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Jein-Shan Chen
Department of Mathematics
National Taiwan Normal University
Taipei 11677, Taiwan
E-mail: jschen@math.ntnu.edu.tw

Abstract. In this paper, we summarize the developments of some new discrete-types
of NCP-functions, which are recently proposed by the author and his team. The behind
idea is explained, the related properties are presented, and future directions based on
such discrete NCP-functions are discussed as well.
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1 Introduction

The nonlinear complementarity problem (NCP) [12, 18] is to find a point z € R™ such
that
z>0, F(z) >0,{z, F(z))=0

where (-,-) is the Euclidean inner product and F = (F,---, F,)T maps from R" to
R™. The NCP has attracted much attention due to its various applications in operations
research, economics, and engineering, see [9, 12, 18] and references therein. There have
been many methods proposed for solving the NCP. Among which, one of the most popular
and powerful approaches that has been studied intensively recently is to reformulate the
NCP as a system of nonlinear equations [17] or as an unconstrained minimization problem
[8, 10, 14]. Such a function that can constitute an equivalent unconstrained minimization
problem for the NCP is called a merit function. In other words, a merit function is a
function whose global minima are coincident with the solutions of the original NCP. For
constructing a merit function, the class of functions, so-called NCP-functions plays an
important role.

A function ¢ : R? — R is called an NCP-function if it satisfies
¢(a,b) =0 <= a>0,b>0, ab=0. (1)

Many NCP-functions and merit functions have been explored and proposed in many
literature, see [11] for a survey. Among them, the Fischer-Burmeister (FB) function and



the Natural-Residual (NR) function are two effective NCP-functions. The FB function
bps - R? = R is defined by

¢PB(a7 b) =va®+b —(a+b), (2)
and the NR function ¢, : R* = R is defined by
dwr(a,b) =a— (a —b)y = min{a,b}, (3)

where (t); means max{0,t} for any ¢ € R.

Recently, the generalized Fischer-Burmeister function ¢2 which includes the Fischer-
Burmeister as a special case was considered in [2, 3, 4, 6, 19]. Indeed, the function ¢?_ is
a natural extension of the ¢, function, in which the 2-norm in ¢, is replaced by general
p-norm. In other words, ¢?_ : R? - R is defined as

$ra(2,0) = ll(a, D) ]|, — (a +b), 4)

where p > 1 and ||(a,b)|l, =3/]alP + [b|P. The detailed geometric view of ¢?_ is depicted
in [19]. Corresponding to ¢?_, there is a merit function ¢2_ : R* — R, given by

¥, (a,) = 3 [, @) 5)

For any given p > 1, the function 2, is a nonnegative NCP-function and smooth on R2.
Note that ¢2_ is a natural “continuous” type of generalization of the FB function ¢py.
The graphs of ¢?_ with different p are depicted in Figure 1.

To the contrast, what does “generalized natural-residual function” look like? This
has been a long-standing open question. In other words, we want to know

¢FB(0‘7 b) = "(a'w b)”2 - (a’ + b) — ¢f«3(av b) = ”(a‘v b)”P - (a + b)

¢Na(a: b) = min{a,b} — 297

In [5], Chen et al. give an answer to the long-standing open question. More specifically,
the generalized natural-residual function, denoted by ¢2_, is defined by

Pnla;b) =a” — (a - D)} (6)

with p > 1 being a positive odd integer. As remarked in [5], the main idea to create it
relies on “discrete generalization”, not the “continuous generalization”. Note that when
p =1, ¢ reduces to the natural residual function ¢, . The graphs of ¢£_ with different
p are depicted in Figure 2.

Unlike the surface of ¢? _, the surface of ¢  is not symmetric which may cause some
difficulties in further analysis in designing solution methods. To this end, Chang et al.
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(8) z = ¢}, (a,b) (b) 2= ¢33 (a,b)

s

(c) z=¢%,(a,b) (d) z = ¢;2’(a,b)

Figure 1: The surface of z = ¢?_(a,b) with different values of p

[1] try to symmetrize the function ¢¥_. The first-type symmetrization of ¢#_, denoted
by #2_. is proposed as

a? —(a—b)P if a>b,
¥ wn(a,b) =9 =V if a=0, (7)
W—(b—a) if a<b,

where p > 1 being positive odd integer. It is shown in [1] that ¢2___ is an NCP-function
with symmetric surface, but it is not differentiable. The graphs of ¢? __ with different p
are depicted in Figure 3.

Therefore, it is natural to ask whether there exists another symmetrization function
that has not only symmetric surface but also is differentiable. Fortunately, Chang et al.
(1] also figure out the second symmetrization of ¢2_, denoted by ¥? which is proposed

NR’ -NR’
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Figure 2: The surface of z = ¢2_(a, b) with different values of p

a?t? — (a—b)Pb? if a>b,
PP w(a,b) = aPbP =a®* if a=bo, (8)
aPb? — (b—a)Pa? if a<b,

where p > 1 being positive odd integer. As expected, the function ¢ _ is not only

differentiable but also possesses symmetric surface. The graphs of ¢£ _ with different p
are depicted in Figure 4.

The idea of “discrete generalization” looks simple, but it is novel and important. In
fact, the author also apply such idea to construct more NCP-functions. For example, the
authors apply it to the Fischer-Burmeister function to obtain ¢? __ : R? — R given by

¥ (@ t) = (Va7 +B) — (a+by ©)
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Figure 3: The surface of 2z = ¢ ___(a,b) with different values of p

where p > 1 is a positive odd integer. This function is proved as an NCP-function in
(16]. The graphs of ¢2___ with different p are depicted in Figure 5.

The aforementioned four types of discrete NCP-functions are newly discovered. Unlike
the existing NCP-functions, we know that they are discrete-oriented. Even though we
have the feature of differentiability, we point out that the Newton method may not
applied directly because the Jacobian at a degenerate solution to NCP is singular (see
[14, 15]). Nonetheless, this feature may enable that many methods like derivative-free
algorithm can be employed directly for solving NCP.

To close this section, we present some well-known properties of ¢2  and 9?_, defined
as in (4) and (5), respectively, that are important for designing a descent algorithm that

is indeed derivative-free method.

Property 1.1. ([6, Propostion 3.1]) Let ¢?_ be defined as in (4). Then, the following
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Figure 4: The surface of z = ¢?___(a,b) with different values of p

S—NR

hold.

(a) ¢&, is a NCP-function, i.e., it satisfies (1).

(b) ¢7, is sub-additive, i.e., ¢p(w + w') < ¢p(w) + ¢p(w') Vw,w' € R2.

(c) 2, is positive homogeneous, i.e., ¢p(aw) = agy(w) for all w € R? and o > 0.

(d) 2, is convez, i.e., gplow + (1 — a)w') < agy(w) + (1 — a)g,(w') for all w,w’ € R?
and o > 0.

(e) ¢, is Lipschitz continuous with ky = V2 4 20/2=1/2) yhen 1 < p < 2, and with
Ky = 1+ /2 when p > 2. In other words, |¢2_ (w) — ¢2_(w')| < &1|lw — w'|| when
1<p<2and| ()~ @2 (w)] < rllw — w'|| when p >2 for all w,w’ € R?.
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Figure 5: The surface of z = ¢2__(a,b) with different values of p

Property 1.2. ([6]) Let ¢?_ be defined as in (4). Then, the following variants of ¢
are also NCP-functions.

%l(a’ b) = ¢ (a,b) —ala)s(b)y, a>0.

¢ ,(a,b) = ¢ (a,b)—alab)s, a>0.

Fog(ad) = /I8, (@D +a (@)« (b))%, a>0.
@) = /182, (@bP +al(@d) ], a>o0.

Property 1.3. ([7, Lemma 2.2]) Let ¢£_ be defined as in (4). Then, the generalized
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gradient O¢P_(a,b) of ¢&_ at a point (a,b) is equal to the set of all (va,vs) such that

sgn(a) - lafPt sgn(b) - b2 £ (a
(va,vb) = { ( 1 1) f ( ,b)7é(0’0)’

(@, B)[I~" B [CRO]
(f—l,c—l) if (a’b) = (0’0))

where (€, () is any vector satisfying |€|7~T + |¢|7T < 1.

Property 1.4. ([6, Propostion 3.2]) Let ¢¢_, ¥%_ be defined as in (4) and (5), respec-
tively. Then, the following hold.

(a) YE is a NCP-function, i.e., it satisfies (1).
(b) ¥®_(a,b) >0 for all (a,b) € R2.
(c) ¥2, is continuously differentiable everywhere.

(d) Vay2r (a,b) - Vs (a,b) > 0 for all (a,b) € R%. The equality holds if and only if
#(a,b) = 0.

(e) Vay?,(a,b) = 0 <= VyyP_(a,b) = 0 <= ¢, (a,b) = 0.

2 Properties of the function ¢¢

In this section, we present all the properties of ¢2_ defined as in (6).

Proposition 2.1. ([5, Proposition 2.1]) Let ¢?  be defined as in (6) with p > 1 being a
positive odd integer. Then, ¢f  is an NCP-function.

Proposition 2.2. ([5, Proposition 2.2]) Let ¢2_ be defined as in (6) with p > 1 being a
positive odd integer, and let p =2k + 1 where k = 1,2,3,---. Then, the following hold.

() An alternative expression of ¢ is
1
¢ (a,b) = a**! - 3 ((a=0)** 4 (a—b)*|a—1|).

(b) The function ¢ _ is continuously differentiable with

&1 — (a—by2(a - b)y

VRO o,



(c) The function ¢% is twice continuously differentiable with

R

a??—(a—bP3a—b)y (a—bP3(a—1b),
V2¢§R(a, b)=plp-1) (a— b)p—3(a —b)s —(a— b)p—3(a —b),

Proposition 2.3. ([5, Proposition 2.4]) Let ¢% be defined as in (6) with p > 1 being a
positive odd integer. Then, the following variants of % are also NCP-functions.
Far(@) = & (e,8) +a(@)(b)s, a>0.
%Rg(ay b) = (bf,a(a, b) +a ((a)+(b)+)2 , > 0.
#05(a,b) (2 (a, D)) + o ((ab)y)*, a> 0.

#(a,b) = [#.(a,0)] +a((ab)s)’, a>0.

Proposition 2.4. ([13, Proposition 3.4]) Let ¢ be defined as in (6) with p > 1 being a
positive odd integer. Then, the following hold.

(@) #2.(a,b) >0 < a>0, b>0.

(b) ¢§Rdis posétz've homogeneous of degree p, i.e., ¢% (aw) = oP¢?_(w) for all w € R?
and o > 0.

(c) ¢, is not Lipschitz continuous.
(d) @2 is not a-Holder continuous for any o € (0,1], that is, the Holder coefficient
. |9fe (w) — &fs ()]
(8 Jare == 5;15, Tl
is infinite.
>0 on {(a,b)|a>b>0o0ra>b>2a}

(e) Vag?, (a,b)-Veg? (a,0)3 =0 on{(a,b)|a<bora>b=2ao0ra>b=0}
<0 otherwise.

(f) Vo, (a,b)- Vb (a,b) =0 provided that ¢¥_(a,b) = 0.
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3 Properties of the function ¢¢f

In this section, we present all the properties of ¢? _ defined as in (7).

Proposition 3.1. ([1, Proposition 2.1]) Let ¢?_ be defined as in (7) with p > 1 being
a positive odd integer. Then, ¢f_  is an NCP-function and is positive only on the first
quadrant R% == {(a,b)|a >0, b > 0}.

Proposition 3.2. ([1, Proposition 2.2]) Let ¢*_  be defined as in (7) with p > 1 being
a positive odd integer. Then, the following hold.

(a) An alternative ezpression of ¢%_ is

¢ (a,b) if a>b,
#_w(ab) =4 a?=b if a=b,
¢ (b,a) if a<b.

(b) The function ¢%__ is continuously differen-

tiable on the set Q = {(a,b) |a # b} with

is not differentiable. However, ¢7

plaPt —(a—b)P7L, (a—bP )T if a>b,
Ve (e b) = -1 pp-1 ~11T  ;
plb—=a)Pt, Pt —(b—a)P']f if a<b.
In a more compact form,

p[d)f‘;l(a, b), (a—bP )T if a>b,

V¢§7NR(a, b) = { p[(b—a) ¢§;l(b, a)]¥ if a<b.

(c) The function ¢8_,. is twice continuously differentiable on the set Q@ = {(a,b) | a # b}

with
@t~ (a—bP? (a—0b)p?
p(p—1) B ~ if a>b,
'v2¢p (a b)= (a_b)P 2 _(a_b)p 2
S-NR\7? —(b _ a)pvz (b _ a)p—z )
p(p—1) if a<b.
(b—a)p?2 P 2—(b—a)?
In a more compact form,
plp—1) G (@0 @0 ey
V(@) = S |
s-nr\® 0} = —(b _ a)p—2 (b _ a)p—2
plp—1) a<b

(b—a)y= g8 %ba)
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Proposition 3.3. ([1, Proposition 2.3]) Let ¢2___ be defined as in (7) with p > 1 being
a positive odd integer. Then, the following variants of ¢7_  are also NCP-functions.

$i(a,b) = ¢ (a,b)+aa)s(b)s, a>0.
$aa,b) = ¢ (a,b)+a((@)(b)s)’, a>0.
#3(a,b) (¢ (@b +a((@b)y)', a>o0.

da(a,b) = [¢F . (a, b+ a((ab)y)?, a>0.

Proposition 3.4. ([13, Proposition 4.4]) Let ¢ _ be defined as in (7) with p > 1 being
a positive odd integer. Then, the following hold.

(@) ¢ o(a,0)>0 < a>0, b>0.

(b) ¢% . i positive homogeneous of degree p.

(c) @2, is not Lipschitz continnuous.

(d) #°_, is not a-Hélder continuous for any o € (0, 1].

(e) Vo . .(a,b) - Veg?_  (a,b) >0 on {(a,b)|a>b>0}{(a,0)|b>a>0}.

(£) Vad?_(a,b) - Vog?_  (a,b) =0 provided that ¢%_  (a,b) =0 and (a,b) # (0,0).

Lemma 3.1. ([13, Lemma 4.1]) Let ¢2_, . be defined as in (7) with p > 1 being a positive
odd integer. Then, ¢2___ is strictly continuous (locally Lipschitz continuous).

Proposition 3.5. ([13, Proposition 4.5]) Let ¢2__  be defined as in (7) with p > 1 being
a positive odd integer. Then, the generalized gradient of ¢f__ . is given by

NR

pla?™ — (a—b)P"Y, (a—b)P 1T if a>b,
Off_(a,0) =< {plaar™!,(1 - a)a? )" |a € [0,1]} if a=b,
plb—ap, & = (b—ap? I if a<b

Lemma 3.2. ([13, Lemma 4.2]) Let ¢%__ . be defined as in (7) with p > 1 being a positive

odd integer. Then, ¢¢_ _ is a directional differentiable function.

Proposition 3.6. ([13, Proposition 4.6]) Let ¢?_, . be defined as in (7) withp > 1 being a
positive odd integer. Then, ¢¢_  is a semismooth function. Moreover, ¢£_  is strongly
semismooth.

NR



4 Properties of the function ¢?

In this section, we present all the properties of ¢ defined as in (8).

Proposition 4.1. ([1, Proposition 3.1]) Let ¥ be defined as in (8) with p > 1 being
is an NCP-function and is positive on the set

a positive odd integer. Then, ¥&

Q= {(a,b)|ab+# 0} U{(a,b) |a <b=0}U{(a,b)|0 =a > b}

Proposition 4.2. ([1, Proposition 3.2]) Let 4*_  be defined as in (8) with p > 1 being

a positive odd integer. Then, the following hold.

(a) An alternative expression of ¢¢_  is
# (a,b)F if a>bh,

Y m(@,b) =1 aPtP =a* if a=b,

. (ba)a? if a<b

(b) The function ¢P __ is continuously differentiable with

S—NR

plaP 1P — (a — bP~IP, aPbP! — (a — B)PBP~L + (a — b)P IR T

VP

S—NR

(a,8) = pla> 1, @b~ T = pa®-1[1, 17

if a>b,
if a=0b,

pla? P — (b — a)PaP™1 + (b — a)P"aP, aPb?~! — (b—a)P la?]T if a<b.

In a more compact form,

P [d)ﬁl(a, b)b®, ¢§R(a, P+ (a = b)P~WP|T if a> b,

VP

P (a’ b) — P [a’2p—17 a2p—1 ]T

if a=b,

p [¢§R(b, a)aP~t + (b — a)P1a?, qﬁﬁ;l(b, a)a?|T if a <b.

94



(c) The function ¥P_

is twice continuously differentiable with

[ P2 - (p—1(a—br2r ]
(p—1)[a*%— (a—b) %P_WWA_Q_WAWA
p —
- (p — 1)[a? — (a — b)P]pP~2
—1)(a — b)P 2 -b
+P[S:"1 — (i_ byP-1]pr-1 +2p(a — b)P~1pp1
I —(p—1)(a —b)P~2
(p—DaP~2?  paP~1pp!
Vﬂﬁg NR( ) = p pap~1bp—1 (p _ l)anP-2
[ - - —a p—2 i
’ +12¥?: - (E,l))l’-laz:p—]? (p—1)(b— a)P~2a?
-1 p—11,p-1
P —(p—1)(b— a)2a? +p[b*t — (b— a)P~Ya?
- —a)P 2P
ﬂ’[(g” - 1—)((2 - a)>P-1]ap-1 (p= 12 = (b— ) *

Proposition 4.3. [1, Proposition 3.3] Let ¢ be defined as in (8) with p > 1 being a
positive odd integer. Then the following vamants of Y?_ are also NCP-functions.

Pi(a,b) = ¢f_ (a,b)+ala)s(b)y, a>0.
¥a(a,b) = ¥ (a,0) +a((@)+(b)s)’, a>0.
ba(a,b) = ¥ (a,b)+a((ab)s)*, a>0.
Pa(a,b) = ¥ (a,b)+a((ab)y)?, a>0.

Proposition 4.4. ([13, Proposition 5.4]) Let ¢?

S—NR

a positive odd integer. Then, the following hold.
(a) ¥? . (a,b) >0 for all (a,b) € R%

be defined as in (8) with p > 1 being

(b) PP n 18 posilive homogeneous of degree 2p.
(c) P ., is not Lipschitz continuous.

(d) 9 . is not a-Holder continuous for any o € (0,1].

(e) Vo (a,b)- Vyp? __(a,b) >0 on the first quadrant R% |
(F) ¢8_lab) =0 <= VY2 (a,b) = 0. In particular, we have Vo9?__ (a,b) -
Vil (a,b) = 0 provided that ¥ _(a,b) =0.

95
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5 Properties of the function ¢?

In this section, we present all the properties of ¢?___ defined as in (9).

Proposition 5.1. ([16, Proposition 3.1]) Let ¢? _
a positive odd integer. Then, we have

be defined as in (9) wherep > 1 is

FB

(a) ¢2 ., is a NCP-function;

(b) ¢7_., is positive homogeneous of degree p.

Proposition 5.2. ([16, Proposition 3.2]) Let ¢? . be defined as in (9). Then, the
following hold.

() Forp>1, g8 _ is continuously differentiable with

o(Va® + B2 — (a+ )P
Vw8 =P 4 TRy (a4 b

(b) Forp>3, ¢¢___ is twice continuously differentiable with

62¢€)—FB a2(ﬁf)—[<‘B
2 - da? ob
VegP_ . (a,b) = P ¢'§,FB 8£9a ,

FB

Moa OB
where

62¢pD—FB 2 2 —4 —2
s — 3 {[p— e+ FIVETEP — (p— D+,
Fi &

Yors (= 2ab VTR - (p— 1)(at P = e,
62

gi’;“ =p {[a2 +(p—DP)(Va2 + 2P — (p—1)(a+ b)”‘z} .

Proposition 5.3. ([16, Proposition 3.3]) Let ¢2___ be defined as in (9). Then, the

following variants of ¢¢___ are also NCP-functions.

ei(a,b) = ¢ _..(a,b) —afa)+(b)s, @ >0.
pa08) = Bp(a,b) - (@B}, a> 0.
es(a,0) = [#0_.(a,0)] +a((ab)y)", a>0.
ea(a,b) = [¢2__ (a, D +a ((ab)+)2, a>0.
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Proposition 5.4. ([13, Proposition 6.4]) Let ¢2__ be defined as in (9) with p > 1 being
a positive odd integer. Then, the following hold.

(a) ¢¢_.,(a,b) <0 <= a>0, b>0.

(b) ¢ ., is not Lipschitz continuous.

(c) ¢8_., is not a-Hélder continuous for any o € (0,1].
(d) Vag?_ . (a,b) - Vyg?__ (a,b) >0 on the first quadrant R? .
() Vad? ., (a,b) - Vyg? _ (a,b) =0 provided that ¢*__ (a,b) = 0.

6 Final Remarks

In summary, we have obtained 4 new discrete-type of generalizations so far. Besides the
continuous generalization ¢?_, we list all of them as below.

¢§B
¢¥)—FB
¢§R
s

P
¢S—NR

strong semismooth with symmetric surface
twice differentiable with symmetric surface
twice differentiable

strong semismooth with symmetric surface

twice differentiable with symmetric surface

In addition, we show a diagram which describes the relation between smooth functions
and nonsmooth functions. This will help clarify the aforementioned functions.

C*= SC' = LC'= C' = semismooth = locally Lipschitz

I ft

strongly semismooth

We also list some future research directions as below:

1. What are the extra benefits for NCP-functions with symmetric surfaces?

2. Doing numerical comparisons among ¢?
various algorithms.

Y4 : .
Doy By B2 ms Y2y and @2 involved in

3. The Newton method may not be applicable even though we have the differentia-
bility for some new NCP-functions because the Jacobian at a degenerate solution
is singular (Kanzow and Kleinmichel, Optimization Methods and Software, 1995).

4. Extending these functions as complementarity functions associated with second-
order cone and symmetric cone.
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