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A TRANSCENDENCE CRITERION WITH p-ADIC CONTINUED
FRACTIONS

TOMOHIRO OOTO (UNIVERSITY OF TSUKUBA)

ABSTRACT. In this paper, we give a new transcendence criterion for p-adic con-
tinued fractions which are called S_chneider continued fractions.

1. INTRODUCTION

In this paper, we study transcendental p-adic continued fractions. Each of Schnei-
der [8] and Ruban [7] gave an algorithm of p-adic continued fraction expansions. We
only deal with Schneider’s continued fraction expansion.

The paper is organized as follows. In Section 2, we state a main theorem and give

- examples of transcendental Schneider continued fractions. Section 3 presents some
preliminaries for a proof of a main theorem. We prove the main theorem in Section
4.

Let p be a prime. For = € pZj, a function 7}, is defined by

[ —a @ #0)
T”(x)'{o @=0),

where a € {1,2,...,p — 1} is uniquely chosen such that |p°%® /z — a|, < 1. For

¢ € Q,, there exist a unique &; € pZ, and ag € {1,...,p—1} such that £ = p*(ap+¢&;)
where by = ord,(§). Applying the function T, to & repeatedly, we deduced that

(1) £ =p"

a1 +
1 Qs _|_ PN
where a,, € {1,...,p — 1},b, € Zs, for n > 1. (1) is called a Schneider continued
fraction. To simplify notation, we write the continued fraction (1)

b1 bo
— pho p p PR
E=p <a0+’le+‘a_2'+ )

The p-adic number ¢ is called ultimately periodic if there exist an non-negative
integer N and a positive integer £ such that a, = a,44,b, = b, for all m > N.

In the rest of this section, we introduce known results related to transcendental
Schneider continued fraction. '

For P(X) € Z[X], a height of P(X), denoted by H(P), is defined to be the
maximum absolute value of coefficients of P(X). For an algebraic number a € Q,,
the height of o, denoted by H (), is defined to be a height of the minimal polynomial
of o over Z. We define Mahler’s exponent wy (resp. Koksma’s exponent wj ) at a
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p-adic number § € @, by the supremum of a real number w (resp. w*) which satisfy
0<|PE)|, <H(P)™ " (resp. 0<|¢ —al, < H(a)™ )

for infinitely many P(X) € Z[X] with deg P < 2 (resp: algebraic number o € Q,
with degar < 2). It is known that for a p-adic number &, if w3(§) > 2, then ¢ is
transcendental. The detail will appear in [2, Section 9.3]. Bugeaud and Pejkovié [3]
constructed uncountably many p-adic numbers £ for which wy(§) — w3 () = 1.

Theorem 1.1. Let w > (54 v/17)/2 be a real number, b be a positive integer and
(€:)iz0 be a sequence taking its value in the set {0,1}. The sequence (bpy)n>1 18
defined by

b = b+3i+2 ifn=|w'| for some i € Zxy,
Y b+ 3i+ e if (W] < n o< |wit] for some i € Zsy.

R bl,w b2,w
§w=1+pﬁj+‘pTi+.._

w;(éw) =w-—1, w?(gw) =w.

In particular, &, is transcendental.

Set

Then, we have

Laohakosol and Ubolsri [5] studied an algebraic independence of Schneider con-
tinued fractions.

Theorem 1.2. Let n > 2 be an integer. Consider Schneider continued fractions

b1, b2,

p - .
. = + +... < <n.
fl ai; as; (l == )

Assume that there exist real numbers 7,7 > 1, a function g(j) for j € Zso with
9(j) = 00 (j = 00) and a subsequence of positive integers Ny < Ny < --- such that
for2<i<n,N € Zsy,j € Lo,
pr,l > kabN—k',l 1<k< N),
pr,z—l Z /r-])bN,'L7

prJ,z > pg(J)bN]—m.

Then, &1, ..., &, are algebraically independént. In particular, &1, ..., &, are transcen-
dental.

2. MAIN RESULT

Let n = (1n;)i>0, A = (A)izo and k = (k;);>0 be sequences of positive integers.
Assume that for all ¢ > 0, '

Niy1 = Ny + Ak
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We call a p-adic number £ € Qp of the following form quasi-periodic Schneider
continued fraction with respect to (n, A, k):

b1 bng—1 bng brg+kg—1
e (ag+ B e B PP
ai [ ano—l | ano ano—i-ko—l
A1
brg+roko bry—1 bry bri+ky—1
P IRUUUOS i I U INUUURS .
Apg+Aoko , Apy—1 I An,y Apy+k1—1

+

where the A’s indicate the number of times a block of partial quotients and partial
numerators is repeated.

Theorem 2.1. Let n = (n;)i>0, A = (Ai)iz0, and k = (k;)i>o0 be as in the above.

Let £ be an irrational quasi-periodic Schneider continued fraction with respect to

(n, A\ k) and b be a positive integer. Assume that b; < b for alli > 0 and a,, =
C=Qp k-1 =p— 1,by, = = by 4k,-1 = 1 for infinitely many i > 0. If

p—1++/(p—1)2+4p®
- 2log ( 5 )
liminf =% >

-1
ioo My log p

’

then & is transcendental.

Theorem 2.1 is a p-adic analogue of transcendental criterion of Baker [1, Theorem
2]. The author [9, Theorem 1.1] proved an analogue of Theorem 2.1 for Ruban
continued fractions.

For example, the following p-adic numbers are transcendental:
42m+1

R g
Ry |pflr l_l l_r Ip—l ]
B

The first number is the case that N =4tk =1,n; = (4% = 1)/3,a0 = 1,bp =
0,8n,,,; = bny, = Lbp,,,, = 2,0y, = p—1for i > 0, and the second number
is the case that \; = 8- 178 k; = 2,n; = 17, a9 = 1,by = 0,8ng,; = Ongpprt1 =
bry, = bpg41 = bpg, .y = 1,bny, 111 = 2,0ny, = @nyy1 = p— 1 for ¢ > 0 in Theorem
2.1: Tt seems that above numbers are the first examples of transcendental Schneider
continued fractions with bounded partial numerators.

3. PRELIMINARIES

Let (@n)n>0 be a sequence with a, € {1,...,p—1} for all n > 0 and (b,,),>0 be an
integer sequence with b, > 1 for all n > 1. We define sequences (pn)n>-1, (¢n)n>-1
by

p-1=DP",po = pXag, pn = @npr—1 + PPz, n>1,
g-1="0,90 =1,¢n = @nGn-1 + P Gn—2, n>1.
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Set

b1 ba
— pbo p p P
§=p (a0+‘le+,—Jl+ )

We call p, /g, the n-th convergent to €.
Lemma 3.1. Let = be a variable. Then, the following equalities hold:

0 g ) e

(3) Pndn-1 — Pn—14qn = ( 1 n+1pz =ob TL > 0)
(4) Pndn-2 — Pn—2qn = (—1)712021:0 “Qp, (n > 1)7
(5) palp =27 (02 =1), |gul, =1 (n20),
b1 b2 bn—1 bn TPn—1 + bn .
po (g + 20y 22y P P 3 EL2 (> 1),
a1 ag |an | @ Tqn-1 + P""Gn-2
(7) ‘5 Bl =S m>0).
"Anlp
Proof. A induction shows (2)-(6). It is clear that (7) for n = 0. Set
bnt1 bnt2
b= a2 P (n>1).
| Qn+1 | An+2

For n > 1, we have

‘§ _ & _ gn(ann—l - pn—1Qn) + Pb" (ann—Q - pn—2Qn)
an |p qn(gnQn—l + pbn‘Jn—2) P
_\\n _ s+l
= p Zz:O b1|§" — an|p = p 21,:0 bz'
Hence, we obtain (7). ’ O

Lemma 3.2. Consider a Schneider continued fraction -

(o)

If a; = a},b; = b, for all 0 < i < n, then we have
lE - 6 'p S p =2 h=0br— mln(bn+l’b1n+1).

Proof. Since p, /gy is the n-th convergent to both & and &', we have

¢ -

)

n lp tnl,
by Lemma 3.1 (7). O

Proposition 3.3. (Bundschuh [4]) Let n be a p-adic number. Then, n is rational if
and only if its Schneider continued fraction expansion is finite or ultimately periodic

¢ = €'l < max (’f - f ) < pm Bheobemintinn )

with the period pg In particular, we have

T

_ p_|_ _
P 1+p_1— 1.



Throughout this section, we assume that by = 0.

Lemma 3.4. For h € Z3,, we define a rational number ny, by

b1 bn
_ p P P
Nh = ap + ’—;] + + ’—K' + m"
Then, we have H(ny) < max(py, ppr-1)-
Proof. By Lemma 3.1 and Proposition 3.3 , we have

b1 br, _
77h,=a0—|—‘_p—4|+...+ P J:ph PPh1
“ lan—P " gn —pga

It is seen that ¢, < p, for n > —1 by induction on n. Hence, we get

H(nn) < |pn — ppn—1| < max(ph, ppr-1)-
O

Lemma 3.5. Let b be a positive integer. Assume that b, < b forn > 1. Then, we
have

n+1
_1 12+ 4
(8) pn<<p ki (‘Z i p) forn > —1.

Proof. Put

p—1++/(p—1)*+4p’
A= 5 .

The proof is an induction on n. Clearly, (8) holds for n = —1,0. We assume n > 0.
Then, we have

Pn < (0= Dpnoy + 02 < A" (p — 1A +pP) = A™T

The proof of Theorem 2.1 deeply depends on the following theorem.

Theorem 3.6. (Ridout [6]) Let a be an algebraic irrational p-adic number and 6 be
a positive number. Then there are only finitely many n € Q with the solution of the
following inequality:

1

la —nlp < T

4. PROOF OF MAIN THEOREM
Without loss of generality, we can assume that by = 0. Put
-1 —1)2 + 4pb 2log A
APV 2logd
2 logp
Let A be an infinite set of positive integers ¢ > 1 which satisfy

Qn, = Qn, 41 = " = On,tk,~1 =P — 1: bmL = bn1+1 = = bnﬁ—k,—l =1

129
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Let n(i) be the Schneider continued fraction 7,,_; of Lemma 3.4 for : € A. We have
n® is rational and H(n®) < A™ for i € A by Lemma 3.4 and 3.5. Assume that ¢ is
an algebraic irrational number. Put x > 2. Using Theorem 3.6, we can show that

€ =1V, > A7
for sufficiently large i € A.- By Lemma 3.2, we get

e — 7@, < p~ Sl
for 7 € A. Therefore, we have

+X,k,—1
pZ;l;l v b] < Aan

for sufficiently large ¢ € A. By the assumption, there exists 4 > 0 such that A\; >
(B + 6)n; for sufficiently large i. A computation show that

logp

2
o log A

6 < x.
This completes the proof.
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