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1. INTRODUCTION
Let

n(z) o emz/12 H (1 27rmz (Im( Z) > 0)

be the Dedekind 7-function. Dedekind [2] described the transformation of log n(z)
under the substitution 2’ = (az +b)/(cz + d), (a b) € SL2(Z). More precisely,

he proved that for (a b) € SLy(Z) with a # 0,¢ > 0,

c d
az+b cz+d mi(a + d) ) '
(1.1) logn (cz n d) logn(z) + = log ( ; ) + 15 miD(a,c),

where D(a, c¢) is the Dedekind sum defined by

(1.2) D(a,c) = %S—j cot (EZE> cot (EE@)

k=1

for coprime integers ¢ and ¢ > 0. We can use (1.1) to prove the so-called reci-
procity law given by

1 1 /fa ¢ 1
(1.3) D(a,¢)+ D(e,0) =~ + 75 ( +o4 EE)

for coprime positive integers ac. Details of the proofs of (1.1) and (1.3) can be
found in the book [6].

An analogy exists between number fields and function fields. For example,
A = F [T],K = F¢(T), and K := F,((1/T)) are analogous to Z,Q, and R,
respectively. In [1] and [5], we introduced a function field analog s(a,c) (see
Section 2) of D(a,c), and established its reciprocity law. In this report, we use
the Dedekind sum s(a,c) in function fields to describe the transformation of a

certain series under the substitution 2’ = (az + b)/(cz + d), (a b) € GLy(A).

As an application, we prove the reciprocity law for s(a; c).

2. REVIEW OF THE DEDEKIND SUM

Let A =TF,[T] and K = F(T). Let Ko, = F,((1/T)) be the completion of K
at oo = (1/T), and let Co, be the completion of an algebraic closure of K.



80

2.1. The Carlitz exponential function. Let Do =1, D = [n][n—1)2---[1]¢"
for n > 0 and [n] = T7" —T. Let e(z) be the Carlitz exponential function defined
by
zq

e(z) “~ D )
which is entire over C,. By definition, it holds that de(z)/dz = €/(z) = 1. The
map e : Cy — C is Fy-linear and surjective. The kernel L := Ker(e) is a free
A-module of rank one. It is easy to see that e(z) is L-periodic: e(z +[) = e(z)
for I € L. Let T denote a generator of L. The function e(z) can be written as

e(z) =z H (1——)

OAIEL

1 €(z)
e(z) - e(z) Zl+z
The reader is referred to Goss [4] for a.ddxtlona.l details of e(z).

2.2. The Dedekind sum. Let a,c be the coprime elements of A\ {0}. The
(inhomogeneous) Dedekind sum s(a, ¢) is defined as

1 map\ L [T\
s(a,c) = - Z e (—c—) e (7) .
0#ucA/cA

When c is a unit of A, s(a,c) is defined to be zero. This is an analog of the
classical Dedekind sum D(a, c) defined in (1.2). For any € € F, \ {0},

(2.1) s(ea,c) = € 's(a, c).

By replacing p with ey (e € Fy \ {0}) in the definition of s(a,c), we see that
s(a,c)=0if g > 3.

From this, we have

3. A SERIES RELATED TO s(a,c)

Let Q = Cx \ K be the Drinfeld upper half-plane, which is an analog of the
classical upper half-plane H := {z € C | Im(z) > 0}. The group GLy(A) acts on

Q by fractional linear transformations (2 g) z=(az+b)/(cz+d). Let

1
€)=Y we(7az)’

0#a€A
which is convergent for z € Q. This can be written as

0 if >3,
£(z) = { = aca, L/ae(Taz) if ¢=3,
> aca, L/ae(Taz) if ¢=2,

where A, is the set of monic elements in A.
In the classical case, it is known that for v € SLy(Z) and 2z € H,

. e
logn(vz) — logn(z) = —2xi Ga(T)dr,

z
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where G2(T) = =55+ Y moey D omey 1€ is the Eisenstein series of weight 2. We
have a similar result for £(z). Since de(2)/dz =1, d&(z)/dz =T Y e a0, €(Taz) 2.
As is well known, g(z) 1= 1—(T9—T) 3 ¢4, €(Taz)' "¢ is a weight ¢ — 1 modular
form for GLy(A) (see {3], (9.2)). Therefore, we see that for v € GL2(A) and
z €1,

—7 [P dr  if g=3,
£(vz) —&(2) = { 7 [ (%g-%})zdr if g=2.

4. TRANSFORMATION FORMULA FOR £(z)

We provide the results for the transformations for £(z).

Proposition 1. (1) For e € F,\ {0}, &(e2) = €72¢(2).
@ Forg= (5 ) € OIa(4), €02) = detnt(o).

Theorem 2. We have
e(-1/2) = 6() - 2 (4 1) - 2L,

T

where a(n) =Y o 1caa™"
We require the following lemma to prove Theorem 4.

Lemma 3. Lety = | * b be a matriz in GLy(A) with c #0. Then,
c d

a det v

=T clcz+d)

Theorem 4. Fory = (g 3) € GLy(A4),

(a.1) §(7z)=det'y[(z) ()(cz+d+ 1 >}+a(_1)2.

cz+d T

The following is the main result.

Theorem 5. Let v = (" g) € GLy(A). Ifa# 0 and c # 0, then

42)  £(72) = dety [{(z) «2) ( it d+ i d)] + a(;c)2+m(a, o).

5. OUTLINE OF THE PROOF OF THEOREM 5
5.1. Case y € SLy(A). Let

1 1
B= 2 e 2, TG

0A£fEA 0#£feA
f=0 (mod c) =0 (mod c)
1 1
Me Y e e
oiren fe@ivz) o=, [fe(Tf2)

f#0 (mod ¢) f#0 (mod ¢)
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Then, we have £(yz) — £(2) =

R; + Rs, for which we compute R; and R,
separately.

We first compute R;. By Lemma 3, 1/e(Tfvz) = 1/e(—7f/c(cz + d)) Hence,
1

_1 c(cz +d) 1
Rl_Tr 0;‘4 gg;f(gc(cz+d) f)+f Z Z

F=0 (mod <) 720 (mod )geAf(g fz+h)
=l mod C = mod C
Setting f’ = f/c, Ry becomes

Z Z cz + d Z

0£f/cA gEA f/(g(cz + d) -

O#f'EA geA f,(g f’CZ + h)
We set h = —f'd and then divide R; into the part g = 0 and the part g # 0
Then,

Rl=_@( )

cz+d 1 » 1
=~y ¥ NERYDY .
€ ot frea 0tgel fglez+d) = f7) ~ e 0£f'CAO#gEA f(g = f'(cz +d))
In the last of the two double summation terms above, we interchange f’ and g
Then, R; becomes

a(2) 1 a(1)?
— <cz+d+cz+d>+ -~

e
We next compute the two sums in Rs. As for the first sum, we have

1
e Y gt ©T
2 Fem D) . Fe
fZ0 (mod ¢) f=p (mod c¢)
When f = p (mod ¢), f can be written as f = p+ch for a certain h € A. Hence,
by Lemma 3,

T} .1
e(®frz) T Efegtan—lg
Setting r = cg + ap, T/e(Tfvyz) can be written as

1
c(cz +d) —_—,
? g r(cz+d)— f

r=ay (mod c)
Thus, we have

Rs'f% Z Z Z cz+d

o = Tlglez+d) - f)
f=p (mod ¢) g=ap (mod c)

When f = p (mod ¢), using k¥ := ap — p, f+ k = ap (mod ¢). As for the
second summation in Ry, noting that a, ¢ are coprime, we obtain

. 1 1
D DR 7SI SIDD

OfucAjcA  feA (f +k)e(®(f + k)z)
f#0 (mod ¢) f=p (mod ¢)




Now, we compute 7/e(T(f + k)z) as follows.

T 1
e@(f+kh)z) _Zg—(f+k)z+h’

geA
where h € A is a fixed element. Because f = y (mod c),
ap—k —Cd(f +k) _ —beu —j(f L)y
Letting h = (au — k — d(f + k))/c, T/e(T(f + k)z) becomes

1
> .
& r—k—(f+k)cz+d)
r=ap (mod ¢)

Hence, we have

c 1
LD S VD s |
T otuca/cA  feA gea (f+k)g—k—(f+k)cz+d))
f=p (mod c) g=au (mod c)

Noting that f = u (mod c¢) if and only if f + k = ap (mod c¢), R4 becomes

c 1
> 2, 9(f — glcz +d))’

O#ucA/cA €A cA
Hucd/e fspf(mod c) gEaug (mod ¢)

Using R3 and R4; we obtain

B=R-R=2 Y Y 3 flg

0#p€A/cA feA geA
f=p (mod c) g=ap (mod c)

As
1 1 T
DR et
e [ Swutes ce(Tp/c)
f=p (mod ¢)
POREED I :
-—— = —_ s
9 At ct  ce(Tap/c)
g=ap (mod c)

we see that Ry = 7s(a, ¢). Therefore, we conclude that R; + R, is the right-hand
side of (4.2).

5.2. Case v € GL3(A). The cases ¢ > 3 and g = 2 are trivial. It suffices to show
the case of ¢ = 3 and dety = —1. Noting that (3 :3) belongs to SLy(A),

- using the result obtained in Subsection 5.1, we have

f0a) = (2 Th) =)

= &(—2)— %r(_2_)_ (c(—z)‘— d+ « ! ) + a(ﬁlc)z + 7s(a, ¢),

Tc —z)—d

which is the right-hand side of (4.2).
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6. APPLICATION
In this section, we prove the following theorem.

Theorem 6 (Reciprocity law [1, 5]). Let a,c € A\ {0} be coprime.
(1) If ¢ = 3, then

1 a c 1
s(a,c)-l—s(c,a):W E+E+£ .

(2) If g=2, then

1 1 1 1
5(a,¢) + s(c,a) = T4+T2( #edple +1)

We have already proved this theorem ([1, 5]), by computing the residues of a
rational function. Using Theorem 5, we now provide another proof.

Proof of Theorem 6. There exist b,d € A such that ad — bc = 1. Then,
b 0 -1 —c —d
v = (Z d belongs to SLy(A). It holds that (1 0 )'yz = < ac b ) z. We

compute the values of the series £ on both sides.
Using Theorem 2,

«(‘1’ ‘01) 12) = ) - 22 (72 + L) _a?

vz T
Combining Lemma 3 with Theorem 5, this can be written as
a(2) : 1 a(1)?  _

(6.1) &(2) — (cz +d+ oo d) + —= +7s(a,c)

_a(2) ( 1 c 1 ) 3 a(1)2‘

7 E—c(cz+d)+_(;+a(az+b) b

Using (2.1) and Theorem 5, &( (;c _bd> z) becomes

(6.2) £(z) — 22 ( ) (az+b+ ! >+ o —iea).

az+b 7a
Equating (6.1) with (6.2), we obtain

(6.3) s(a,c) + s(c,a) = 752) ( +i4 ac) a(_12)2 (— _1 + 1)

a T a

Combining (6.3) with the following lemma enables us to complete the proof.

Lemma 7. (1) If ¢ = 3, then

a(2) = sz——T’ of1) =

(2) If g =2, then
. f2

0(2) = a(1)2 = m
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7. AN ANALOG OF THE SAWTOOTH FUNCTION
The sawtooth function ((z)) is defined by
_J {=z}—-1/2 if z €R\Z,
(“»‘{ 0 if reZ,

where {z} is the fraction part of z. This function has the following Fourier
expansion:

E exp(2minx)
0#n€EZ n

Inspired by the definition of £(z), we define an analog of ((z)) as follows. For a
given r € K, let S; be the set of all a € A such that e(Taz) # 0. Then, we

define 15 ) oy
— 7 £4a€S: ae(Fazx) z ’
Hﬂ“{ o )ﬁ&=¢
This function has the following properties.
e For e € F, \ {0}, F(ez) = € 1F(z).
e Forbe A, F(b) =
eForbe A, F(z +b) = F(z).
Moreover, the value F(z) at € K can be described in terms of the Dedekind
sum in function fields:

Theorem 8. For coprime a,c € A\ {0}, F(a/c) = s(—a,c).

We note that for the function ((z)), the result corresponding to Theorem 8
does not hold. It would be interesting to investigate F'(z) in the future.

(@) =~
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