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Abstract

We are concerned with Diophantine quintuples, that is, sets \{a, b, c, d, e\}
of distinct positive integers the product of any two of which is one less

than a perfect square. We present some recent progress in the area

and give a series of 9 �wishes� for future research on the topic.

1 Introduction

Consider the set {1, 3}: the product of its two elements is one less than a

perfect square: call this a Diophantine double. Now add the number 8: the

set {1, 3, 8} (still) has the property that the product of any two of its elements

is one less than a perfect square: call this a Diophantine triple. In general
a Diophantine m‐tuple, or simply an m‐tuple is a set of m distinct integers
the product of any two of which is one less than a perfect square. While

{1, 3, 8, 120} illustrates the existence of quadruples (and there are infinitely
many), it is conjectured that there are no quintuples \{a, b, c, d, e\} , with a<

b<c<d<e.

A brief sketch of the Diophantine quintuple problem, as well as a table

giving various bounds on the number of quintuples is given in [12]. Attempts
to show there are no quintuples \{a, b, c, d, e\} use the following recipe.

1. Use an effective version of \mathrm{B}\mathrm{a}\mathrm{k}\mathrm{e}\mathrm{r}\mathrm{s} theorem (or similar) on linear forms

of logarithms. This produces a bound on d . This bounds the size of

the quintuples.

2. Use some techniques from elementary and analytic number theory. This

converts the size of the quintuples into an estimate on their number.
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The best bounds to date on d and on N_{q} , the total number of quintuples,
appear in [3] and are

d<7.3\cdot 10^{67} N_{q}<5.5\cdot 10^{26} . (1)

Step 1 allows one, at least in principle, to enumerate all quadruples
\{a, b, c, d\} that may be extendable to quintuples. The goal is then to show,
using solutions to Pell equations, congruence conditions, or some computa‐
tion, that no quadruple in this list can be so extended.

A lot of work in recent papers ([5], [2][12], [3]) has focussed on Step 2.

While one can make more substantial savings by addressing Step 1, gains
from using Step 2 are far from exhausted.

Martin and Sitar [9] showed that the number of quadruples \{a, b, c, d\}
with d\leq x is asymptotically

 Cx^{1/3}\displaystyle \log x, C=\frac{2^{4/3}}{3 $\Gamma$(2/3)^{2}}=0.338285\ldots . (2)

Fujita [6] showed that there are at most four ways of extending a given
quadruple into a quintuple. In the worst‐case scenario when each quadruple
could be extended to four quintuples, and assuming that the lower order

terms in (2) are negligible, the bounds on  d in (1) give the estimate N_{\mathrm{q}}<
8.9\cdot 10^{24} . This is about a factor of 60 better than the bound in (1).

2 The Wishlist

The goal of this section is not to furnish the absolute best bounds obtainable

given the suggested improvements. It is often the case that the best bounds

are obtained through an optimisation process, coupled with some computa‐
tion. Rather than pursue this, we have merely outlined the estimated size of

the improvements.

2.1 Linear forms of logarithms
Matveev [10] has given a completely explicit version of Baker�s theorem of

linear forms of logarithms. This is for n logarithms and for number fields

of degree d . While it looks difficult to improve his theorem by much for

arbitrary n and d , for the quintuple problem we need only consider n=3

and d=4 . For these values, one finds a very large �constant� in Matveev�s

theorem, namely 1.73. 10^{11} which can be seen in [12, (16)].
Wish 1. Reduce Matveev�s constant from 1.73. 10^{11} by specialising the proof
when n=3 and d=4.
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Reducing Matveev�s constant C has a significant impact on the bounds

for d and N_{q} : this is illustrated in Table 1.

Table 1: Matveev constant C and upper bounds for d and N_{q}
\overline{CdN}

\overline{10^{11}1.3\cdot 10^{67}3\cdot 10^{27}}
10^{10} 5.5 \cdot  10^{62} 2 \cdot  10^{26}
10^{9} 2.3 \cdot  10^{58} 2 \cdot  10^{24}
10^{8} 8.8 \cdot  10^{53} 7 \cdot  10^{22}
10^{7} 3.1 \cdot  10^{49} 2 \cdot  10^{21}
10^{6} 9.7 \cdot  10^{44} 7 \cdot  10^{19}

Baker�s theorem has also been made explicit by Alexentsev [1]. For the

quintuples problem this yields a slightly smaller constant than Matveev�s

result, and indeed was used in [12] and [3] to make a small improvement over

that in [2]. Alexsentsev�s results differ slightly from Matveev�s in the form

of quantities E and B , which are too complicated to be mentioned here, but

which are related to heights of algebraic numbers. We simply conclude that

variants exist, and one may be able to inject ideas of Waldschmidt [13] to

improve on the estimates of d and N_{q}.

Wish 2. Use different versions Matveev r_{S}/Alexenstev^{f}s results to yield supe‐

rior results.

We remark that this is distinct from reducing the size of the constant as

in Wish 1.

Finally, there is the so‐called �kit for logarithms� as given by Mignotte
[11]. This, in principle, allows one to use results on sums of two logarithms to

improve estimates on sums of three logarithms. Since the numerical constants

in the two‐log case are far superior this is an attractive option.

Wish 3. Use results for two logarithms in the quintuples problem.

2.2 Eliminating small values of a

Given a bound on d one obtains bounds on a and b , and then deduces bounds

on the number of doubles \{a, b\} . This feeds into the ultimate bound on N_{q}.
The bounds on b , and hence the overall bound on N_{q} , is the worst for a=1 : in

general, small values of a contribute the most to N_{q} . It is therefore desirable

to eliminate, or at least mitigate the impact of, these small values of a.

Wish 4. Show that there can be no quintuples with a=1.
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This appears to be �wishful� thinking at the present. In the absence of

such a proof one seeks at minimising the damage wrought by these small

values of a . To that end, one can consider a=1
, 2, 3, say, separately from

a\geq 4 . For this section only, consider a=1.

Jones [8] proved that c>4b ; this was improved slightly by Cipu [2] to

c>5b+1 . Actually, Jones proved that c>4bd where d+1=y^{ $\Omega$} ,
where

y=\sqrt{b+1}\sqrt{c+1}-\sqrt{bc+1} , (3)

after which Jones concluded that d>1 . If c\geq $\lambda$ b then, since (3) is increasing
in c , we have that

y>\displaystyle \sim^{\frac{\sqrt{ $\lambda$}}{2}}(1+\frac{1}{ $\lambda$}) , (4)

where we have neglected some small, lower‐order terms. Since we have c>5b

we can take  $\lambda$=5 in (4). This shows that y\geq 1.34 and so, since y must be

an integer, we have y\geq 2.
This shows that d\geq 3 ,

whence c\geq 12b . We therefore deduce that

c\geq 12b . This lower bound for c will reduce the overall bound on d slightly.
There is a

 $\zeta$force multiplier effect� at work here: the reduction on  d reduces

N_{q} , but also, the lower bound on c has a �direct� effect at reducing N_{q}.

Wish 5. Continue this scheme of bounding c when a is small, and lower the

overall bound on N_{q}.

2.3 Bounds on 2^{ $\omega$(b)}

In [5] and in \mathrm{a}\mathrm{U} subsequent papers on the subject, one considers the maximal

number of distinct prime factors of b . In [3] we have b<1.91\cdot 10^{33} , which

means that b could have as many as 23 distinct prime factors. This induces

a factor of 2^{23} in the overall bound on the number of quintuples.
Removing k prime factors from b improves the final result by a factor of

2^{k} . In [3, (20)] the following problem was presented: enumerate all b such

that

\displaystyle \prod_{i=1}^{23}p_{i}\approx 2.67\cdot 10^{32}\leq b<1.91\cdot 10^{33},  $\omega$(b)=23 , (5)

where the product is over the first 23 primes. It was shown in [3] that none

of the values of b in (5) could be extended to a quintuple; whence we deduce

that b has at most 22 prime factors, and so the final bound on the number

of quintuples is halved.
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One should now like to enumerate

\displaystyle \prod_{i=1}^{22}p_{i}\approx 3.22\cdot 10^{30}\leq b<1.91\cdot 10^{33},  $\omega$(b)=22 , (6)

and try to eliminate these, as before. Given the much larger spread of values

of b in (6), this is a harder task than earlier, but nevertheless this leads us to

Wish 6. Eliminate another distinct prime factor of b_{f} and hence reduce the

bound on N_{q} by a factor of 2.

2.4 More cases, more congruences

By [3, Lem. 2.4] any potential quintuple arises from one of four possible
triples: these triples were labelled cases \mathrm{A}, \mathrm{B}, \mathrm{C} , and D. The largest contri‐

bution to N_{q} came from quintuples from case \mathrm{A} ; the smallest from case D.

At the RIMS conference in Kyoto I offered 1000 yen for the proof that no

quintuples could come from case \mathrm{D} triples. It is a delight to record here that

Yasutsugu Fujita and Takafumi Miyazaki [7] should Ue able to claim that

prize at next year�s meeting. They actually eliminated cases \mathrm{B} and \mathrm{D} from

consideration. Therefore we know that any quintuple \{a, b, c, d, e\} must have

b>4a, \mathrm{c}>4ab+b+a.

In [3] this was partitioned into two categories: case A being those with

c<b^{3/2} and case \mathrm{C} being the rest. One could create new case \mathrm{A} with c<b^{ $\eta$}

for some  $\eta$ and case \mathrm{C} being the rest. It is known [2, Prop. 3.1] that  $\eta$\leq 3.

Wish 7. Show that all quintuples must satisfy b>4a and c<b^{ $\eta$} for some

 $\eta$\in(3/23) .

By partitioning quintuples in such a way, their overall number is likely to

decrease.

2.5 Explicit arithmetical sums

In bounding the number of quintuples one makes use of sums of the form

\displaystyle \sum_{n<x}2^{ $\omega$(n)} . For most of these sums, the asymptotic size is well‐known, but

explicit upper bounds are diffcult to find. Recently, Dudek [4] proved that

\displaystyle \sum_{2\leq n\leq N}d(n^{2}-1)\sim\frac{6}{$\pi$^{2}}N\log^{2} N. (7)
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This can be put to work in estimating the number of doubles \{a, b\} with

a<b\leq N . In [3], (7) was made explicit, viz. for N\geq 2 we have

\displaystyle \sum_{2\leq n\leq N}d(n^{2}-1)\leq\frac{6}{$\pi$^{2}}N\log^{2}N+2.369N\log N+\ldots , (8)

where the lower order terms are explicitly given. The explicit inequality in

(8) matches the one in (7) to the first term. Although the lower‐order terms

in (7) are not yet known, almost certainly the lower‐order terms in (8) are

excessive. Therefore, there is something to be gamed by pursuing

Wish 8. Calculate the lower‐order terms in \displaystyle \sum d(n^{2}-1) . Probably the first
is clNlog N..

., for some positive constant c_{1} . Now try to obtain an explicit
upper bound on \displaystyle \sum d(n^{2}-1) in which the second term is clNlog N.

Currently, in examining quintuples from Case \mathrm{C} , one uses the bound

\displaystyle \sum_{n\leq N}4^{ $\omega$(n)}\leq\sum_{n\leq N}d_{4}(n)\leq\frac{N}{6}(\log N+2)^{3} . (9)

In [12] I showed that

\displaystyle \sum_{n\leq N}4^{ $\omega$(n)}\sim\frac{H_{0}}{6}N\log^{3}N H_{0}=0.1148\ldots , (10)

where  H_{0} is an exact constant arising from a product over primes. Koichi

Kawada, succeeded in winning the 100 yen prize I set for the problem of

improving on the bound in (9). The key to Kawada�s bound is in writing

k^{ $\omega$(n)}=\displaystyle \sum_{d|n} $\mu$(d)^{2}(k-1)^{ $\omega$(d)},
whence, after a moderate amount of work, one can show that

\displaystyle \sum_{n\leq N}4^{ $\omega$(n)}\leq N(\frac{45}{2$\pi$^{6}}\log^{3}N+A_{1}\log^{2}N+A_{2}\log N+A_{3}) , (11)

where N\geq 2 and where the A_{i} are explicit constants satisfying

A_{1}<0.6252, A_{2}<3.317, A_{3}<1.485.

This improves on the bound in (9) for all N\geq 8.

Wish 9. Find an explicit version of (10) or, failing that, derive a sharper
version of (11).

It is hkely that, were one to partition Cases A and \mathrm{C} judiciously, one

could use Wish 9 to reduce N_{q}.
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