solution.
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