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ABSTRACT. In this paper, we introduce the concept of k‐acute points of a mapping
for k\in[0 , 1 ] . We study some properties of k‐acute points and relations among k-

acute points, attractive points and fixed points. Then, We prove some convergence
theorems by using these concepts.

1. INTRODUCTION

Let H be a real Hilbert space with inner product \rangle and norm \Vert\cdot\Vert and let  C be a

nonempty subset of H . For a mapping T : C\rightarrow H , we denote by F(T) the set of fixed
points of T and by A(T) the set of attractive points [9] of T , i.e.,

(i) F(T)=\{z\in C:Tz=z\} ;

(ii) A(T)=\{z\in H:\Vert Tx-z\Vert\leq\Vert x-z \forall x\in C\}.
A mapping T : C\rightarrow C is called nonexpansive if \Vert Tx-Ty\Vert\leq\Vert x-y\Vert for all  x, y\in C.
In 1975, Baillon [3] proved the following first nonlinear ergodic theorem in a Hilbert

space: Let C be a nonempty bounded closed convex subset of a Hilbert space H and let

T be a nonexpansive mapping of C into itself. Then, for any x\in C, S_{n}x=\displaystyle \frac{1}{n}\sum_{i=0}^{n-1}\dot{T}x
converges weakly to a fixed point of T (see also [8]).

Recently, Kocourek, Takahashi and Yao [4] introduced a wide class of nonlinear map‐

pings called generalized hybrid which containing nonexpansive mappings, nonspreading
mappings, and hybrid mappings in a Hilbert space. They proved a mean convergence
theorem for generalized hybrid mappings which generalizes Baillon�s nonlinear ergodic
theorem. Motivated by Baillon [3], and Kocourek, Takahashi and Yao [4], Takahashi
and Takeuchi [9] introduced the concept of attractive points of a nonlinear mapping in

a Hilbert space and they proved a mean convergence theorem of Baillon�s type without

convexity for a generalized hybrid mapping.
In this paper, we introduce the concept of k‐acute points of a mapping for  k\in

[0 ,
1 ] . We study some properties of k‐acute points and relations among k‐acute points,

attractive points and fixed points. Then, We prove some convergence theorems by
using these concepts.
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2. PRELIMINARIES AND NOTATIONS

Throughout this paper, we denote by \mathbb{N} and \mathbb{R} the set of all positive integers and the

set of all real numbers, respectively. Let H be a real Hilbert space with inner product
) and norm \Vert . Let  C be a closed convex subset of H . For every point x\in H,

there exists a unique nearest point in C , denoted by P_{C}x , such that

\Vert x-P_{C}x\Vert\leq\Vert x-y\Vert
for all  y\in C . The mapping P_{C} is called the metric projection of H onto C . It is

characterized by
\langlePcx—y,  x-P_{C}x\rangle\geq 0

for all y\in C . See [8] for more details. The following result is well‐known; see also [8].

Lemma 2.1. Let C be a nonempty bounded closed convex subset of a Hilbert space H

and let T be a nonexpansive mapping of C into itself. Then, F(T)\neq\emptyset.

Let C be a subset of a Banach space E and let T be a mapping of C into E. \mathrm{A}

mapping T is said to be L‐Lipschitzian if \Vert Tx-Ty\Vert\leq L\Vert x-y\Vert for any  x, y\in C,
where  L\in[0, \infty). In particular,  T is said to be nonexpansive if \Vert Tx-Ty\Vert\leq\Vert x-y\Vert
for any  x, y\in C . Usually, T is said to be quasi‐nonexpansive if

(1)  F(T)\neq\emptyset , (2) \Vert Tx-v\Vert\leq\Vert x-v\Vert for  x\in C, v\in F(T) .

Let C be a subset of a Hilbert space H . Let T be a mapping of C into H and I be the

identity mapping on C. T is said to be pseudo‐contractive if, for any x, y\in C,

\Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+\Vert(I-T)x-(I-T)y\Vert^{2}.
Assume  F(T)\neq\emptyset and set  y=v\in F(T) . Then we have that, for any x\in C,

\Vert Tx-v\Vert^{2}\leq\Vert x-v\Vert^{2}+\Vert x-Tx\Vert^{2}.
Usually, T is said to be hemi‐contractive if

(1)  F(T)\neq\emptyset , (2) \Vert Tx-v\Vert^{2}\leq\Vert x-v\Vert^{2}+\Vert x-Tx\Vert^{2} for x\in C, v\in F(T) .

Let k\in[0 ,
1 ) . T is said to be k‐strictly pseudo‐contractive if, for any x, y\in C,

\Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+k\Vert(I-T)x-(I-T)y\Vert^{2}.
Assume  F(T)\neq\emptyset and set  y=v\in F(T) . Then we have that, for any x\in C,

\Vert Tx-v\Vert^{2}\leq\Vert x-v\Vert^{2}+k\Vert x-Tx\Vert^{2}.
Usually, T is said to be k‐demi‐contractive if

(1)  F(T)\neq\emptyset , (2) \Vert Tx-v\Vert^{2}\leq\Vert x-v\Vert^{2}+k\Vert x-Tx\Vert^{2} for x\in C, v\in F(T) .

We call T a strictly pseudo‐contraction if T is a k‐strictly pseudo‐contraction for some

k\in[0 ,
1 ) . We also call T a demi‐contraction if T is a k−demi‐contraction for some

k\in[0 , 1 ) . Assume F(T)\neq\emptyset.
Let k\in[0 ,

1 ] . We define the set of k‐acute points \mathrm{A}_{k}(T) of T by

\mathrm{A}_{k}(T)= { v\in H:\Vert Tx-v\Vert^{2}\leq\Vert x-v\Vert^{2}+k\Vert x-Tx\Vert^{2} for all x\in C }.
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We denote \mathrm{A}_{0}(T) by A(T) because \mathrm{A}_{0}(T) and attractive points set of T are the same.

We denote \mathrm{A}_{1}(T) by \mathrm{A}(T) , that is,

\mathrm{A}(T)= { v\in H:\Vert Tx-v\Vert^{2}\leq\Vert x-v\Vert^{2}+\Vert x-Tx\Vert^{2} for all x\in C }.
For details, see [2].

3. ACUTE POINTS AND CONVERGENCE THEOREMS

In this section, we prove convergence theorems by using the concept of k‐acute points
of a mapping for k\in[0 , 1].

Let C be a subset of a Hilbert space H and let T be a mapping of C into H . Recall

\mathrm{A}_{k}(T)\subset \mathrm{A}(T) for all k\in[0 , 1 ] . Sometimes, we do not distinguish \mathrm{A}(T) from \mathrm{A}_{k}(T)
with k\in(0,1) strictly. For details, see [2].

Let C be a subset of a Hilbert space H and S be a mapping of C into H . Under the

condition  A(S)\neq\emptyset , we prove some convergence theorems (see [2]).

Theorem 3.1 ([2]). Let \{a_{n}\} be a sequence in [a, b]\subset(0,1) . Let C be a compact subset

of a Hilbert space H. Let S be a continuous self‐mapping on C such that F(S)\subset \mathrm{A}(S)
and  A(S)\neq\emptyset . Suppose there is a sequence \{u_{n}\} in C such that

u_{n+1}=a_{n}u_{n}+(1-a_{n})Su_{n} for n\in N.

Then, \{u_{n}\} converges strongly to some u\in F(S) .

We also get the following theorem by Theorem 3.1 (see [2]).

Theorem 3.2 ([2]). Let \{a_{n}\} be a sequence in [a, b]\subset(0,1) . Let C be a compact
subset of a Hilbert space H. Let T be a continuous self‐mapping on C. Assume that

one of the followings holds.

(1) T is hemi‐contractive with A(T)\neq\emptyset. S is the mapping defined by S=T.

(2) T is k ‐demi contractive. S is the mapping defined by S=kI+(1-k)T.
(3) T is quasi‐nonexpansive. S is the mapping defined by S=T.

Suppose there is a sequence \{u_{n}\} in C such that

u_{n+1}=a_{n}u_{n}+(1-a_{n})Su_{n} for n\in N.

Then, \{u_{n}\} converges strongly to some u\in F(T) .

Consider the compact and convex set C=\{(x_{1}, x_{2})\in R^{2} : x_{1}, x_{2}\in[0, 1], x_{1}+x_{2}\leq 1\}
of 2‐dimensional Euclidean space R^{2} . Let T be the self‐mapping on C defined by

T(x_{1}, x_{2})=(\displaystyle \frac{1}{2}(1+x_{1}-x_{2}), x_{2}) for (x_{1}, x_{2})\in C.
Let u_{1}\in C and \{u_{n}\} be the sequence generated by u_{n+1}=(u_{n}+Tu_{n})/2 for n\in N.

Under this setting, we can easily verify F(T)=\{(x_{1}, x_{2})\in C:x_{1}+x_{2}=1\},

A(T)=\{(x_{1}, x_{2})\in R^{2}:x_{1}\geq 1\}, A(T)\cap C=\mathrm{A}(T)\cap C=\{(1,0
Since F(T)\not\subset \mathrm{A}(T) ,

T is not hemi‐contractive. However, it is obvious that \{u_{n}\}
converges to a fixed point. For such mappings, we did not have convergence theorems.

Here, we give a convergence theorem [2\mathrm{J} for such mappings.
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Theorem 3.3 ([2]). Let \{a_{n}\} be a sequence in [a, b]\subset(0,1) . Let C be a compact and

convex subset of a Hilbert space H. Let T be a continuous self‐mapping on C with

 A(T)\neq\emptyset . Let  u_{1}\in C and \{u_{n}\} be a sequence defined by

u_{n+1}=a_{n}u_{n}+(1-a_{n})Tu_{n} for n\in N.

Suppose F(T)\subset P_{C}(A(T)) ,
where P_{C} is the metric projection of H onto C. Then,

\{u_{n}\} converges strongly to some u\in F(T) .

We consider weak convergence theorems in the case  A(T)\neq\emptyset and  F(T)\subset \mathrm{A}(T) .

To have the following results, we have to assume demiclosedness at 0 of I-T (see [2]).

Theorem 3.4 ([2]). Let \{a_{n}\} be a sequence in [a, b]\subset(0,1) . Let C be a weakly compact
subset of a Hilbert space H. Let S be a self‐mapping on C such that F(S)\subset \mathrm{A}(S) ,

 A(S)\neq\emptyset and  I-S is demiclosed at O. Suppose there is a sequence in C such that

u_{n+1}=a_{n}u_{n}+(1-a_{n})Su_{n} for n\in N.

Then, \{u_{n}\} converges weakly to some u\in F(S) .

We also have the following theorem by Theorem 3.4 (see [2]).

Theorem 3.5 ([2]). Let \{a_{n}\} be a sequence in [a, b]\subset(0,1) . Let C be a weakly
compact subset of a Hilbert space H and let T be a self‐mapping on C such that I-T

is demiclosed at O. Assume one of the followings.

(1) T is hemi‐contractive with  A(T)\neq\emptyset . Define the mapping  S by S=T.

(2) T is k ‐demi contractive. Define the mapping S by S=kI+(1-k)T.
(3) T is quasi‐nonexpansive. Define the mapping S by S=T.

Suppose there is a sequence \{u_{n}\} in C such that

u_{n+1}=a_{n}u_{n}+(1-a_{n})Su_{n} for n\in N.

Then, \{u_{n}\} converges weakly to some u\in F(T) .

4. NONLINEAR ERGODIC THEOREMS

We begin this section with presenting Theorem 4.1 due to Takahashi and Takeuchi [9].
Then, we also have Theorem 4.2 (see [2]).

Theorem 4.1. Let C be a non‐empty bounded subset of a Hilbert space H. Let S be a

nonexpansive self‐mapping on C. Let v_{1}\in C and let {vn}, \{b_{n}\} be sequences defined
by

v_{n+1}=Sv_{n}, b_{n}=\displaystyle \frac{1}{n}\sum_{t=1}^{n}v_{t} for n\in N.

Then the followings hold.

(1) A(S) is non‐empty closed and convex.

(2) \{b_{n}\} converges weakly to some u\in A(S) .

We also have the following theorem.
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Theorem 4.2 ([2]). Let k\in[0 , 1). Let C be a non‐empty bounded subset of a Hilbert

space H. Let T be a k‐strictly pseudo‐contractive self‐mapping on C. Let S be the

mapping defined by Sx=(kI+(1-k)T)x for x\in C . Assume that S is a self mapping
on C. Let v_{1}\in C and let {vn}, \{b_{n}\} be sequences defined by

v_{n+1}=Sv_{n}, b_{n}=\displaystyle \frac{1}{n}\sum_{t=1}^{n}v_{t} for n\in N.

Then the followings hold.

(1) \mathrm{A}_{k}(T) is non‐empty closed and convex.

(2) \{b_{n}\} converges weakly to some u\in \mathrm{A}_{k}(T) .

Further, if C is weakly closed then the followings hold.

(3) F(T) is non‐empty and weakly closed.

(4) \{b_{n}\} converges weakly to u\in F(T) .

Remark 4.3. In Theorem 4.2, convexity of C is not always necessary. We give an

example. Let Q be the set of rational numbers, k\in[0, 1 ) \cap Q and C=(0, 1)\cap Q . For

any self‐mapping T on C, S is also a self‐mapping. However, C is not convex.
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