ACUTE POINTS, WEAK AND STRONG CONVERGENCE THEOREMS FOR NONLINEAR MAPPINGS IN HILBERT SPACES

SACHIKO ATSUSHIBA

GRADUATE SCHOOL OF EDUCATION SCIENCE OF TEACHING AND LEARNING, UNIVERSITY OF YAMANASHI

ABSTRACT. In this paper, we introduce the concept of k-acute points of a mapping for $k \in [0,1]$. We study some properties of k-acute points and relations among kacute points, attractive points and fixed points. Then, We prove some convergence theorems by using these concepts.

1. INTRODUCTION

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$ and let C be a nonempty subset of H. For a mapping $T: C \to H$, we denote by F(T) the set of fixed points of T and by A(T) the set of attractive points [9] of T, i.e.,

(i)
$$F(T) = \{z \in C : Tz = z\};$$

(ii) $A(T) = \{z \in H : ||Tx - z|| \le ||x - z||, \forall x \in C\}.$

A mapping $T: C \to C$ is called nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. In 1975, Baillon [3] proved the following first nonlinear ergodic theorem in a Hilbert space: Let C be a nonempty bounded closed convex subset of a Hilbert space H and let

T be a nonexpansive mapping of C into itself. Then, for any $x \in C$, $S_n x = \frac{1}{n} \sum_{i=0}^{n-1} T^i x$

converges weakly to a fixed point of T (see also [8]).

Recently, Kocourek, Takahashi and Yao [4] introduced a wide class of nonlinear mappings called generalized hybrid which containing nonexpansive mappings, nonspreading mappings, and hybrid mappings in a Hilbert space. They proved a mean convergence theorem for generalized hybrid mappings which generalizes Baillon's nonlinear ergodic theorem. Motivated by Baillon [3], and Kocourek, Takahashi and Yao [4], Takahashi and Takeuchi [9] introduced the concept of attractive points of a nonlinear mapping in a Hilbert space and they proved a mean convergence theorem of Baillon's type without convexity for a generalized hybrid mapping.

In this paper, we introduce the concept of k-acute points of a mapping for $k \in$ [0,1]. We study some properties of k-acute points and relations among k-acute points, attractive points and fixed points. Then, We prove some convergence theorems by using these concepts.

2. Preliminaries and notations

Throughout this paper, we denote by \mathbb{N} and \mathbb{R} the set of all positive integers and the set of all real numbers, respectively. Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. Let C be a closed convex subset of H. For every point $x \in H$, there exists a unique nearest point in C, denoted by $P_C x$, such that

$$\|x - P_C x\| \le \|x - y\|$$

for all $y \in C$. The mapping P_C is called the metric projection of H onto C. It is characterized by

$$\langle P_C x - y, x - P_C x \rangle \ge 0$$

for all $y \in C$. See [8] for more details. The following result is well-known; see also [8].

Lemma 2.1. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let T be a nonexpansive mapping of C into itself. Then, $F(T) \neq \emptyset$.

Let C be a subset of a Banach space E and let T be a mapping of C into E. A mapping T is said to be L-Lipschitzian if $||Tx - Ty|| \leq L||x - y||$ for any $x, y \in C$, where $L \in [0, \infty)$. In particular, T is said to be nonexpansive if $||Tx - Ty|| \leq ||x - y||$ for any $x, y \in C$. Usually, T is said to be quasi-nonexpansive if

(1)
$$F(T) \neq \emptyset$$
, (2) $||Tx - v|| \le ||x - v||$ for $x \in C, v \in F(T)$.

Let C be a subset of a Hilbert space H. Let T be a mapping of C into H and I be the identity mapping on C. T is said to be pseudo-contractive if, for any $x, y \in C$,

$$||Tx - Ty||^2 \le ||x - y||^2 + ||(I - T)x - (I - T)y||^2$$

Assume $F(T) \neq \emptyset$ and set $y = v \in F(T)$. Then we have that, for any $x \in C$,

$$||Tx - v||^2 \le ||x - v||^2 + ||x - Tx||^2.$$

Usually, T is said to be hemi–contractive if

(1)
$$F(T) \neq \emptyset$$
, (2) $||Tx - v||^2 \le ||x - v||^2 + ||x - Tx||^2$ for $x \in C, v \in F(T)$.
Let $k \in [0, 1)$. T is said to be k-strictly pseudo-contractive if, for any $x, y \in C$,

$$||Tx - Ty||^2 \le ||x - y||^2 + k||(I - T)x - (I - T)y||^2$$

Assume $F(T) \neq \emptyset$ and set $y = v \in F(T)$. Then we have that, for any $x \in C$,

$$||Tx - v||^2 \le ||x - v||^2 + k||x - Tx||^2.$$

Usually, T is said to be k-demi-contractive if

(1)
$$F(T) \neq \emptyset$$
, (2) $||Tx - v||^2 \le ||x - v||^2 + k||x - Tx||^2$ for $x \in C, v \in F(T)$.

We call T a strictly pseudo-contraction if T is a k-strictly pseudo-contraction for some $k \in [0, 1)$. We also call T a demi-contraction if T is a k-demi-contraction for some $k \in [0, 1)$. Assume $F(T) \neq \emptyset$.

Let $k \in [0, 1]$. We define the set of k-acute points $A_k(T)$ of T by

$$A_k(T) = \{ v \in H : ||Tx - v||^2 \le ||x - v||^2 + k||x - Tx||^2 \text{ for all } x \in C \}.$$

We denote $A_0(T)$ by A(T) because $A_0(T)$ and attractive points set of T are the same. We denote $A_1(T)$ by A(T), that is,

 $\mathcal{A}(T) = \{ \ v \in H: \ \|Tx - v\|^2 \le \|x - v\|^2 + \|x - Tx\|^2 \text{ for all } x \in C \ \}.$ For details, see [2].

3. Acute points and convergence theorems

In this section, we prove convergence theorems by using the concept of k-acute points of a mapping for $k \in [0, 1]$.

Let C be a subset of a Hilbert space H and let T be a mapping of C into H. Recall $A_k(T) \subset A(T)$ for all $k \in [0, 1]$. Sometimes, we do not distinguish A(T) from $A_k(T)$ with $k \in (0, 1)$ strictly. For details, see [2].

Let C be a subset of a Hilbert space H and S be a mapping of C into H. Under the condition $A(S) \neq \emptyset$, we prove some convergence theorems (see [2]).

Theorem 3.1 ([2]). Let $\{a_n\}$ be a sequence in $[a, b] \subset (0, 1)$. Let C be a compact subset of a Hilbert space H. Let S be a continuous self-mapping on C such that $F(S) \subset A(S)$ and $A(S) \neq \emptyset$. Suppose there is a sequence $\{u_n\}$ in C such that

$$u_{n+1} = a_n u_n + (1 - a_n) S u_n$$
 for $n \in N$.

Then, $\{u_n\}$ converges strongly to some $u \in F(S)$.

We also get the following theorem by Theorem 3.1 (see [2]).

Theorem 3.2 ([2]). Let $\{a_n\}$ be a sequence in $[a, b] \subset (0, 1)$. Let C be a compact subset of a Hilbert space H. Let T be a continuous self-mapping on C. Assume that one of the followings holds.

- (1) T is hemi-contractive with $A(T) \neq \emptyset$. S is the mapping defined by S = T.
- (2) T is k-demi-contractive. S is the mapping defined by S = kI + (1 k)T.
- (3) T is quasi-nonexpansive. S is the mapping defined by S = T.

Suppose there is a sequence $\{u_n\}$ in C such that

$$u_{n+1} = a_n u_n + (1 - a_n) S u_n \qquad for \ n \in N.$$

Then, $\{u_n\}$ converges strongly to some $u \in F(T)$.

Consider the compact and convex set $C = \{(x_1, x_2) \in \mathbb{R}^2 : x_1, x_2 \in [0, 1], x_1 + x_2 \leq 1\}$ of 2-dimensional Euclidean space \mathbb{R}^2 . Let T be the self-mapping on C defined by

$$T(x_1, x_2) = (\frac{1}{2}(1 + x_1 - x_2), x_2) \text{ for } (x_1, x_2) \in C.$$

Let $u_1 \in C$ and $\{u_n\}$ be the sequence generated by $u_{n+1} = (u_n + Tu_n)/2$ for $n \in N$.

Under this setting, we can easily verify $F(T) = \{(x_1, x_2) \in C : x_1 + x_2 = 1\},\$

$$A(T) = \{ (x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 1 \}, \qquad A(T) \cap C = A(T) \cap C = \{ (1, 0) \}.$$

Since $F(T) \not\subset A(T)$, T is not hemi-contractive. However, it is obvious that $\{u_n\}$ converges to a fixed point. For such mappings, we did not have convergence theorems. Here, we give a convergence theorem [2] for such mappings. **Theorem 3.3** ([2]). Let $\{a_n\}$ be a sequence in $[a, b] \subset (0, 1)$. Let C be a compact and convex subset of a Hilbert space H. Let T be a continuous self-mapping on C with $A(T) \neq \emptyset$. Let $u_1 \in C$ and $\{u_n\}$ be a sequence defined by

$$u_{n+1} = a_n u_n + (1 - a_n) T u_n \qquad for \ n \in N.$$

Suppose $F(T) \subset P_C(A(T))$, where P_C is the metric projection of H onto C. Then, $\{u_n\}$ converges strongly to some $u \in F(T)$.

We consider weak convergence theorems in the case $A(T) \neq \emptyset$ and $F(T) \subset A(T)$. To have the following results, we have to assume demiclosedness at 0 of I - T (see [2]).

Theorem 3.4 ([2]). Let $\{a_n\}$ be a sequence in $[a, b] \subset (0, 1)$. Let C be a weakly compact subset of a Hilbert space H. Let S be a self-mapping on C such that $F(S) \subset A(S)$, $A(S) \neq \emptyset$ and I - S is demiclosed at 0. Suppose there is a sequence in C such that

 $u_{n+1} = a_n u_n + (1 - a_n) S u_n$ for $n \in N$.

Then, $\{u_n\}$ converges weakly to some $u \in F(S)$.

We also have the following theorem by Theorem 3.4 (see [2]).

Theorem 3.5 ([2]). Let $\{a_n\}$ be a sequence in $[a, b] \subset (0, 1)$. Let C be a weakly compact subset of a Hilbert space H and let T be a self-mapping on C such that I - T is demiclosed at 0. Assume one of the followings.

- (1) T is hemi-contractive with $A(T) \neq \emptyset$. Define the mapping S by S = T.
- (2) T is k-demi-contractive. Define the mapping S by S = kI + (1 k)T.
- (3) T is quasi-nonexpansive. Define the mapping S by S = T.

Suppose there is a sequence $\{u_n\}$ in C such that

 $u_{n+1} = a_n u_n + (1 - a_n) S u_n$ for $n \in N$.

Then, $\{u_n\}$ converges weakly to some $u \in F(T)$.

4. Nonlinear ergodic theorems

We begin this section with presenting Theorem 4.1 due to Takahashi and Takeuchi [9]. Then, we also have Theorem 4.2 (see [2]).

Theorem 4.1. Let C be a non-empty bounded subset of a Hilbert space H. Let S be a nonexpansive self-mapping on C. Let $v_1 \in C$ and let $\{v_n\}$, $\{b_n\}$ be sequences defined by

$$v_{n+1} = Sv_n$$
, $b_n = \frac{1}{n} \sum_{t=1}^n v_t$ for $n \in N$.

Then the followings hold.

- (1) A(S) is non-empty closed and convex.
- (2) $\{b_n\}$ converges weakly to some $u \in A(S)$.

We also have the following theorem.

Theorem 4.2 ([2]). Let $k \in [0, 1)$. Let C be a non-empty bounded subset of a Hilbert space H. Let T be a k-strictly pseudo-contractive self-mapping on C. Let S be the mapping defined by Sx = (kI + (1-k)T)x for $x \in C$. Assume that S is a self mapping on C. Let $v_1 \in C$ and let $\{v_n\}, \{b_n\}$ be sequences defined by

$$v_{n+1} = Sv_n, \quad b_n = \frac{1}{n} \sum_{t=1}^n v_t \quad \text{for} \quad n \in N.$$

Then the followings hold.

(1) $A_k(T)$ is non-empty closed and convex.

(2) $\{b_n\}$ converges weakly to some $u \in A_k(T)$.

Further, if C is weakly closed then the followings hold.

- (3) F(T) is non-empty and weakly closed.
- (4) $\{b_n\}$ converges weakly to $u \in F(T)$.

Remark 4.3. In Theorem 4.2, convexity of C is not always necessary. We give an example. Let Q be the set of rational numbers, $k \in [0,1) \cap Q$ and $C = (0,1) \cap Q$. For any self-mapping T on C, S is also a self-mapping. However, C is not convex.

ACKNOWLEDGEMENTS

The authors are supported by Grant-in-Aid for Scientific Research No. 26400196 from Japan Society for the Promotion of Science.

References

- S. Atsushiba, and W. Takahashi, Nonlinear ergodic theorems without convexity for nonexpansive semigroups in Hilbert spaces, n J. Nonlinear Convex Anal. 14 (2013), 209-219.
- [2] S. Atsushiba, S. Iemoto, R. Kubota and Y. Takeuchi Convergence theorems for some classes of nonlinear mappings in Hilbert spaces, submitted.
- [3] J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C. R. Acad. Sei. Paris Ser. A-B 280 (1975), 1511 - 1514.
- [4] P. Kocourek, W. Takahashi, and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497–2511.
- [5] P. Kocourek, W. Takahashi, and J.-C. Yao, Fixed point theorems and ergodic theorems for nonlinear mappings in Banach spaces, Adv. Math. Econ. 15 (2011), 67–88.
- [6] G. Rodé, An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space, J. Math. Anal. Appl. 85 (1982), 172–178.
- [7] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc. 81 (1981), 253-256.
- [8] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [9] W. Takahashi and Y. Takeuchi, Nonlinear ergodic theorem without convexity for generalized hybrid mappings in a Hilbert space, J. Nonlinear Convex Anal. 12 (2011), 399–406.