
AN ITERATIVE ALGORITHM FOR GENERALIZED MIXED

EQUILIBRIUM PROBLEMS, MONOTONE MAPPINGS AND

PSEUDOCONTRACTIVE MAPPINGS

JONG SOO JUNG

DEPARTMENT OF MATHEMATICS, DONG‐A UNIVERSITY

ABSTRACT. In this paper, we introduce a new iterative algorithm for finding a common

element of the set of solutions of a generalized mixed equilibrium problem related to a

continuous monotone mapping, the set of solutions of a variational inequality problem for

a continuous monotone mapping, and the set of fixed points of a continuous pseudocon‐
tractive mapping in Hilbert spaces. Weak convergence for the proposed iterative algorithm
is proved.

1. INTRODUCTION

Let H be a real Hilbert space with inner product \rangle and induced norm \Vert . and let

 C be a nonempty closed convex subset of H . Let B : C\rightarrow H be a nonlinear mapping, let

 $\varphi$ :  C\rightarrow \mathbb{R} be a function, and let  $\Theta$ be a bifunction of  C\times C into \mathbb{R}
, where \mathbb{R} is the set of

real numbers.
The generalized mixed equilibrium problem (for short, GMEP) of finding x\in C such

that

(1.1)  $\Theta$(x, y)+\{Bx, y-x\rangle+ $\varphi$(y)- $\varphi$(x)\geq 0, \forall y\in C,
was introduced by Peng and Yao [17] (also see [24]). The set of solutions of the GMEP is

denoted by GMEP ( $\Theta$,  $\varphi$, B) .

The GMEP is very general in the sense that it includes, as special cases, the generalized
equilibrium problem (for short, GEP) in case that  $\varphi$=0 in (1.1) ([20]), the mixed equilib‐
rium problem (for short, MEP) in case that B=0 in (1.1) ([5, 22 the equilibrium problem
(for short, EP) in case that B=0 and  $\varphi$=0 in (1.1) ([2, 8, 9]) and others. In particular, if

 $\varphi$=0 and  $\Theta$(x, y)=0 for all x, y\in C in (1.1), the GMEP reduces the following variational

inequality problem (for short, VIP) of finding x\in C such that

{Bx, y-x)\geq 0, \forall y\in C.
The set of solutions of the VIP is denoted by VI(C, B) .

A mapping F of C into H is called monotone if

\langle x-y, Fx-Fy\rangle\geq 0, \forall x, y\in C.
A mapping F of C into H is called a inverse‐strongly monotone (see [10]) if there exists a

positive real number  $\alpha$ such that

\{x-y , Fx—Fy )\geq $\alpha$\Vert Fx-Fy\Vert^{2}, \forall x, y\in C.

Recall that a mapping T:C\rightarrow H is said to be pseudocontractive if

\{x-y , Tx‐Ty)\leq\Vert x-y\Vert^{2},
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and T is said to be k ‐strictly pseudocontractive if there exists a constant k\in[0 , 1) such that

{x-y , Tx ‐ Ty} \leq\Vert x-y\Vert^{2}-k\Vert(I-T)x-(I-T)y\Vert^{2}, \forall x, y\in C.

where I is the identity mapping. A mapping T of C into itself is called nonexpansive if \Vert Tx-
Ty\Vert\leq\Vert x-y \forall x, y\in C . Obviously, the class of k‐strictly pseudocontractive mappings
includes the class of nonexpansive mappings as a subclass, and the class of pseudocontractive
mappings includes the class of strictly pseudocontractive mappings as a subclass. Moreover,
this inclusion is strict due to an example in [7] (see, also Example 5.7.1 and Example 5.7.2

in [1]).
Recently, many authors have introduced some iterative algorithms for finding a common

element of the set of the solutions of the GMEP, the GEP, the MEP, the EP, and the

VIP combined with the fixed point problem for strictly pseudocontractrive mappings; see

[3, 4, 6, 12, 15] and the references therein.

In 2007, Tada and Takahashi [19] introduced an iterative algorithm for finding a com‐

mon element of the set of solutions of the EP and the set of fixed points of a nonexpansive
mapping, and proved weak convergence of the sequence generated by the proposed iterative

algorithm. In 2008, Moudafi [16] proposed an iterative algorithm for finding a common ele‐

ment of the set of solutions of the GEP related to an  $\alpha$-\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}‐strongly monotone mapping
B and the set of fixed points of a nonexpansive mapping, and obtained weak convergence
of the sequence generated by the proposed iterative algorithm. In 2009, Ceng et al. [4]
presented an iterative algorithm for finding a common element of the set of solutions of the

EP and the set of fixed points of a k‐strictly pseudocontractive mapping, and showed weak

convergence of the sequence generated by the proposed iterative algorithm. In 2012, Jung
[12] considered an iterative algorithm for finding a common element of the set of solutions

of the GMEP related to  $\alpha$-\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}‐strongly monotone mapping B , the set of solutions of

the VIP for  $\beta$-\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}‐strongly monotone mapping F and and the set of fixed points of a

k‐strictly pseudocontractive mapping, and established weak convergence of the sequence

generated by the proposed iterative algorithm.
On the other hand, in 2003, Takahashi and Toyoda [21] proposed an iterative algorithm

for finding a common element of the set of solutions of the VIP for  $\alpha$-\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}‐strongly
monotone mapping F and the set of fixed points of a nonexpansive mapping, and proved
weak convergence of the sequence generated by the proposed iterative algorithm.

In this paper, motivated and inspired by the above mentioned results, we introduce a

new iterative algorithm for finding a common element of the set of solutions of the GMEP

related to a continuous monotone mapping B , the set of solutions of the \mathrm{V}\mathrm{l}\mathrm{P} for a continuous

monotone mapping F and the set of fixed points of a continuous pseudocontractive mapping
T in a Hilbert space. We prove weak convergence of the sequence generated by the proposed
iterative algorithm to a common element of three sets. As direct consequences, we obtain

the results for the GEP related to a continuous monotone mapping B , the MEP and the

EP, combined with the VIP for a continuous monotone mapping F and the fixed point
problem for a continuous pseudocontractive mapping T . Our results extend, improve, and

develop some recent results in the literature.

2. PRELIMINARIES AND LEMMAS

In the following, we denote by Fix (T) the set of fixed points of the mapping T , and

we denote the strong convergence and the weak convergence of \{x_{n}\} to x by x_{n}\rightarrow x and

x_{n}\rightarrow x , respectively.
Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H . In

H , we have

\Vert $\lambda$ x+(1- $\lambda$)y\Vert^{2}= $\lambda$\Vert x\Vert^{2}+(1- $\lambda$)\Vert y\Vert^{2}- $\lambda$(1- $\lambda$)\Vert x-y\Vert^{2}
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for all x, y\in H and  $\lambda$\in \mathbb{R} . For every point x\in H , there exists a unique nearest point in

C , denoted by P_{C}(x) , such that

\Vert x-P_{C}(x)\Vert\leq\Vert x-y\Vert
for all  y\in C. P_{C} is called the metric projection of H onto C. P_{C}(x) is characterized by
the property:

(2.1) u=P_{C}(x)\Leftrightarrow\langle x-u, u-y)\geq 0 for all x\in H, y\in C.

It is also well known that H satisfies the Opial condition, that is, for any sequence \{x_{n}\}
with x_{n}\rightarrow x , the inequality

\displaystyle \lim_{n\rightarrow}\inf_{\infty}\Vert x_{n}-x\Vert<\lim \mathrm{i}t\mathrm{f}\mathrm{f}n\rightarrow\infty\Vert x_{n}-y\Vert
holds for every  y\in H with y\neq x.

For solving the GMEP, the GEP, the MEP, and the EP for a bifunction  $\Theta$ :  C\times C\rightarrow \mathbb{R},
let us assume that  $\Theta$ satisfies the following conditions:

(A1)  $\Theta$(x, x)=0 for all x\in C ;

(A2)  $\Theta$ is monotone, that is,  $\Theta$(x, y)+ $\Theta$(y, x)\leq 0 for all x, y\in C ;

(A3) for each x, y, z\in C,

\displaystyle \lim_{t\downarrow}\sup_{0} $\Theta$(tz+(1-t)x, y)\leq $\Theta$(x,y) ;

(A4) for each x\in C, y\mapsto $\Theta$(x, y) is convex and lower semicontinuous.

We can prove the following lemma by using the same method as in [14, 24], and so we

omit its proof.

Lemma 2.1.LetC be a nonempty closed convex subset of H. Let  $\Theta$ be a bifunction form
 C\times C to \mathbb{R} satisfies (\mathrm{A}1)-(\mathrm{A}4) , and let  $\varphi$ :  C\rightarrow \mathbb{R} be a proper lower semicontinuous and

convex function. Let B : C\rightarrow H be a continuous monotone mapping. Then, for r>0 and

x\in H , there eststs u\in C such that

 $\Theta$(u, y)+\displaystyle \{Bu, y-u)+ $\varphi$(y)- $\varphi$(u)+\frac{1}{r}\{y-u, u-x\rangle\geq 0, \forall y\in C.
Define a mapping K_{r}:H\rightarrow C as follows:

K_{r}x=\{u\in C :  $\Theta$(u,y)+\langle Bu,  y-u\rangle

+ $\varphi$(y)- $\varphi$(u)+\displaystyle \frac{1}{r}\{y-u, u-x\rangle\geq 0, \forall y\in C\}
for all x\in H and r>0 . Then, the following hold:

(i) For each x\in H,  K_{r}(x)\neq\emptyset;
(ii)  K_{r} is single‐valued;

(iii) K_{r} is firmly nonexpansive, that is, for any x, y\in H,

\Vert K_{r}x-K_{r}y\Vert^{2}\leq\langle K_{r}x-K_{r}y, x-y\rangle ;

(iv) Fix (K_{r})=GMEP( $\Theta$,  $\varphi$, B) ;
(v) GMEP ( $\Theta$,  $\varphi$, B) is closed and convex.

We also need the following lemmas for the proof of our main results.

Lemma 2.2 ([18]). Let H be a real Hilbert space, let \{$\alpha$_{n}\} be a sequence of real numbers

such that 0<a\leq$\alpha$_{n}\leq b<1 for all n\geq 1 , and let \{v_{n}\} and \{w_{n}\} be sequences in H such

that, for some c

\displaystyle \lim_{n\rightarrow}\sup_{\infty}\Vert v_{n}\Vert\leq c, \displaystyle \lim_{n\rightarrow}\sup_{\infty}\Vert w_{n}\Vert\leq c , and \displaystyle \lim_{n\rightarrow}\sup_{\infty}\Vert$\alpha$_{n}v_{n}+(1-$\alpha$_{n})w_{n}\Vert=\mathrm{c}.
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Then \displaystyle \lim_{n\rightarrow\infty}\Vert v_{n}-w_{n}\Vert=0.
Lemma 2.3 ([21]). Let C be a nonempty closed convex subset of a real Hilbert spaces H,
and let \{x_{n}\} be a sequence in H. If

\Vert x_{n+1}-x\Vert\leq\Vert x_{n}-x \forall x\in C and Vn \geq 1,

then \{P_{C}x_{n}\} converges strongly to some z\in C , where P_{C} stands for the metric projection
of H onto C.

The following lemmas are Lemma 2.3 and Lemma 2.4 of Zegeye [23], respectively.

Lemma 2.4 ([23]). Let C be a closed convex subset of a real Hilbert space H. Let  F:C\rightarrow

 H be a continuous monotone mapping. Then, for r>0 and x\in H , there exists z\in C such

that

\displaystyle \{Fz, y-z\}+\frac{1}{r}\langle y-z, z-x\rangle\geq 0, \forall y\in C.
For r>0 and x\in H , define F_{r}:H\rightarrow C by

F_{r}x=\{z\in C : {Fz , y-z)+\displaystyle \frac{1}{r}\{y-z, z-x\rangle\geq 0, \forall y\in C\}.
Then the following hold:

(i) F_{r} is single‐valued;
(ii) F_{r} is firmly nonexpansive, that is,

\Vert F_{r}x-F_{r}y\Vert^{2}\leq\{F_{r}x-F_{r}y, x-y\rangle, \forall x, y\in H ;

(iii) Fix(F_{r})=VI(C, F) ;

(iv) VI(C, F) is a closed convex subset of C.

Lemma 2.5 ([23]). Let C be a closed convex subset of a real Hilbert space H. Let  T:C\rightarrow

 H be a continuous pseudocontractive mapping. Then, for r>0 and x\in H , there exists

z\in C such that

\langle Tz , y-z\displaystyle \rangle-\frac{1}{r}\{y-z, (1+r)z-x\rangle\leq 0, \forall y\in C.

For r>0 and x\in H , define T_{r} : H\rightarrow C by

T_{r}x=\{z\in C : {Tz , y-z)-\displaystyle \frac{1}{r}\{y-z, (1+r)z-x)\leq 0, \forall y\in C\}.
Then the following hold:

(i) T_{r} is single‐valued;
(ii) T_{r} is firmly nonexpansive, that is,

\Vert T_{r}x-T_{r}y\Vert^{2}\leq\langle T_{r}x-T_{r}y, x-y\rangle, \forall x, y\in H ;

(iii) Fix (T_{r})=Fix(T) ;

(iv) Fix(T) is a closed convex subset of C.

3. MAIN RESULTS

Throughout the rest of this paper, we always assume the following:
H is a real Hilbert space;

C is a nonempty closed convex subset of H ;

 $\Theta$ is a bifunction form  C\times C to \mathbb{R} satisfies (\mathrm{A}1)-(\mathrm{A}4) ;

 $\varphi$ :  C\rightarrow \mathbb{R} is a proper lower semicontinuous and convex function;
B:C\rightarrow H is a continuous monotone mapping;
GMEP( $\Theta$,  $\varphi$, B) is the set of solutions of the GMEP related to B :
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K_{r_{n}} : H\rightarrow C is a mapping defined by

K_{r_{n}}x=\{u\in C :  $\Theta$(u, y)+\{Bu,  y-u\rangle

+ $\varphi$(y)- $\varphi$(u)+\displaystyle \frac{1}{r_{n}}\langle y-u, u-x\}\geq 0, \forall y\in C\}
for all x\in H and for r_{n}\in(0, \infty) and \displaystyle \lim\inf_{n\rightarrow\infty}r_{n}>0 ;

F:C\rightarrow H is a continuous monotone mapping;
VI(C, F) is the set of solutions of the VIP for F ;

\bullet  T:C\rightarrow C is a continuous pseudocontractive mapping;
F_{r_{n}} : H\rightarrow C is a mapping defined by

F_{r_{n}}x=\{z\in C : \langle Fz , y-z\displaystyle \}+\frac{1}{r_{n}}\langle y-z, z-x)\geq 0, \forall y\in C\}
for all x\in H and for r_{n}\in(0, \infty) and \displaystyle \lim\inf_{n\rightarrow\infty}r_{n}>0 ;

T_{r_{n}} : H\rightarrow C is a mapping defined by

T_{r_{n}}x=\{z\in C : \langle Tz , y-z\displaystyle \rangle-\frac{1}{r_{n}}\langle y-z, (1+r_{n})z-x)\leq 0, \forall y\in C\}
for all x\in H and for r_{n}\in(0, \infty) and \displaystyle \lim\inf_{n\rightarrow\infty}r_{n}>0 ;

\bullet $\Omega$_{1} :=GMEP( $\Theta$,  $\varphi$, B)\cap VI(C, F)\cap Fix(T)\neq\emptyset.
By Lemma 2.1, Lemma 2.4 and Lemma 2.5, we note that K_{r_{n}}, F_{r_{n}} and T_{r_{n}} are nonexpansive,
and Fix (K_{r_{n}})=GMEP( $\Theta$,  $\varphi$, B) , Fix (F_{r_{n}})=VI(C, F) and Fix (T_{r_{n}})=Fix(T) .

Now, we propose a new iterative algorithm for finding a common point of the set of

solutions of the GMEP related to a continuous monotone mapping B
, the set of solutions

of the VIP for a continuous monotone mapping F
, and the set of fixed points of a continuous

pseudocontractive mapping T.

Algorithm 3.1. For an arbitrarily chosen x_{1}\in C , let the iterative sequences \{x_{n}\} and

\{u_{n}\} be generated by

(3.1) \left\{\begin{array}{l}
 $\Theta$(u_{n}, y)+\{Bu_{n}, y-u_{n}\}+ $\varphi$(y)- $\varphi$(u_{n})\\
+\frac{1}{r_{n}}\langle y-u_{n}, u_{n}-x_{n})\geq 0, \forall y\in C,\\
x_{n+1}=$\alpha$_{n}x_{n}+(1-$\alpha$_{n})T_{r_{n}}F_{r_{n}}K_{r_{n}}x_{n}, \forall n\geq 1,
\end{array}\right.
where \{$\alpha$_{n}\}\subset[a, b] for some a, b\in(0,1) and r_{n}\in(0, \infty) and \displaystyle \lim\inf_{n\rightarrow\infty}r_{n}>0.

Theorem 3.1. The sequences \{x_{n}\} and \{u_{n}\} generated by Algorithm 3.1 converge weakly
to z\in$\Omega$_{1} , where z=\displaystyle \lim_{n\rightarrow\infty}P_{$\Omega$_{1}} (xn).

If we take C\equiv H in Theorem 3.1, then we obtain the following result.

Corollary 3.2. Let $\Omega$_{2} :=GMEP( $\Theta$,  $\varphi$, B)\cap F^{-1}(0)\cap Fix(T) The sequences \{x_{n}\} and

\{u_{n}\} generated by Algorithm 3.1 converge weakly to z\in$\Omega$_{2} , where z=\displaystyle \lim_{n\rightarrow\infty}P_{$\Omega$_{2}} (xn).
Proof. Since D(F)=H , we have VI(H, F)=F^{-1}(0) . Thus the result follows from

Theorem 3.1.

Now, in order to obtain direct consequences of Theorem 3.1, we recall special cases of

the GMEP again.

If  $\varphi$=0 in (1.1), then the GMEP reduces the following generalized equilibrium problem
(for short, GEP) of finding x\in C such that

 $\Theta$(x, y)+\langle Bx, y-x)\geq 0, \forall y\in C.
The set of solutions of the GEP is denoted by GEP( $\Theta$, B) .
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If B=0 in (1.1), then the GMEP reduces the following mixed equilibrium problem (for
short, MEP) of finding x\in C such that

 $\Theta$(x, y)+ $\varphi$(y)- $\varphi$(x)\geq 0, \forall y\in C.

The set of solutions of the MEP is denoted by MEP( $\Theta$,  $\varphi$) .

If B=0 and  $\varphi$=0 in (1.1), then the GMEP reduces the following equilibrium problem
(for short, EP) of finding x\in C such that

 $\Theta$(x, y)\geq 0, \forall y\in C.

The set of solutions of the EP is denoted by EP( $\Theta$) .

If we take  $\varphi$\equiv 0 in Theorem 3.1, then we obtain the following result.

Corollary 3.3. Let $\Omega$_{3} :=GEP( $\Theta$, B)\cap VI(C, F)\cap Fix(T)\neq\emptyset , and let \{x_{n}\} and \{u_{n}\}
be sequences generated by x_{1}\in C and

\left\{\begin{array}{ll}
 $\Theta$(u_{n}, y)+\{Bu_{n}, y-u_{n}\rangle+\frac{1}{r_{n}}\{y-u_{n}, u_{n}-x_{n}\rangle\geq 0, & \forall y\in C,\\
x_{n+1}=$\alpha$_{n}x_{n}+(1-$\alpha$_{n})T_{r_{n}}F_{r_{n}}u_{n}, \forall n\geq 1. & 
\end{array}\right.
Then \{x_{n}\} and \{u_{n}\} converge weakly to z\in$\Omega$_{3} , where z=\displaystyle \lim_{n\rightarrow\infty}P_{$\Omega$_{3}} (xn).

If we take B\equiv 0 in Theorem 3.1, we get the following result.

Corollary 3.4. Let $\Omega$_{7}:=MEP( $\Theta$,  $\varphi$)\cap VI(C, F)\cap Fix(T)\neq\emptyset , and let \{x_{n}\} and \{u_{n}\}
be sequences generated by x_{1}\in C and

\left\{\begin{array}{ll}
 $\Theta$(u_{n}, y)+ $\varphi$(y)- $\varphi$(u_{n})+\frac{1}{r_{n}}\langle y-u_{n}, u_{n}-x_{n})\geq 0, & \forall y\in C,\\
x_{n+1}=$\alpha$_{n}x_{n}+(1-$\alpha$_{n})T_{r_{n}}F_{r_{n}}u_{n}, \forall n\geq 1. & 
\end{array}\right.
Then \{x_{n}\} and \{u_{n}\} converge weakly to z\in$\Omega$_{7} , where z=\displaystyle \lim_{n\rightarrow\infty}P_{$\Omega$_{7}} (xn).

It we take B\equiv 0 and  $\varphi$\equiv 0 in Theorem 3.1, we obtain the following result.

Corollary 3.5. it Let $\Omega$_{5} :=EP( $\Theta$)\cap VI(C, F)\cap Fix(T)\neq\emptyset , and let \{x_{n}\} and \{u_{n}\} be

sequences generated by x_{1}\in C and

\left\{\begin{array}{l}
 $\Theta$(u_{n}, y)+\frac{1}{r_{n}}\langle y-u_{n}, u_{n}-x_{n}\rangle\geq 0, \forall y\in C,\\
x_{n+1}=$\alpha$_{n}x_{n}+(1-$\alpha$_{n})T_{r_{n}}F_{r_{n}}u_{n}, \forall n\geq 1.
\end{array}\right.
Then \{x_{n}\} and \{u_{n}\} converge weakly to z\in$\Omega$_{5} , where z=\displaystyle \lim_{n\rightarrow\infty}P_{$\Omega$_{5}} (xn).

Remark 3.1. 1) For finding a common element of GMEP ( $\Theta$,  $\varphi$, B)\cap VI(C, F)\cap Fix(T) ,

where B is a continuous monotone mapping, F is a continuous monotone mapping, and T is

a continuous pseudocontractive mapping, Theorem 3.1 is a new ones different from previous
those introduced by several authors. Consequently, in the sense that our convergence
is for the more general class of continuous monotone and continuous pseudocontractive
mappings, our results improve, develop and complement the corresponding results, which

were obtained recently by several authors in references; for example, see [4, 12, 16, 19, 21]
and references therein.
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