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Abstract

We prove an explicit upper bound of the function S(t,x), defined by the argument of Dirichlet
L-functions attached to a primitive Dirichlet character x (mod ¢ > 1). An explicit upper bound of
the function S(t), defined by the argument of the Riemann zeta-function, have been obtained by A.
Fujii [1]. Our result is obtained by applying the idea of Fujii’s result on S(t). The constant part of
the explicit upper bound of S(t,x) in this paper does not depend on x. Our proof does not covor the
case ¢ = 1 and indeed gives a better bound than the one of Fujii that covers the case ¢ = 1.

1 Introduction

The argument of the Riemann zeta-function on the clitical line defined by
1 1
1) == Iy
S(t) - arg ¢ (2 +zt)

when t is not the ordinate of a zero of {(s). This is obtained by continuous variation along the straight
lines connecting 2, 2 4 it, and % + 4t, starting with the value zero. Also, when ¢ is the ordinate of a zero

of {(s), we define
S(t) = %{S(t +0)+ St —0)}.

Now, we consider the argument of Dirichlet L-functions. Let L(s, x) be the Dirichlet L-function, where
s = o + it is a complex variable, assosiated with a primitive Dirichlet character x (mod ¢ > 1). Here, we
denote the non-trivial zeros of L(s, x) by p(x) = B(x) + iy(x), where 5(x) and v(x) are real numbers.
Then, when ¢ is not the ordinate of a zero of L(s, x), we dcfine

1 1
S(t,x) = ;argL (5 +it,x) .

This is given by continuous variation along the straight line s = o +14t, as o varies from +co to %, starting
with the value zero. Also, when ¢ is the ordinate of a zero of L(s, x), we define

1
S(t,x) = 5{S(E+0,x) + 5 = 0,)}-
Selberg proved
S(t,x) = O(logq(t + 1))

and under the generalized Riemann hypothesis (GRH)

logg(t +1) )

S(tx) =0 (loglog q(t+3)

in Selberg [2]. The purpose of the present article is to prove the following result.
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Theorem 1. Assuming GRH. Then, for ¢ > 1

logq(t+1) ( log g(t + 3) )
loglogg(t+ 3) (loglogq(t +3))2 )~

IS(t, x)| < 0.804 -

The constant 0.804 obviously does not depend on x. And we don’t know anything concerning the
optimality. Also, the implied constant of the error term does not depend on q. Our result does not
include the case of the function S(t) since we assume ¢ > 1. An explicit upper bound of the function
S(t) is obtained by A. Fujii [1], where the value is 0.83.

The basic policy of the proof of this theorem is based on A. Fujii [1]. In the proof, S(t, x) is seperated
by three parts My, My and M3. Fujii’s idea of [1] is applied to all parts. But we need Lemma 1, which
is an explicit formula for %(s, x)- This lemma is an analogue of Selberg’s result.

2 Some notations and a lemma
Here we introduce the following notations.

Let s = o + it. We suppose that o > % and t > 2. Let z be a positive number satisfying 4 < z < 2.
Also, we put

11
Y72 T logx
and
A(n) for 1<n<uz,
As(n) = A(n)lo—g—x’_ZL for £ <n<2?
logz - 7= ’
with

logp  if n = p* with a prime p and an integer k > 1,

A(n) = -
0 otherwise.

Using these notations, we prove the following lemma.

Lemma 1. Assume the GRH. Let t > 2 and > 0 such that 4 < x < t2. Then for o > 0y = % + @,
there exist w and w’ such that |w| <1 and —1 < w’ <1, we have

1 1
I ) Ay(n) zz 77 (1 + 2 ‘7) w Ay(n)
f(o +it,x) = — 22 notit x(n) — -1+ ® ZZ no1tet x(n)
n<x e € ne
e (l + x%_") w1 .
+————t— - —logg(t+1)+O(z=7°).

EHERFE
This is an analogue of Lemma 2 of A. Fujii [1].

Lemma 2. Leta=01if x(-1) =1, anda =1 if x(—1) = —1. Then, forz >1,s# —2g—a (¢ =
0,1,2,---) and s # p(x), we have

—2q—a—s __ m—2(2q+a+s)

r B Az (n) 1 =~z
I(S’X)__g;z ns X("H@; 2¢+ats)?

1 zP—5 — g2p—s)
+ log x Z (s—p2

P
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Lemma 2 is similar to Lemma 15 of Selberg [2]. We write here only a sketch of the proof of Lemma 2.

If a = max(1,0), we have

a-+oot 275 — mZ(z-—s) L/

(n) 1
Z x(n) = 27rzloga:/u_ooi T (z-s)2? f(Z’X)dZ-

n<z?

We consider residues which we encounter when we move the path of integration to the left. At the
point z = s, the residue is —(logz) % (s, x). At the zeros —2¢ —a (¢ = 0,1,2,---), the residues are

—29—a—s_—2(23g+a+ts) p—s_z2(p—3)
(2g+a+s)?
Lemma 2. Proof of Lemma 1. Assume the GRH. In Lemma 2, since for o > 01 = % + $

1o i-0 0-1—1
<ot (14047)

T (o1 -+t -m?

z

rP—s — 2(p—s)

1
gz & o o7

we have

1 p—s _ »2(p—s) 1
D e e CEC L I D i

I 7
logz < 7 (o1—3) + -7
where |w| < 1. Hence by Lemma 2, we have for o > o

r . A, (n T2
Totitx) ==Y Tix +O(logz)

n<xz?

1

g — L
+x%""(1+w2 ”)wz 12
-

(02 ——) (t—’Y)z

. . 1_ -1
In particular, since 277 < g~ Tez = % for o > o1, we get

L X . Az(n) 1
%f(al +it,x) =R ( Z_; no1tit X(n)> +0 (logw)
1/ 1\, 013

+ . (1 + g) w Z ( 1N\ 2

T (o1 =3) +(t—7)?

where -1 <w’ < 1.
Here, since by p. 46 of Selberg [2]

v L8 L (5ta I S
§RL(sx) ( 2logﬂ_ 2log( 5 ))4—2(0_1)24_( 2+O(1),
v 2

we get for t > 2

L . 1 oy — 3
R (01 +it, X) = — 3 logq(t +1) +3 ——2 +o(1).
~ ,

By (2) and (3) we have

e

¥

:_%(Z :;EQX(n)) —logq(t+1)+0( ; >+o()

n<x?

Inserting the above inequality to (1), we obtain Lemma 1.

At the zeros s = p of L(s,x), the residues are I(s—_p)z—. Thus, we obtain

)



3 Proof of Theorem 1

The quantity S(¢, x) is separated into the following three parts.

1 ! 1\ L'
S(t,x):—;{%/ f(a+it,x)dcr+9{(al—§> L(Ul +it,x)}
o1

2

o1 Ll LI

- i ; _ = i
\r/l {L(al-l-zt,x) L(0+1,t,x)}da
1

= ";3(M1 +M2 +M3),

say.

First, we estimate M;. By Lemma 1 we have

e [ oS e

o -2 (1+3)w

T2 (1+x%_")w 1 N

_— e e - 270
10+ Dw 210gq(t+1)—|—0(:1r:2 )}da

== A"—(I)x(n) +m(t),

no1tit lOg n

n<z?

+

n<z?
say. Here,
1 An(z) 1
< i 2 B ) - s+
ot 1, 1l 4 *© 1o
X T2 (1+x2 )da+0 z2 " %do
g1 g1
1 1
t+5%) 1 logg(t+1) 1 Ap(x)
< e 2e’ L. -
“1-1(1+1) 2 logz * logz "22 n"l“tX(n) ’
say.

Next, applying Lemma 1 to My, we get

(% + }51“2) 1 logq(t+1) 1 An(2)
|M2|£1_l(1+l) 5 logz e Z na1+itX(n) s

n<z?

say.

. . t-0{e-3 (-3}
1S(Ms)] < / ;{(Ul_%)Z_f_(t_,y)z}{(g_%)2+(t—'y)2}d0 +0(logm
<[12N(%0)da+o(l—&l—x),

say.

Here, we put 9t = [7* 27 N(v,0)do. Then, we have

‘ﬁ<2 (- 1)? /°° [t =l

2 2 2da
R s S VI )
1
™ 0’1—-2-
<
Thogs 2= {0y )+ (=

Zﬁﬁ%w)

)

(4)

(4)

(6)
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since o < 07 for M3

Here, by (2) and (3) we get

x(n)

3 logg(t+1)

) o

Z o1 —% _ 1
P LTI T R Y (R
Ay (z)
+O< Z no1tit
n<z?
So,
n=2 ! log q(t +1)
T1 I+ logz B
1 An(z)
+0<logz Z
Hence we have

say.

have

Similarly,

So, we see

and ‘

[$(Ms) < §

1
‘o <_
logx

=mt)+0 (1 P

(7
Finally, we estimate the sums on right-hand sides of (4), (5), (6) and (7). By definition of A,(n) we
Z Ag(

Z}

no1 +t X(n)
n<z?

1

1

)+0(<loglx>3)'

log g(t + 1
Togz ogq(t+1)

no1 +at xn
2

Z An(z)

noitit X(n)

)+

© ()
)0

1
logz )’

A(n)logﬁ 1 x
S EPILLE UL S SR
61+ t 1
L ? = e ns logz — logz
Az(n) z
1,1
1+55) 1 logg(t+1) z
M| < e 2e L.
M| < 1-1(1+1) 2 log z +0 (logx)2 )’
My] < (6+2) 1 logg(t+1)
2| < 1 1y "9’
-1+ 2

M| <mu(t)+ 0| ——
For n1(t), n2(t), ns(t) and n4(t), taking z = log q(t + 3)+/log q(¢t + 3) we have

x
+O((logw)2)’

St < L 1 (Gt+am)  (G+2) | 7| losalt+1)
’ 1—%(1+i—) 2 2 4 log x
T
+O(<loga:)2)
logq(t + 1
— 0.803986- .. 289t +1)

log q(t + 3)
loglog q(t + 3) +o ((

loglog q(t + 3))2> )

(logz)?

)-
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Therefore we obtain the theorem. O
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