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Abstract

This is intended to be a handy-chart to navigate the basic part of Ayoub’s interesting, but very lengty,
thesis on Grothendieck’s six operatiosn in the motivic stable homotopy categories.

1 Introduction

In recent years mathematics of various disciplines are intimately interacting each other. For instance,
taking a glance at the articles in [Toric], we are convinced that transformation group theorists can
not get away from algebraic geometry any more. This suggests, for instance, transformation group
theorists may have to face Grothendieck’s SGA [SGA 4, SGA 441/2, SGA 6]. Of course, the étale
cohomology is developped there, but, more fundamentally, the so called “Grothendieck’s six operations”
(Rfe,Lf*,Rfi,Rf', @, RHom).

" Forascheme X of finite type over a noetherian base scheme S. let D(X) be the (appropriately defined)
derived category of [-adic sheaves on X. Then, for (reasonable) X and K € D(S), we have the following
expressions of the usual cohomology, the cohomology with compact coefficients, the usual homology, and

the Borel}%oore homology:

(X, K) = HomD(s) (1, R;o,,Lp*K[n]) Hn(X, K) = HomD(s) (1, Rpng!K[—n]) (1)
H}(X,K) = Homps) (1,Rpilp*K[n])  HEM(X,K) = Homps) (1,Rp.Rp'K[-n])

Here 1 is the unital object in the tensor category D(S) and, in general. for an appropriate f : X — Y,

Rf.,Rfi : D(X) - D(Y)

\ (2)
Lf*,Rf': D(Y) = D(X)

(See [DV, 1,1,3]. For a related motivic story, consult [L, IV, 2.2.2] for instance.)

*This work was partially supported by JSPS KAKENHI Grant Number 15K04872.
thori@nitech.ac.jp



The expressions (1) alone would manifestly indicate the Grothendieck’s six operations between trian-
gulated categories are more fundamental than (co)homology, even without knowing the rich applications
of six operations as was developped in [SGA 4, SGA 4+1/2, SGA 6]. Of course, many topologists and
geometers would say, there are also analogous six operations and (co)homology expressions in the context
real analytic geometry [KS]. Anyway, transformation group theorists would easy realize an importance
of understanding the Grothendieck’s six operations, or at least those four operations (1)(2).

_ On the other hand, speaking of algebraic geometry, what homotopy theorists nowadays first think
of would be the motoivic homotopy theory developped by Morel and Voeodsky [MV]. The subsequent
work [J][Ho2] constructed its stable versions as certain stable model categories [Ho1][Hi] whose homotopy
category become a triangulated category, so called the motivic stable homotopy category.. Having a
triangulated category at hand, it was natural to seek analogues of Grothendieck’s six operations in
this framework. In fact, Voevodsky outlined [DV] how to realize this goal at the category of motivic
symmetric spectra (which is the monoidal stable model categoiy whose homtopy category is nothing
but the unital tensor triangulated category, called the motivic stable homotopy cateogry) in terms of
“cross functor”which is described in the 2-category, 2-functor languages. Actually, the relevance of the
2-category, 2-functor languages appears natural, even from naive observations:

o some interesting functors are only functorial at the homotopy category:
F(9f) = F(9)F(f)
¢ in the Grothendieck six functor formalism, there is a natural transformation

f Bd f *
for separated morphisms.

It turns out that Voevodsky’s approach required somewhat substantial technical detail, and finally
achived by Ayoub in his thesis which was publisshed in [A] as two Astérisque volumes of total more than
830 pages. Naturally, the size of these volumes have.intimidated those interested, very undortunatel.
Actually, Ayoub’s thesis is well written and self contained.

Now this paper was originally prepared for the author’s own sake to use as a handy guideline chart to
read certain small part of Ayoub’s long thesis [A]. Although I used an expression “a small part” above,
this part cotains Ayoub’s construction of the motivic stable homotopy analogue of Grothendieck’s four
functors, which spans several hundread pages in Ayoub’s thesis. Such is the case, this paper is more or
less a rearranged list of rerelvanet statements stated in the small part of Ayoub’s thesis, except some
detailed explanation are supplied to certain parts. Such is the case, basically there is no originality in
this write up, but possibly many mistakes resulting solely from the author’s lack of ability. Furthermore,
this papar can not be read independently, without Ayoub’s thesis at hand, because this paper is designed
to assist readers of Ayoub’s thesis. Of course, I should really apoplogize readers for this. However,
considering impressive applications of Ayoub’s huge volumes found in the Feynman motives of Marcolli
and her collaborators [Mar] and Cisinski’s cdh descent theorem for homotopy invariant K-theory [C] to
state a few, I hope (at least certain-part of) this paper, or “chart” , would be of some use for some
interested readers.

Having said this, it might be still not convincing for most transformation group theorits to be moti-
vated to read Ayoub’s thesis. For those folks, let me suggest to practice the following:
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o Take alook at Cisinski’s beautiful argument in [C, §3], where the cdh descent property of the homotopy
1nvar1ant K-theory is derived so instantaneously from the localisation, the smooth base change and
the proper base change, all of which were shown in Ayoub’s thesis.

o To get some topological insight about localisation and base change, consult [I, 11(6.11)(6.13); VIL2.6],
and possibly [Mil, II §3 p.76; VI Cor.2.3, Th.4.1].

" e To understand the categorical origin of the base change is adjunction, consult [DV, |.

¢ Now, you may be well motoviated to read Ayoub’s thesis.

Actually, I myself was so interested in Ayoub’s thesis through my perticipation in the Yatsugatake
workshop 2016, Descent for algebraic K-theory, where the Ayoub’s thesis and its application to Cisinski’s
cdh descent theorem of homotopy invariant K-theory. Now this chart is organized as follows:

1. Introduction

2. A glimpse of the framework of Ayoub’s construction

3. Constructions of SH(X), fy 1 f* 4 f«

4. SHon : DiaSch —) MonoTR is a sta'ble homotopy algebraic derivataeur
5. Construction of the adjunction fi : Sh(X) 2 Sh(Y): f'

6. The proper base change theorem

Unfortunately, the last section about the proper base change is really sketchy, but Cisinski’s proof of the
cdh descent of the homotopy K-theory only requires the proper base change for closed immersions, which
was reviewed in 5.4.

After the preliminary version of this chart was written, I noticed the papers of Hoyois [Hoy1][Hoy2].
In these papers, Hoyois exploited Lurie’s technique of oo-category to generalize Ayoub’s construction of
Grothendieck operations [Hoyl] and generalized Cisinski’s cdh descent theorem for homotopy invariant
K-theory [Hoy2].

I would like to thank the editor Professor Ryousuke Fujita for accepting this long chart for a publication
in RIMS Kokyuroku. Also, I would like to express my gratitude to Professor Shuji Saito for inviting me
to participate in the Yatsugatake workshop 2016, Descent for algebraic K-theory. The talks there and a
very nice summary [IKM] were very useful for me to prepare this chart.

2 A glimpse of the framework of Ayoub’s construction

In this section, we shall summarize the basic framework ofAyoub’s construction by simply quoting
corresponding statements from Ayoub’s thesis. For brevity and conciseness, we shall not review the
definitions and notations in advance. We may review only some of them later.



2.1 Basic idea

We work in a (appropriately defined) categoory of S-schemes Sch /S as follows:
[Ayoub, 1.3.5, p.53; Lem.1.3.9, P.54] [FGA, p.126] N

o Let Sch /S be either one of the followings:

— When S is general, we can take Sch/S to be the category of S-schemes, which are
quasi-projective in the sense of Hartshorne’s textbook: S-schemes of finite presentation which

admits an immersion in P§ for sufficiently large 7.

— If S admits an ample family of line bundles, we can take Sch /S to be the category of S-
schemes, which are quasi-projective in the sense of Grothendieck’s EGA2:  S-schemes of

finite presentation which admits an immersion in P(M) with M a coherent Og module, which
is not necessarily locally free.

Then, whichever choice we ‘adopt, any morphism f: X — Y in Sch /S factorizes as follows:
X —5PL)
\ lp
Y
‘with 7 an immerSion, L a locally free Oy-module and p the canonical projection. (This is proved
in SGA 6 by Nlusie.)

o Following Altman-Kleiman, in [FGA, p.126], a morphism X — S of Noetherian schemes is called
strongly projective (respectively, strongly quasi-projective ) if there exists a vector bundle E on

S together with a closed embedding (resp. a locally closed embedding) X C P(E) over S. )

For a S-scheme X — S, Morel-Voevodsky style motiic stable homotopy category SH(X) is constructed

as a triangulated category:

(Sch /S)? - TR

®3)
(X = 8)— SH(X)

We hope this correspondence should behave appropriately with rebsect to appropriate morphisms f :
X =Y in Sch /S to reflect at least four of the Grothendieck six operations:

f*a f*.y f!$ f!

which enjoy some properties.
It turns out that the “exclaimation maps” f*, fi are harder to construct. So, we start with constructing
an auxiliary map
fy : SH(X) - SH(Y)

for a smooth S-morphism f : X — Y. More precisely, we shall construct a refined version of the naively
defined functor (3) so as to become a stable homotopy 2-functor, in the following sense:
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S [Deligne-Voevodsky,2.1.2.1, p.38][Ayoub, p.54, Def.1.4.1. p.55] —

A 2-functor
. ’ H*: (Sch/S)” — TR

is called -stable homotopy 2-functor if the following 6 axioms are satisfied:

1. ( Trivial tiangulated category) H(0) = 0.

2. ( right adjoint ) For any morphism f : X — Y in (Sch/S), the 1-morphism
f*: HY) —» H(X) admits a right adjoint f, (i.e. f, is a triangulated functor
which a right adjoint of the functor f*). Furthermore, for a (not necessarily closed)
immersion ¢, the counit 2-morphism i*7, — Id is a 2-isomorphism.

3. ( left adjoint (smooth base change) ) If f : X — Y is a smooth S-morphism in
(Sch /S), the 1-morphism f* admits a left adjoint f;. Furthermore, for any caresian
diagram

x 2L x

A

Yy oY
the exchange 2-morphism (which shall be defined in the sub-section 1.4.5):
fig* =9 f
is a 2-isomorphism.

4. ( Locality ) Let j : U — X be an 6pen immersion in Sch/S andi:Z — X is a
complementary closed immersion in Sch /S. Then the pair (j*,¢*) is conservative..

5. ( Invariance by homotopy ) If p : A} — X the canonical projection, the unit
2-morphism :

Id - p.p*
is a 2-isomorphism.

6. ( stability ) If s is the zero section of the canonical projecton p : A}, — X, the

endofunctor pys, of H(X) is an equivalence of categories.

- J

Actually, as the following observation indicates, a stable homotopy 2-functor gives us a desired four of
the Grothendieck six operations. (Here, topologists might feel good to see that the key to proceed from
fy to the “exclaimation maps” f', fi originates in topology, i.e. the Thom element Th.)
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[Ayoub, Scholium.1.4.2. p.55] [Deligne-Voevodsky, p.39] ~N

-

Suppose we are given a stable homotopy 2-functor
H": (Sch/S)? - TR

1. There exist :
e a contravariant 2-functor
H':(Sch/S) - IR,

e a covariant 2-functor .
H. : (Sch/S) — 2R,
which is a global right adjoint of H*,

e a covariant 2-functor
H, : (Sch/S) - 3R,

which is a global left adjoint of H',
e a crossed functor structure on the quadruplet (H*, H., Hi, H') relative to the classes of cartesian
squares of (Sch /S). .

2. For any quasi-projective S-scheme X and locally free coherent Ox-module M, there exists an autoex-
icalence Th(M) of the restriction of the preceeding cross functor of the cteogry (Sch/X). If the
Ox-module M is inserted into a short exact sequence:

09N> M=L—>0

we get an isomorphism of autoequivalences of cross functors :
Th(M) =5 Th(L) o Th(N)

3. Let f: X — Y be a smooth S-morphism. Denote by Qf the locally freee Ox-module of relative
differentials. Then there exist 2-isomorphisms:
o fi = fiTh™ (Qy)
o /' 5 Th(Qy) f*
with Th™?! (Q) the inverse equivalence of Th (Qy).

4. For any morphism f : X — Y in (Sch/S) there exists a 2-morphism : fi — f. When f is projective,
this 2-morphism is invertible.

5. We have the base change theorem for a projective morphism , i.e. for any cartesian square:

x L 4x

1)

yl_g_)y

in (Sch /S) with f a projective S-morphism, the exchange 2-morphisms:
e g fu = flg"™.

o fig' S g

are invertible.
. 4

2.2 Slight generalization

Actually, Ayoub formulated and proved a slightly modified version in the diagram scheme setting.
For this purpose, let us first quote the basic definition of Dia Sch /S for this purpose:



— [Ayoub, 2.1.2, p.189; 2.4.1. Def.2.4.2. Def.2.4.4. p.310; p.322] —
o Fix a full subcategory Dia of the strict 2 category of small categories, satisfying:

— contains §,e := {e},1:= {0 — 1}.

— underlying 1 category of Dia is closed w.r.t. finite coproducts and fiber products.

— for any functor u : A — B in Dia and any b € Ob(B), both A/b and b\A are in Dia.

e The 2-category DiaSch /S of diagrams of quasi-projective S-schemes is defined as follows:

— An object of DiaSch /S is a pair (F,Z) with Z € Ob(Dia) and F : Z — Sch/S a functor.
— A 1-morphism from (G, J) to (F, 7) in DiaSch /S is given by a functor @ : J — Z and a

_ natural transformation f: G — Fooa:

J
4

«| ¢; Sch/S
F

I

— Given two l-morphisms (f,«),(f’,¢) from (G,J) to (F,Z), a 2-morphism from (f,a) to
(f',a') in DiaSch /S is the data of a natural transformation ¢ : o — o such that the

following square commutes:
§=——=G
f l l! !
Foa-T% Fod
The 2-category DiaSch /S defined in this way is a strict 2-category.

o Consider the following subcategories of DiaSch /S:

(DiaSch /$)Ca* the same object as. DiaSch /S and for morphisms those wchi are of the form:
f: (V€)= (X,€)

with f a cartesin morphism of £-schemes.
(DiaSch /S)LissCart the same as the first, plus f smooth.

(DiaSch /§)mmCart the same as the first, plus f a closed immersion.

(DiaSch/ S)Cm' the same as the first, plus the X-scheme ) strongly quasi-projective.

J

Then we shall construct an even more refined diagram version of (3) so as to become a stable homompy

algebraic derivateur in the following sense:

14



[Ayoub, Def.2.4.13, p.313] ~

An algebraic pre-derivafeur
D:DiaSch /S — IR,

valued in the 2-category of triangluated categories, is called a stable homotopy algebraic derivateur when
the following axioms DerAlg0, DerAlgl, DerAlg2d, DerAlg2g, DerAlg3d, DerAlg3g, DerAlgd,
DerAlg5 are satisfied:

DerAlg0 Let (F,Z) be a diagram of quasi-prpjective S-schemes. If T is a discrete category, then the
1-morphisms ¢ : (F(z),e) = (F,Z) for ¢ € Ob(Z) induce an equivalence of categories:

p(F,7) L@, T pere)

i€Ob(T)

DerAlgl Let (F,Z) be a diagram of quasi-projective S-schemes and a:J > ZTan essentially. surjective
functor. Then the triangulated functor

a” :D(F,I) > D(Foa,J)

is conservative.

DerAlg2d For any 1-morphism (f, a) :(F,I) = (G,J) of DiaSch /S, the functor (f,)" admits a right
adjoint (f, @)x.

DerAlg2g For any l-morphism (f, a) (F,I) = (G,J) of DiaSch /S, which is smooth argument by
argument, the functor (f,)* admits a left adjoint (f, a)y.

"Let f : G = F be a morphism of Z-diagrams of quasi-projective S-schemes and o : J — Z a functor in
Dia. We have a square:

(Goa,J) —=—(6,T)
fl7 lf
(Foa,7) =— (F,1)
which is commutative (even cartesian) in DiaSch /S.

DerAlg3d The exchange 2-morphism a” fu = (f| _7); oa”, associated to the above commutative square,
is a 2-isomorphism.

DerAlg3g Suppose f is cartesian and smooth axgument by argument. Then the exchange 2-morphism
(flz)goa® = a*f; is a 2-isomorphism.

DerAlg4 For any quasi-projective S-scheme X, the 2-functor:

D(X,-) : Dia - TR
I~ D(X,T)

is a triangulated derivateur in the sense of Definition 2.1.34.
DerAlg5 The 2-functor
" D(—,e): Sch/S - TR
X (quasi-projective) — D(X, e)

is a stable homotopy 2-functor.

J

.

Actually, properties in Sch /S and DiaSch /S are very similar and analogous, as is listed in [Ayoub, _

p-322] as follows:

It turns out that, once constructed, verifications of axioms except Der Alg5 is easier {Ayoub, Th.4.5.30,
p.542]. The remaining DerAlg5 is nothing but a statement about a stable homotopy 2-functor, which

15
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H*:Sch /S -+ IR H* : DiaSch'/S —» TR
H, :Sch /S — TR H, : DiaSch /S — ¥R
LissHy : (Sch /S)lis — TR LissCartTq, ; (DiaSch /S)MssCart 5 TR
Lisspx : (Sch /S)liss — TR LissCart [y . (Dia Sch /S)LissCart 5 Tr
LissH, : (Sch /S)™™ — TR LissCart[y, . (DiaSch /§)mmCart _, gog
LissH' ; (Sch /S)mm — TR LissCart ! ; (Dia Sch /§)lmmCart _y Tj
Hy:Sch/S — TR ' Cartf, : (DiaSch /§)Cat" — TR
H':Sch/S — IR - Catpy': (DiaSch /5)C>t" — TR
locally free QO x-module of finite type locally free and coherent O y-module
M N, L...ete of finite type M, N, L... etc

was the ultimate goal in 2.1. Basic idea, quoted as [Ayoub, p.54; Def.1.4.1. p.55].

3 Constructions of SH(X), fy 1 f* 1 f«

We shall work in the slightly generalized diagram setting as in 2.2, and we shall construct the desired
objects and adjunctions fy & f* & f, in the following order:

DiaSch /S > (F,Z) ~ PreShv (Sm /(F,Z), M) ~ Mp(F,I) = Spect;’;f,z (PreShv (Sm /(F,T),M))
- SHL(F,T) := Ho (M7 (F, T)) € TR

‘In the special case of the constant diagram 7 = e valued at X € Sch /S,, we shall set
SHL(X) := SHL (X, e)

and we shall further denote it simply by SH(X) under the case we shall be considering (which must be
justified).



3.1 Construction of PreShv (Sm/(}‘,I),M) L(f,0)p A (f,a)* 4 (f, )

[Ayoub, 4.5.1, Def.4.5.1, Lem.4.5.2, Prop.4.5.3, p.532]

( .
e Given a diagram (F,Z) of S-schemes, We denote Sm /(F,Z) the category:

— an object'is of the form ) .
((U = F(i)) € Sm /F(i),i € Ob(Z)),

which shall be simply denoted by (U, ).

U —U

!

F(@i)——> FG) -
e A I-morphism (f,a): (G,J) = (F,Z) of DiaSch /S yields a canonical factorisation:

©.T) L (Foa,7) 2 (F,1)

f induces a functor

f=—-%xrG:Sm/(Foo,J)— Sm/(G,T)
(V= F(ai), ) = (V xz@i) 6G),7))

which in turn induces an adjunction (c.f. Lem.4.4.44)
(f*, f+) : PreShv (Sm /(F o @, J), M) ~+ PreShv (Sm /(G, J), M)
e « induces a functor

a@:Sm/(Fea,J) = Sm/(F,I)
(U = Fali)),5) = (U = F(a(5))) , o(4))

which in turn induces the functor (c.f. Lem.4.4.44)
" :=a. : PreShv (Sm /(F,Z),M) — PreShv (Sm /(F o o, J), M)

. ‘ Define th;e functor C
(f,a)" :== f* oa" : PreShv (Sm /(F,I),M) — PreShv (Sm /(G, J), M)

e Explicitly, for H € PreShv (Sm /(F,Z),9M), (f,a)*H is given by the association:
(f,)"H: Ob (Sm/G(j)) » ObM
- (V,5) = Colimy Ly o aiy)eonv\sm /7 H U (7))
e The association (f,a) = (f,a)" extends naturally to a contravariant 2-functor:
PreShv (Sm /(—,-),9M) : DiaSch /S — €at
(F,Z) ~ PreShv (Sm /(F-,I~),0)

(6.9 42 =0) o (1.0

N

— an arrow (U’,i') — (U, %) is a couple (U’ = U, i’ — %) such that the following square commutes:

Lemma 4.4.44 quoted above reads as follows:

10
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[Ayoub, 4.4.3. Lem.4.4.44 p.524)

e

e Given C, a bicomplete category, f : S —+ &', a functor between small categories, we have

" f : PreShv(S’,C) — PreShv(S,C)
Hw—Hof
e f, admits a left adjoint
f*: PreShv(S,0) - PreShv(S’,C)
K = ( FE:0b(S)sU Colim K({U) e Ob(C)>

L (U'—f(U))eOb(U'\S)

11
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(——— Forgotten (?) to be stated in Ayoub, because these are commoon senses? —_—
o It might be useful to regard f*K as a left Kan extension of K along f: 8 — S’.
e Then, similarly, we may construct a right adjoint
f': PreShv(s,C) - PreShv(S’,C)
K — K

where f'K is a right Kan extension of K along f: S — S'.

In éummary, starting with the evident direct image functor of the categories of presheaes valued in a
. cocomplete category f., we may construct a composite of adjunctions via left and right Kan extensions:

FARASL

PreShv(&8’,C) (8,0)
o If we have an adjunction:
J
fHg, ST—=¢
g
then the above composite of adjunctions is expanded as follows:

¢ 4 f =g dfi=g4Ff
g —
PreShv(s',C) ¥/ =% PreShv(S, ()

——fu=g'

If (p: Y — X) € Ar(S), then we get an adjunction:
p:S/XSS/Y:¢
U—-X)»(UxxY YY)
(VoY B X)«(VoY)

For this, we get:

(o) 4 P =(cp)s 4 pe=1(cp)'
cp)*——

PreShv(S/Y,C) &% :‘(j’;_: PreShv(S/X,C)

PK) U -»X)=K(p(U->X)=K{UxxY =Y)
(p"H)(V =Y) = ((cp) H) (V 2 Y) = H(cp(V = Y))
=HV Y5 X)=(Y xx H(V oY)

From the last two equations, we get:

p"H =Y Xx H, the pullback; D

.

More generlly, if (¢ : G — F) € Ar(PreShv(S,C)) with G,F € Ob(S), then we can generalize the
above adjunction to this more general case:
¢ 4 .
PreShv(5/6,C) ":' PreShv(S/F,C)
[#"H = G x> H, the pullback;

Observe the following two elementary, but important properties:

(fro¢2)" = (¢2)" 0 (¢1)"; (10 ¢2)s = (1)n0 (B2)
homg(¢"H, K) = K(¢"H) = (¢ K)(H) = homr(H, $. K)

172
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[Ayoub, Prop. 4.5.4, p.533]
(Let (£,@) : (6,J) = (F,T) be a 1-morphism of diagrams of S-schemes.

- The functor (f,@)* admits a right adjoint (f, @), :

(f,0)* : PreShv (Sm /(F,Z), 9][) & PreShv (Sm /(G,J),M) : (f, @)«

(f,a)y : PreShv (Sm /(G,J), M) = PreShv (Sm /(F,I),M) : (f,a)*
Proof. Since
(f,0)* = f* oa* : PreShv (Sm /(F,T), M) <+ PreShv (Sm /(F o a, J), M)
£, PreShv (Sm /(G, 7), M),
we shall construct the adjoints separately:

The case of f*: PreShv (Sm /(F o o, ), M) — PreShv (Sm /(G, J), M),
Since the functor f* is the inverse image following the functor

f=(=%x7G):8m/(Foa,J),
o Its right adjoint f, is the direct image functor:

f« : PreShv (Sm /(G,J), M) — PreShv (Sm /(F o o, J))
H—Hof

o When f is smooth, the functor
f==-%rG:Sm/(Foa,J) = Sm/(G,J)
(V= F(a5))) :5) = ((V xFai) G6):5)) »
admits a right adjoint cj :
f==-x5G:8m/(Foo,J)28m/(G,T) : cs
(V = G() = Flah),5)) < (V = 6(4),4))
Thus the left adjoint f; of f* is given by c}, and furthermore, we hae f* = (cf)..

The case of o* : PreShv (Sm /(F,Z),M) — PreShv (Sm /(F o o, J), M)
Since the functor o* is the direct image following the functor
@:Sm/(Foa,J)— Sm /(F,I)
(U = Fa(5),5) = (U = Fla))), e(3)) »
o Its left adjoint ay is given by @”.

o Its right adjoitn «. is gien by @'

13

o If (f,a) is smooth argument by argument, the functor (f,)* admits a left adjoint (f, )y :
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Then the natural transformation

_ [Ayoub, Prop.4.5.4, p.533; Lem.4.5.5, Lemn.4.5.6, Lem.4.5.7, p.534] —
‘Let (f,a):(G,J ) — {F,Z) be a 1-morphism of diagrams of S-schemes.

— The functor (f,®)* admits a right adjoint (f, a)x.
— If (f,a) is smooth argument by argument, the functor (f, a)* admits a left adjoint (f,a)s-

Proof. Use the decomposition (f,a) = ao f:
The case of f:(G,J) = (Foa,J) f*is the inverse image w.r.t. the functor
f=(-x7G):Sm/(Foo,J)—Sm/(G,J)

It admits a right adjoint, i.e. the direct image functor which to a presheaf H on Sm /(G, J) associates
Hof.

When the morphism f(j) are smooth, the functor f : Sm /(¥ o a,J) — Sm/(G,J) admits a right
adjoint ¢ which to (V — G(j), j) associates the pair (V — Q'(]) — F(alj), 7)) - The left adjoint f; of
f* is then given by c}. Then furhtermore f* = (cy)..

The case of a: (Foo,J) = (F,Z) The functor a” is constructed as the direct image of the functor
@. It thus admits a left adjoint ay = @* and the right adjoint a. = & O

Let (f,a): (G,J) = (F,Z) be a 1-morphism of diagrams of S-morphisms. For i € Ob(Z) we form the
square boundary in DiaSch /S:
(id,u;)

6/, 7 /)5 (6, 7)
(!/i)l /. lum

F()) —— (£, D)
(dr@),8)
Then the natural transformation
(id}'('i)’i)‘ (f! a)* d (f/'l)" (id: ui)*

is invertible.
When F and G are constant valued at the S-scheme F, we can form the square face:

(Fi\T) —— (F,J)

a/iJv rﬂ la
(Fi) —— (F,T)
Then the natural transformation
(a/i)gu; = "oy

is invertible.

Let f : G — F be a morphism of Z-diagrams of S-schemes. For a functor a :"J — Z, we form the
commutatie square:

(Goa,J) =— (6,7)

1o L

(Foa,J) /> (F, 1)

o fu i (fIJ)‘ o™

is invertible. Suppose further f is cartesian and smooth level by level. Then the following is invertible:

(f|5)“01‘ - Ot'fu

14
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3.2

Results involving monoidal structures

[Ayoub, Def.2.1.79, p.210; Def.2.1.81, Rem.2.1.83, p.211 |

-

A monoidal category is a triple (C, ®,0) with:
— C a category,

— —®:C xC = C a covariant functor,
- 0:(A®B)®C =3 A® (B ®C) a familty of natural isomorphisms on (A4, B C) € Ob(C)3.

- The isomorphisms ¢ are caled the - associativity isomorphisms . They satisfy certain axioms including

the pentagon aximo saying that all the isomorphisms between the abjects (4 ® B) ® (C ® D) and
((A® B) ® C) ® D built from the associativity isomorphisms (and their inverses) are equal.

A symmetric monoidal category is a quadruplet (C,®,0,7) with:

(C,®,0) is a monoidal category,
- 7: A® B = B ® A a faimily of the natural isomorphisms on (4, B) € Ob(C)?.
The isomorphisms 7 are callled the commutativity isomorphisms . They verify certain-axiomos includin
the equality 7 o 7 = id. The supplementary axioms are imposed to describe the compatabilities between
the associativity and the commutativity axioms.

For a monoidal category (C,®,0), a unit object of C is a triple (1,uy,uq) with:
— lisan ob_]ect of C,
— ug:1®A > Aand ug: A® 1 =5 A are natural isomorphisms on 4 € Ob(Ccal)

The isomorphisms u, and ua are called the left unit isomorphisms and the right unit isomorphisms
respectively They must verify certain conditins. Note the two isomorphisms ug,ua’: 1 = 1 ® 1 coincide.

For a symmetric monoidal category (C,®,0,7), a unit object of C is a unit object (1, ug,ua) of the
monoidal category (C,®, o) verifying certain compatibilities supplementary with th commutation isom-
rophisms. Note for example that the following diagram: :

19A———— AQ1

Ilg A g

is commutative. Thus, the isomorphisms uy and uq are deduced from each other.
A monoidal (resp. symmetric monoidal) category provided with a unit object is called a unital monoidal
(resp. unital symmetric monoidal) category .

For a monoidal category (C,®, ), the functor ® induces a covariant functor:
®%F:CP x O = (CxC)® =P
and we take for the corresponding associativity isomorphisms the arrows (e=hyor -

(-8-)8- (-8-)8- (—8°P-)@°P—
CxCxC C | & | CXCXC o~ C | <= | C® xCP x CPlfo~1)SPCP
el s £ e
-e(-e-) -8(-®-) -®°P(—®°-)
A new monoidal category (C°P, ®°P, (0 ~*)°P), which we call the -opposite monoidal category of (C, ®,0).
On the other hand, using perm:CxC —C; (A, B) s (B,A)

we define a functor ®°: =Qoper:CxC—C

AR°B=B®A
and a natural isotransformation o°: .
(—®°-)®°— -®(=8-)
CxCxC Yoo 3C|:= CxCxéAw&xCxC {1
-®°(~8°-) ’ (-8-)®-

We get a new monoidal category (C,®°,0°), which we call the ®-opposite monoidal category of (C,®,0).

When (C,®,0,7) is a symmetric monoidal category, the quadruplets
(€®,®%,(¢7),7%) and (C,8%,0°,7° :=7"")

are symmetric monoidal categories, which we respectively call the opposite (resp. ®-opposite) symmetric

monoidal category of (C,®,0,7).

A unit object (1, ug,uq) of (C,®,0) (resp. (C,®,0,7) ) induces the unit objects (1 ( 1)"'J ( _I)OP)
and (1, uq, u,) of the monoidal categories (C°P, ®°P (a"l)"") and (C,®°,0°). (resp symmetnc monoidal
categories (C°P, ®°P, (¢71)°?, 7°?) and (C,®°,0°,7° :=771)).

We can view a monoidal category as a 2-category énot necessarily strict or ‘unita.l) having a sole object.
In this way, the opposite and ®-opposite mondidal categories correspond to the 2-opposite and the
1-opposite 2-categories, respectively.
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~— (pDtono), (Mono), (pcMiono), (c<Vlono) [Ayoub, Def.2.1.85, p.212; Def.2.1.86, Def.2.1.87, p.213; p.214] —
e Let (C,®,0) and (C',®',0') be two monoidal categories. peudo-monoidal functor from C to C’ is a pair

(f,a) of the form:
— a'functor f:C —C',

— morphisms a : f(A)®' f(B) > f(A® B) natural in (4, B) € Ob(C)?, such that the following diagram:
(f(4) & f(B) & f(C) — f(A®B)® f(C) —— f((A®B)®C)
v +
f(A) & (f(B)® f(C) — f(4) &' f(B®C) — f(A® (BRC))
is commutative for any (4, B, C) € Ob(C)®.

The morphisms a are sometimes called the coupling morphism of f. When they are invertible, we say
that (f,a) is monoidal .
A natural transformation between two pseudo-monoidal functors (fi,a1) and (f2,az2) is a natural
transformation fi - f2 s.t. the following diagram commutes for any (A4, B) € Ob(C)? :
f1(4) ® f1(B) —— f2(4) ® f2(B)
V. ~+

filA® B)——— f2(A® B)

e Keeping the above notations and suppose given the unit objects (1,ug,ua) and (1',uj,u}s) of C and C’
respectively. A pseudo-unital pseudo-monoidal functor from C to C’ is a triplet (f,a, €) such that:

— (f,a) is a pseudo-monoidal functor from € to C’,

— e:1 — f(1) is an arrow compatible with the left and right unit isomorphisms, i.e. such that the
following diagram is commutative:
18 f(A) —= f(1) &' f(4) — f(1® 4)
g . . ~dtg
f(4) f(4)

as well as its analogue for u4 and u/.

When the morphisms a,e are invertible, (f,a,e) is called a unit.al monoidal functor . A natural
transformatin between two pseudo-unital pseudo-monoidal functors (f1,a1,e1) and (f2,a,e2) is a natural
transformation between pseudo-monoidal functors (f1,a1) and (f2, az) s.t. moreover the following square
is commutative: PN (1)

[
. 1 —= f2(1)

e Let (C,®,0,7) and (C',®',0’,7') be two symmetric monoidal (resp. unital symmetric monoidal) cate-
gories. A symmetric pseudo-monoidal (resp. pseudo-unital and pseudo-monoidal) functor from C to C’
is a pseudo-monoidal (resp. pserudo-unital pseudo-unital) functor (f, a) such that the following diagram:"

f(a) e f(B)—— f(A® B)
T~ ~T
f(B)®' f(4) — f(B® 4)
-is commutative for any (4, B) € Ob(C)?.
A natural transformation between two symmetric pseudo-monoidal (resp. symmetric pseudo-unital
pseudo-monoidal) functors is simply a natural transformation between the underlying pseudo-monoidal
(resp. pseudo-unital pseudo-monoidal) functors.

o Get the notion of pseudo-comonoidal functor from that of pseudo-monoidal functor by passing to the
oppsote categories; if (C,®,¢) and (C’,®’,0’) are two monoidal categories, a pseudo-comonoidal functor
from C to C' is a pair (f,a):

— afunctor f:C = C', . )
— morphisms a-: f(A® B) - f(A) ® f(B) natural in (4,B) € Ob(C)?, compatible in the evident

manner with the associativity isomorphisms.
The morphisms a are sometimes called cocouplement morphisms of f. When they are invertible, we say
that (f,a) is comonoidal .
A natural transformation between two pseudo-comonoidal functors (fi,a1) and (f2,a2) is a natural
transformation fi - fa s.t. the following diagram commutates for any (4, B) € Ob(C)? :

fi(A® B) ———— f2(A® B)

+ +
f1(A) ® fi(B) —— f2(A) ® f2(B)
Get the notion of pseudo-counital pseudo-comonoidal functor (resp. counital comonoidal functor) by
passing to opposite categories. Similary, get the notion of symmetric pseudo-comonoidal functor between
symmetric monoidal categories.

The monoidal categories with pseudo-monoidal {?esp. pseudo-comonoidal) functors and their natural
transformations for ma strict 2 category: (p9Rono) (resp. (pc9Nono)). Similarly, get the sub-2-category
(9Mono) (resp. (cMiono)) where we take only the monoidal (resp. comonoidal) functors. The association
(f,a) ~ (f,a™') defines an isomorphism between (9tono) and (¢Dtono). )




—— Mody — pMiono, Moda, cIModa. [Ayoub, Def.2.1.93, p.216; Def.2.1.94, p.217] N
Let (C,®) and (C’,®’) be two monoidal (resp. unital monoidal with unit objects 1 and 1’ respectively)
_ categories.
1: Let (f,a) (resp. (f,a,e) ) be a pseudo-monoidal (resp. pseudo-unital and pseudo-monoidal) functor. We
call by a left f-module (resp. unital f-module) a pair (I,5) with:

— 1:C = (' a functor,
— b: f(A) ® I(B) = (A ® B) natural morphisms in (4, B) € Ob(C)?,
s.t. for any (4, B, C) € Ob(C)® the following diagram:
(f(4)® f(B) ® UC) —2= f(A® B) ®'1(C) 4 (A®B)®C)
Ed Yo
) f4) e (f(3)®l(C))—>f(A)® UB®C)——1(A®(B®C))
is commutative ( resp. and such that the following composite is equal to the identity of the functor ):
' -1
U-) 2= 1'0l-) = f)@U-) H 110 —) 2 (=)

We have the notion, of ®-dual of right f-module (resp. unital f-module) . A morphism of f—modulw
from (I,b) to (I',b') is a natural transformation from I to I’ compatlble in the evident sense with the
morphisms b and b'.

2: Let (g,a) (resp. (g,a,e)) be a pseudo-comonoidal (resp. pseudo-counital pseudo-comonoidal) functor.
We call by left g-comodule a pair (k,c) with:
— k:C — (' afunctor,
— ¢:k(A® B) = g(A) ® k(B) natural morphisms in (4, B) € Ob(C)?,

such that the dual conditions of 1 are verified.

We also have the notion of right g-comodule (resp. counital g-comodule) . A morphism of ' g-comodules
“ from (k,¢) to (k',c) is a natural transformation from & to k' compatible in the evident sense with the

morphisms ¢, . .

1’: A left module from C to €’ [f,1] is a quadruplet (f,1,a,b) with (f,a) a pseudo-monoidal functor and
(1,b) a left f-module. The category of left module from C to C’ is denoted by Modg(C,C’). An arrow
of Modg(C,C') is a pair (u,v) : (fi,l1,a1,b1) = (f2,l2,0a2,b2) with u : fi = f> a monoidal natural
transformation and v : I} — l2 a natural transformation such that the following diagram is commutative
for any (a,B) € Ob(C)? :

f!(A) ® h(B) —— l;(A@ B)
fz(A) ® 12(B) —— lz(A ® B)
Being given a third monoidal category (C”,®"), there exists a functor of composition:
Mod,(C',C") x Mod,(C,C’) — Mod, (C,C")
((F V) =(f0,a ), [f,0 = (£,1,0,8)) = [f o f,U ol] = (f' o £,/ o 1,a",8")
with (f’of,a”) the pseudo-monoidal functor composite of f and f’ (see Rem.2.1.89) and b” the composite: ,
Fof(A) @ ol(B) = U (f(A) 0 I(A)) = U o I(A).

We thus obtain the 2-category (90d,) whose objects are monoidal categories and whose 1-morphisms
are left modules. We thave an evident forgetfull 1-covariant 2-covariant 2-functor:

Mody — pMono
(f,1,0,b) = (f,0a).

2°: We have the dual notion of left comodules from C to C’. We also form the strict 2-category of comodules
¢MMod,. The notions of®-duals, right modules, and right comodules also organize two strict 2-categories

Moedg and Nodg. )
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Moo, ¢Mod [Ayoub, Def.2.1.95, p.217]

-
1: Keeing he notations of Definition 2.1.93, a f-bimodule is a triplet (I, by, ba) such that (I, by) isa
left f-module and (I, bg) is a right f-module and such that the following diagram is commutative:

(f(A) & I(B)) & F(C) —2 (A® B) & f(C) —“=1((A®B)®C)
F(A) & (I(B) & F(C)) —25 F(A) &' I(B®C) == [(AR (B x C))

for any (4, B,C) € Ob(C)3. We also define the notion of bimodule from C to €’ as well as the
2-category of bimodules 90d.

2: We also have the dual notion of g-bicomodules and of bicomodules from C to C' . We obtain

D0 the 2-category of bicomodules.

N

18
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(

o Let (C,®) and (C’,®’) be two monoidal categories and (f,a) : C — C' be a pseudo-monoidal functor.

1: Suppose given a left f-module (I,b) and a left adjoint k of the functor I. We define a morphism
c:k(f(A)® B') » AQ k(B'), natural on A € Ob(C) and B’ € Ob(C"), by the composite:

k{f(A)® B') > k(f(A)® Ik(B")) 2kl (A®Kk(B")) » A®Kk(B')
Then the following diagram:
E(f(A) & (f(B)®' C)) — A®K(f(B)®' C') —— A® (B®K(C'))

k(F(4) &' 1(B)) & C') — k(f(A® B)®' C') — (A8 B) 8K(C').

is commutative for any (A4, B,C") € Ob(C)? x Ob(C").
2: Suppose given,a f-bimodule (I, bg,bs) as well as a left adjoint &k of I. Then the left (I, b,) module and
the right (I, b4) module by 1-the two transformations:

co k(f(A)® B') > A®RK(B') and ca : k (A’ @' f(B)) - k(A)® B
which are natural on (4, B, A, B') € Ob(C)? x (C')?. The following diagram:

k(f(A) @ (B'®" f(C)) RN A®k(B' ® f(C) —— A® (k(B') ® C)

E((f(4) ® B)® f(C)) ~— k(f(4) & B')® C —— (A®k(B')) ® C

is natural fora an (4, B’,C) € Ob(C) x Ob(C’) x Ob(0).

e Let (C,®) and (C',®’) be two monoidal categories and (g; ) : C = C’ be a pseudo-comonoidal functor.

1: Suppose given a left g-comodule (k,b) and a right.adjoint ! of the functor k. We define a morphism
c: A®I(B') = 1(g(A) ® B’), natural on A € Ob(C) and B’ € Ob(C’), by the composite:

ARUB') - Ik (A®1(B") 51 (9(A) ®" kl(B')) — L {(g(A) ® B')
Thgn the following diagram:
A®(BRIUC)) — A®I(g9(B) &' C') —— I(9(4) ® (¢(B) &' C))
(A®B)®IU(C") — 1(9(A® B) ®' C') —— L ((9(A) ®" ¢(B)) &' C")

is commutative for any (4, B,C’) € Ob(C)? x Ob(C’).

2: Suppose given a g-bicomodule (k, by, ba) as well as a left adjoint I of k. Then the left (I,b,) comodule
and the right (I,ba) comodule by 1-the two transformations:

cg: A®I(B') = 1(g9(A)® B') and ca: I(A)® B — 1 (A’ ®' ¢(B))
which are natural on (4, B, A’, B') € Ob(C)? x (C')2. The following diagram:

A®(U(B)®C) —23 AQI(B' @ ¢(C)) —= 1(3(A) & (B' & 9¢(C)))

(A®U(B")) ® C —=+1(g9(4) ® B')®C —2%1((g(A) & B) ® 9(C))

is natural for any (4, B’,C) € Ob(C) x Ob(C’) x Ob(O).

[Ayoub, Prop.2.1.97, p.218; Prop.2.1.98, p.219] =~
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— Proj, — pMiono, Projy, cProj, Proj, cProj. [Ayoub, Def.2.1.99, Def.2.1.100, p.220; Def.2.1.101, p.221] —

Let (C,®) and (C’,®’) be two monoidal categories.
1: Let (f,a) be a pseudo-monoidal functor. We call by left f-projector a pair (k,c) with:

— k:C' = C a functor,
— c:k(f(A) ® B') -+ A® k(B’) natural morphisms in A € Ob(C) and B’ € Ob(C’),
s.t. the following diagram commutes for any (4, B,C") € Ob(C)? x Ob(C’) :

k(f(4) o (f(B) ®'C')) — ABK(f(B)® C') —— AR (B®K(C")

+~
k((f(A)® f(B))® C)——k(f(A®@B)® C') —— (A® B)®k(C")

We have the ®-dual notion of right f-projector .
A morphism of f-projector from (k,c) to (k',c’) is a natural transformation from k to k' compatible
(evidently) with the morphisms b, b".

: Let (g,a) be a pseudo-comonoidal functor. We call by left g-coprojector a pair (n,d) with:

— n:C' = C a functor,

— d: A®n(B’) - n(g(A) ® B') natural morphisms in A € Ob(C) and B’ € Ob(C'),
such that the dual conditions of 1 are verified.

We also have the ®-dual notion of right g-coprojector .

A morphism of g-coprojector from (n,d) to (n’,d’) is a natural transformation from 7 to n’ compatible
in the evident sense with the morphisms ¢ and c’.

: A left projector [f, k] from C’ to C is a quadruplet (f,k,a,c) with (f,a) : C = C' a pseudo-monoidal

and (k,c) a left f-projector. The category of left projectors from C’ to C is denoted by Proj,(C’,C). An
arrow of Pro;g(C' C) is a pair (u,v) : (f1,k1,a1,¢1) = (f2,k2,a2,¢2) withu: fa > fr a monmdal natural
transformation and v : k1 — k2 a natural transformation s.t. the following diagram is commutative for
any (A, B’) € Ob(C) x Ob(C') :

k1 (fz(A) ® B) —— k2 (f2(4) & B) —2> A® kz(B')
ki ( fz(A) ®' B’) — k1 (f](A) ®' B/) —-———) A® kl(Bl)
Given a third monoidal category (C”,®"), we get a composition functor:

Proj,(C’,C) x Proj,(C”,C") = Proj (C”,C)
([f’vk,] = (f/v kl)a'$c')) [f. k] = (f,k,a, C)) — (f’ of,ko K,d", C’f)

with (f o f,a”’) the composite monoidal functor (see Remark 2.1.89) and e” the composite:
kK (£(4) 8" B") <> k (£(4) &' K(B"))

We obtain the 2-category (Proj,) whose objects are monoidal categories and whose 1-morphisms are left
projectors. Note the evident 1-contravariant 2-contravariant 2-functor:

Proj, — pMono;  [f, k]~ f

: Also get the dual notion of left coprojector , organising a 2-category ¢Broj ¢» and strict 2-categories Proj,

and ¢Proj,, furnished by as ®-dual notions.

Aa f-biprojector ‘is a triplet (k, cg, ca).such that (k,cg) is aleft f-projector and (k, ca) a right f-projector
and s.t. the following diagram is commutative for any (4, B’, C) € Ob(C) x Ob(C’) x Ob(C) :

k(f(4) &' (B'® FO)) —— A8K(B'® [(C)) — A® (k (B’)®C)
k((f(A)® B’)® F(O) ==k ((f(4) & B')®C—>(A®k(3'))®0

We also have the dual notion of g-bicoprojectors . We also define the notion of biprojector (resp.
bicoprojector) from C to C’ . We denote by Proj a&& ¢Proj the 2-categories of projectors and coprojectors.
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[Ayoub, Def.2.1.119, p.230; Def.2.1.148, p.239; Def.2.1.149, p.240] —————~

e Let (C,®) be a monoidal category. We say it is left closed if for any object A of C, the functor A ® —
admits a right adjoint. We say that C is right closed if for any object A of C, the functor — ® A admits
a right adjoint. '

A monoidal category C is right closed if the ®-opposed category C° is left closed and vice versa. So just
to study one type of the closed monoidal categories. )

Thereafter, we consider mainly the right closed monnoidal categories. We denote by Hom(A, —) the right
adjoint of — ® A. There is thus isomorphisms:

home(U ® A, V) = home (U, Hom(A4, V))
as well as the arrows:
ev: Hom(A,v) ® A—>V and 6:U — Hom(A,U ® A)

natural in U and V of C.

o When we will need to cisider right and left closed monoidal categories, we denote, to distinguish,
Hom, (A, —) and Hom,(4, -) the respective right adjoints of A® — and — ® A.

A monoidal (resp. symmetric monoidal) triangulated category is is an additive monoidal category
(T,®,0) (resp. (T,®,0,7)), with a structure of triangulated category on 7 as well as the isomorphisms:

A1 ® B =% (A® B)[+1] <L A® B[+1]

which ate natural on (4, B) € Ob(7)? and commute in the evident manner with the associativity (resp.
the associativity and the commutativity) isomorphisms. Also, two supplementary axioms are imposed:

—  For any distinguished triangle A — B — C — A[+1] and any object D of 7 the two diagrams below:

A®D—>B®D—»C®D — (A® D)[+1]
D®A—-+D®B—DQC— (D®A)[+1]

are distinguished. In other words, the functors — ® D and D ® — provided with the isomorphisms sg
and sq respectively, are triangulated functors..

— For any A and B of T, the square below is commuative up to the multiplication by —1:

A[+1] ® B[+1] —— (A[+1] ® B) [+1]

(A ® B[+1]) [+1] —— (A4 x B)[+2]

o Let (7,®) and (7',®’) be two triangulated monoidal (resp. ‘symmetric monoidal) categories. A
pseudo-monoidal. (resp. symmetric pseudo-monoidal) trianigulated functor from 7 to 7~ is a pseudo-
monoidal (resp. symmetric pseudo-monoidal) functor between underlying additive monoidal categories,
which is triangulated and compatible with the isomorphisms sy and sgq.

Suppose unit objects are given in 7 and 7”. A triangulated pseudo-monoidal and pseudo-unital functor
is simply a triangulated pseudo-monoidal functor provided with an arrow e which makes it also a pseudo-
monoidal and pseudo-unital.

A monoidal (resp. symmetric monoidal) triangulated derivateur is a triangulated derivateur D provided
with the following supplementary data:

— For each I € Ob(Dia) a monoidal (resp. symmetric monoidal) category structure (D(I), ®;, 7).

— For each functor u : A — B of Dia a monoidal (resp. symmetric monoidal) functor structure on »*.

A triangulated unital monoidal (resp. symmetric monoidal) derivateur is a triangulated monoidal (resp.
symmetric monoidal) derivateur provided with a unit object 1; € Ob(ID(I)) for each I € Ob(Dia) and
an isomorphism u*1; =~ 1; for each u : J — I € F)(Dia) making u* a unital monoidal (resp. symmetric
monoidal) functor.
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[Ayoub, p.274; Def.2.3.1, p.274] - ~

o DMonoTR (resp. uMonoTR) denotes the 2-category of the triangulated monoidal (resp. unital monoidal)
categories, such that

— l-morphisms are monoidal (resp. unital monoidal) triangulated functors which commute with the
isomorphisms sy and sq in Definition 2.1.148.

— 2-functors, i.e. the natural transformations, are natural transformations of the monoidal (resp. unital-
monoidal) functors which are also natural transformations of triangulated functors.

e A monoidal (resp. unital monoidal) triangulated 2-functor is a 2-functor

(H,®) : Sch /S — MonoTR
(resp. H,®, 1) : S¢h /S — uMoneTR

which

— - to a quasi-projective S-scheme X associate a monoidal (respl. unital monoidal) triangulated category
(H(X), ®x) (resp. (H(X),®x,1x)); .

— to a S-morphism f: X — Y asociate a monoidal (resp. unital monoidal) triangulated functor f*.

e A monoidal trlangulated 2-functor (H, ®) is called a stable homotopy monoidal 2-functor if the following

two conditions are satisfied:

— when composed to the right by the forgetful (strict) 2-functor: MMonoTR — TR (resp. uMonoTR —
TR) we obtain a stable homotopy 2-functor.

— ( projection formula ) Let f : Y — X be a-smooth S-morphism. The two morphisms (see Proposition
2.1.97) :

Po: fy (f7(A) @y B') - A®x f1(B')
pa: fy (A" ®y f*(B)) — fi(A') ®x B,

which are natural on (4, B) € Ob(H(X))? and (4’, B’) € Ob(H(Y))? are invertible.

e Define the notion of the stable homotopy symmetric monoidal (resp. unital symmetric monoidal)

2-functor by making the evident changes.
J
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[Ayoub, Def.4.1.57; Lem.4.1.58, p.440 ] ~

* A monoidal model category (9M,®) is a model category equipped with a right and left closed monoidal
- structure (in the sennse of Def.2.1.119) satisfying the following aximo:
(MMC) Let f: A— Band g: U — V be two cofibrations of 9, Then the evivent morphism:
fOg: AoV [ BeU »BeV
AQU

is a cofibration which becomes a weak equivalence when f or g is a weak equivalence.

We say that 9 is symmetric - when the underlying monoidal category is also equipped with a symmetry -
isomorphism.

‘We say that Dt is unital if the underlying monoidal ctegory is equipped with a unit which is cofibrant.

e For A a cofibrant object, the functors A® — and — ® A are left Quillen functors. It follows from Lemma
4.1.26 that the bifuntor — ® — preserves the weak equivalences between cofibrant objects. By Proposition
4.1.22, it admits a left derived functor

-— ®L -
which makes Ho(9) a left and right closed monoidal category.

o Let 90 a unital symmetric monoidal model category. Denote by 1 the unit object of 9. Suppose that 9
is pointed. Then the functor £ is canonically isomorphic to (£'1) ®" —. Furthermore, the permutation
of factors: .

71 (2'1) 8" (1) - (') &' (Z'1)
is equal to the inverse of the commutative cogroup £21 module the identifiction ='(£'1) ~ £'1 @ '1.
If furthermore 9 is stable and left proper, then Ho(9M) is a monoidal triangulated category in the sense

of Definition 2.1.148.
. .

3.3 Review of general model category theory

We first review some basic of the model category, including the Bousfield localisation, which requires

the cardinal consideration.
[Ayoub, Def.4.1.3, p.420; p.421]

® A model category 9 is called left proper (resp. right proper ) when weak equivalences of 9 are stable
by push-out by cofibrations (resp. stable by pull-back by fibrations). We say it is proper if it is left
proper and right proper.

o A model category 9 is called pointed if the unique morphism § — * between an initial object @ and a
final object * :
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[Ayoub, Def.4.17.10, Def.4.1.11, Prop.4.1.12, p.422 ]

e Let X be an object of M.
— A cylinder (Cx,p,i0,%1) on X isa commutat}}'e diagram in 9

such that p is a weak equivalence and i¢ [[¢1 : X [] X — Cx is a cofibration.
— A path space (Px,c,eg,e1)on X isa commu}:{ative diagram in 9%

X

\V4

X
such that c is a weak equivalence and po X p1 : Px — X X X is a fibration.

o ( homotopy relations )

1. Let fo, f1 : X = Y be two arrows of M. We say that fo is left homotopic to fi relative to the cylinder
(Cx,p,i0,41) if there exists an arrow h : CX — Y such that fo = hoig and fi = hoi;. The arrow h
is called a homotopy of fo and f; relative to the cylinder Cx . We say that fo is left homotopic to
Jfr if there exists a cylinder relative to which fo is left homotopic to f;.

2. Dually, we hae the notion of right homotopic obtained using the path spaces.

o Let f,g: X = Y be two arrows of 9 with X cofibrant and Y fibrant. Then the following assertions are
equivalent: '

~ f and g are left homotopic. _

— f and g are left homotopic relative to a fixed cylinder.

— f and g are right homotopic.

— f and g are right homotopic rélative to a fixed path space.

We denote by 7o(X,Y) the quotient of homgn (X,Y’) by the homotopy relation.

| B\

[Ayoub, Def.4.1.13, p.423 |

Let X and Y be two objects of Mt and f,g: X — Y two arrows. We suppose given the following data:

— a left homotopy hg : Cx — Y from f to g relative to a cylinder ‘Cx, p, do, 1)
— aright homotopy ha : X — Py fro mh t g relative to a path space (Py,c, o, €1)-
A correspondence between hg and hy is an arrow ¢ : Cx — Py making the following square commutative::

x .L.[ x hgUcog Py

iouill / l(eo,el)

Cx —— Y XY
(hg.g0p)

hg and hq are corresponding if a correspondence ¢ exists.
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[Ayoub, Th.4.1.17 p.424; Rem.4.1.18, p.425]

s
e The category
- Ho(9) =M [W™1]

exists and is equivalent to mo9.s. It is called the homotopy category associated to the model
category 901. Furthermore, for A cofibrant and X fibrant, we have a canonical isomorphism

hOmHo(gm)(A, X) ~ 1l'0(A, X)

The proof of the theorem shows that the categories 9. [W '] and 9 [W 1] exist and that they
are equivalent to m9.s and so to Ho(9). More precisely, the choices R(X), Q(X), R(f) and
Q(f) define the functors

R: M. — Womcf, and Q : ?J)tf = d ﬂ’ogﬁcf
which send the weak equivalences to the isomorphisms. These induce the functors:
M (W] = moMe; and MW = mMef

which are equialences of categories:
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—— [Ayoub, Def.4.1.21, Prop4.1.22, p.426; Prop4.1.23, Def.4.1.24, Prop.4.1.27, Def.4.1.28, p.427 ] —

‘e ( Derived functors )
1. Let F : 9t — 91 be a functor. We say that F is right derivable if there exists a pair (RF,~) formed
by
— a functor RF : Ho(91) — Ho(N),

— asquare
N ——s Ho(M)

Fl 7 lRF‘
91— Ho(N)
which is universal in the following sense.- For any pair (T, 8) formed by a functor at the level of

homotopy categories and a square diagram as above, there exists a uniqute natural transformation
a: RF — T such that 8 = a ov. The functor RF is called the right derived functor of F

2. We obtain the notion of the left derived functor by duality. We denote by LF the left derived functor
(when jt exists) of F.
o Let 9 — 91 be a functor which preserve the weak equivalences between cofibrant (resp. fibrant) objects.
Then F is left (resp. right) derivable.
Let (F,G) : 9t — M be a an adjoint functor pair. Then the following assertions are equivalent:

— F preserves the cofibrations and the trivial cofibrations.
— G preserves the fibrations ard trival fibrations.
— F preserves the cofibrations and G preseres fibrations.

— F preserves the trivial cofibrations and G p‘fesetves the trivial fibrations.

The adjoint functor pair (F, G) : 9N — M verifying one of the equaivalent conditions above is called a
Quillen adjunction . We say also that F' (resp. G) is a left (resp. right) Quillen functor .

Let (F,G) : 9t — M be a Quillen adjunction. Then F admit a left derived functor LF : Ho(9t) — Ho(9N).
Dually, G admits a right derived functor RG : Ho(91) — Ho(90). Furthermore, the functor LF is naturally
aleft adjoint of RG. .

A Quillen adjunction (F,G) is called a Quillen equivalence when LF (or RG) is.an equivalence of
categories.

J
[Ayoub; Def.4.1.29, Def.4.1.30, Prop.4.1.31, p.428 ] ~

-

Suppose given an adjunction (F,G) : 9 — 9N with 9, model categories such that G sends weak
equivalences between fibrant objects to weak equivalences , Then an object A of 91 is called F-admissible
, if F(A) is cofibrant and that for any fibrant object X of 91, the canonical morphism

mo (F(A), X) — homuo(nm) (4, G(X))
is vinvt‘exjtible. )
An adjunction (F, G) : 9 — 9N with M, 91 model categories is called Morel-Voévodsky adjunction” when
the following conditions are satified:

— G sends weak equivalences between fibrant objects to weak equivalences.
— For any object A of 9, there exists a weak equivalnce B — A with B an F-admissible object. In this
case, we say there exist enough F-admissibles .

Let (F,G) : M — M be a Morel-Voevodsky adjunction. Then F admits a left derived functor LF which is
naturally left adjoint to RG.
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(— [Ayoub, Def.4.1.32, p.428; Def.4.1.34, Lem.4.1.35, p.429; p.430; Lem.4.1.36, p.430 ] ﬁ
Le

.e Let (Ca,p,i0,41) and (Cy,p’,45,1}1) be two cylinders over A. Two left homotopies

t f,g: A— X be two arrows of 9 with A cofibrant and X fibrant.

h:Ca— X, K:Ch—>X

of f and g are called  left 2-homotopic if there exists a commutative diagram:

(CallaygaCs) —— x

A+—2—"D

with a a cofibration and ¢ a weak equivalence The arrow ! is called a 2-homotopy .
The dual notion of right 2-homotopy of f and g is also defined.

Denote by 7{(4, X, f,g) (resp. wf(A4,X,f,g) the class of left (resp. right) homotopies modulo the
relation of 2-homotopy. .

Given a cylinder (Ca, p, 0.71) over A (resp. a loop space (Px,c, eo, e1) over X), we denote by
m(A, X, f,9,Ca) C ﬂ{(A'XV f,9)
(7‘68}). ”I(AvXufyg’Px) C "‘li(A’X: .frg))
the subset of the left (resp. right) homotopies relative to Ca (resp. Px) up to 2-homotopy.
Under the preceeding hypotheses and notations;
1. There exist a canonical isomorphism
(A, X, f,9) = m{(A, X, f,9)

which associate to a left homotopy h : C4 — X a right homotopy & : A — Px such that h and k are
correnpondants in th esense of Definition 4.1.13. .

2. The inclusion m(A,X, f,9,Ca)-C 7j(A,X,f,g) is bijective. In particular, #{(4, X, f,g) and
7$(A, X, f,g) are sets.

Denote by m1(A4, X, f, g) the one of the two sets canonically isomotphié to 7¥(A, X, f,g) or 7{(A, X, f, g).
The next discussion show that the set m1(A, X, f, g) is bifunctorial in A and X :

Let u: A — A be an arrow between cofibrant objects of 9. The composite:
(A, X, 1,9) & m(A,X, £,0,Ca) = m(A, X, fou,gou,Ch) 3 ad(A', X, fou, g ou)
does not depend on a choice of commutative diagram:

B , ioli] o ,
AT[A 2250 2 A

v Jv'u
u igUiy CA P
Furthermore, we have a commutative diagram:

(A X, f,g) —— 1§ (A", X, fou,/gou)

“ld(A9X7fyg) —)ﬂf(A’,X,fou,gOu)
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([Ayoub, Th.4.1.38 Def.4.1.30, p.431; Def.4.1.44, p.433; Th.4.1.49, p.434; Lem.4.1.51, p.436; Th.4.1.56 p.4404
o If the model category 9t is pointed. Then the bifunctor
mi{~, =) : MP x My — Sets

induces a bifuﬁctor
m1(—, —) : Ho(9)°® x Ho(9M) — Sets

Furthermore, there exists a couple of adjoint functors
(=1, Q') : Ho(9M) — Ho(M)
and the functorial isomorphisms on cofibrant A and fibrant X:
homﬂo(gn)(}: A, X) =~ m(A,X) ~ homyomm) (4, Q'Xx)
Finally, for cofibrant A, the object £'A is canonically isomorphic (in Ho(91)) to the push-out diagrams:

AITA —— Ca
CO¥

The dual statement is obviously true for Q' X

For a pointed model category 9, the endofunctor ! of Ho(9M) is called the suspenswn functor . Its
adjoint 02! is called the cosuspension functor .

A model category M is called stable if the category 9 is pomted and if the suspension functor X! is
an autoequivalence of Ho(91). .

o Suppose that the model category 9 is stable and left proper. Then Ho(90) is naturally a traiangulated
category, where the suspension functor is given by £' and the distinguished triangles are given by the
triangles of cofibrations.

® Suppose a Quillen adjunction between two model categories which are stable and left proper is given:
(FG): M-

Then, LF and RG are triangulated functors.
o Let 9 be a left proper stable model category . Then a square

C——D

is homotopy cocartesian if and only if it is homotopy cartesian.

28

35



o

e Let (C,®) be a monoidal category. We say it is left closed if for any object A of C, the functor A ® —
admits a right adjoint. We say that C is right closed if for any object A of C, the functor — ® A admits
a right adjoint.

A monoidal category C is right closed if the ®-opposed category C° is left closed and vice versa. So just
to study one type of the closed monoidal categories. '

Thereafter, we consider mainly the right closed monnoidal categories. We denote by Hom(A, —) the right
adjoint of — ® A. There is thus isomorphisms:

home(U ® A,V) = home (U, Hom(4,V))

as well as the arrows:
ev:Hom(A,v)® A=V and §:U — Hom(A, U ® A)

natural in U and V of C.

o When we will need to cisider right and left closed monoidal categories, we denote, to distinguish,
Hom, (A, —) and Hom,(A, —) the respective right adjoints of A ® — and — ® A.

A monoidal model category (M, ®) is a model category equipped with a right and left closed monoidal
structure (in the sennse of Def.2.1.119) satisfying the following aximo:

(MMC) Let f: A— B and g: U — V be two cofibrations of 9, Then the evivent morphism:

fOg:A@v [ BeU -+ BeV
AQU

is a cofibration which becomes a weak equivalence when f or g is a weak equivalence.

We say that 90 is symmetric when the underlying monoidal category is also equipped with a symmetry
isomorphism.

We say that 0t is unital if the underlying monoidal ctegory is equipped with a unit which is cofibrant.
For A a cofibrant object, the funétors A® — and — ® A are left Quillen functors. It follows from Lemma
4.1.26 that the bifuntor — ® — preserves the weak equivalences between cofibrant objects. By Proposition
4.1.22, it admits a left derived functor

- -
which makes Ho(90) a left and right closed monoidal category.

o Let 91 a unital symmetric monoidal model category. Denote by 1 the unit object of 901."Suppose that 9%
is pointed. Then the functor X' is canonically isomorphic to (£'1) ®" —. Furthermore, the permutation
of factors:

7: (£'1) @" (T'1) - (£'1) 8" (2'1)
is equal to the inverse of the commutative cogroup £?1 module the identifiction £*(£'1) ~ ='1 ®" £'1.
If furthermore 91 is. stable and left proper, then Ho(91) is a monoidal triangulated category in the sense
of Definition 2.1.148.

[Ayoub, Def.2.1.119, p.230; Def.4.1.57, Lem.4.1.58, p.440 | —

We now take into account cardinal considerations in order to construct the Bousfield localisation.
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——————[Ayoub, 42.1, Def. 4.2.1, p..442; Def. 4.2.5, p..443; p.444] —

o We say that a category K is pseudo-doscrete if there exists two discrete full sub-categories Jp
and J; such that
hom(j1, jo) = 9
for all (jo, 1) € Ob(Jo) x Ob(J1)-

o By the cardinal of a small category K, we mean the cardinal of the set Ar(K).

o Let a be an ordinal (not necessarily infinite). A category Z is called a-filtered if it is non empty
and if for any functor P : J — Z with J pseudo-discrete and whose cardinal inferior or equal to
a, there exists 7 € Z such that the set_

Lim;eop(7) homz(P(5),)
is non emptry.

e A functor F : A — B between categories admitting small colimits is called a-accessible if its
commutes with with colimits with respect to a-filtered small categories.

An object A € Ob(A) is called a-accessible if the functor hom A.(A, —) is a-accessible.

o Recall that a monomorphism in a category C is an arrow o such that the map hom(X,a) is
injective for any object X. '

e When C admits finite colimits, an arrow whose arbitray pushout is a monomorphism is called a

universal monomorphism.

J
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([Ayoub, Def. 4.2.11, Def. 4.2.13, p.445; Def. 4.2.16, p.446; Prop.4.2.20, Prop.4.2.21,-g.447]

.

e Let B be an object of a category C. Denote by
Sub(B) cC/B

the full subcategory whose objects are monomorphisms « : A — B. Sometimes, A
is called a sub-object of B.

e Suppose C has small colimits and o an ordinal. Denote by Sub,(B) the full
" subcategory formed by monomorphisms with a-accessible sources.

o Let C be a category with small colimits. We say an object X of C is the a-filtered

colimit of its a-accessible sub-objects , if the following two conditions are satisfied:

— - Sub,(X) is essentially small and o-filtered.
'— The canonical arrow (Colim( A X)eSuba(X) A) — X is invertible.

o Let C be a category. We say that C is a-presentable if the followiﬁg conditions
are verified with any cardinal 3 equal or larger than o:

— C is bicomplete. The filtere colimits commute with finite limits. Moreover, the
. B-filtered colimits commute with lifnits over the category whose cardinal is equal
or smaller than 3.

— The monomorphisms iin C are universal.

" — Any object of C is accessible. A sub-object of a B-accessible object is again

[B-accesible.
— Any object of C is the S-filtered colimit of its S-accessible sub-objects.
— The sub-category Cs formed by S-accessible objects is essentially small.

When C is a-presentable with o finite and larger or equal to 5, we write that C is
finitely presentable.

‘We'say C is presentable when it is a-presentable for some cardinal a.

o Let 7T be a sniall category and C a presentable category. Then HOM(Z,C) is still
presentable.

e Let C be a a-presentable category and D a bicomplete category. We suppose given
an adjunction (F,G) : C — D such that:
— G'is fully faithful and a-accessible,
—. F commuts with finite limits, ‘

— the functor G o F preserve B-acdessible objects for 8 larger or equal to a.

Then D is a-presentable. 31
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— [Ayoub, Def.4.2.23, Def.4.2.24, p.448; Prop.4.2.26, p.449] ——————

N

e Let A be an ordinal. We call )-sequeence a functor A : A — C which we
schematically have by:

Ao A=A, A

and which commutes with colimits (when they exist), i.e. for any v € A a limit
" ordinal, we have A, ~ Colim,e, A,. The arrow Ay — Colim, ¢y A, is called the

transfinite composition of the A-sequence A.

e let C be a category admitting the small colimits and F C Ar(C) a class of arrows.
We denote by Cell(F') C Ar(C) the maximam small classes containing F’ and stable
by pushout and transfinite composition.

e Let C be a category admitting small colimits. Let F C Ar(C) be a set of arrows
whose sources and targets a-accessible for a fixed cardinal a. It then exists a functor

Yo : HOM(L,C) — HOM(2,C)

which to an arrow f : U — V associates a factorisation:

f
U— Qf,a'(f) —V

which satisfies the following properties:

1. The arrow U — ®pq(f) is in Cell(F).
2. The arrow ®p4o(f) — V is in RLP(F).
3. The functor @4 (f) is a-accessible.
4. Let B be an infinite cardinal verifying the two conditions:
(a) B is strictly superior to a and superior or equal to the cardinal of the set F.

(b) for any a-accessible object A and any B-accessible object X of C, the set
hom¢(A, X) is of cardinal inferior or equal to 8.

Then, the object B o(f) is B-accessible when U and V are S-accessible.
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-

We say that a model category (9, W, Cof,Fib) is a-presentable by cofibrations if the following

conditions are satisfied:
® 9 is a-presentable, as an abstruct category, in the sense of the Definition 4.2.16, p.446.
e The cofibrations of 2t are monomorphisms. -
s Denote by Cof,, the class of cofibrations whose target is a-accessible. Then

Fib = RLP (Cof,NW); FibNW = RLP (Cof,)

The cardinal a is called the essential size of 9.

N

[Ayoub, Def4.2.39; p.456] ~

J

- [Ayoub, Def. 4.2.58, Rem.4.2.59, p.462]

o Let A be a sub-class of Ar (Ho(91)). A left Bousfield localisation with respect to A is a model
category (L4901, W 4, Cof 4, Fib 4) equipped with a Quillen adjunction

(Ua,Va) : M — LM

such that LU4(f) is invertible for any f € A and the following universal property is satisfied:
For any model category 91 equipped with a Quillen adjunction (F,G) : 9 — 9N such that LF(f)
is invertible for f € A, there exists a unique Quillen adjunction (Fq,G 4) makeing the following
diagram commutative:

m—Lm

o Let (F,G): M — N be a Quillen adjunction. For two classes of morphisms:
ACAr(Ho(M)), BCAr(Ho())

we suppose that
LF(A) C.B.

Then the adjunction (F,G) induces naturally a Quillen adjunction
(F,G) : LA,‘D? — Lg‘ﬁ

when the Bousfield localisations exist.

~
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- — [Ayoub, Lem. 4.2.60, Lem. 4.2.61, p.464] N

In a model category 90, let a : A — B be a cofibration between cofibrant objects and X be a fibrant
object. Then the following conditions are equivalent: ° ’

-~ @ The morphism
) 7r0(a1X) : “O(BvX) - 7r0(A7X)

is surjective (resp. and injective).
o The arrow X — * admits a right lifting property concerning
a:A— B

(resp. and

[ (A) a1y ) (BLIB)] = Cy1(B)).

e - [Ayoub, Def. 4.2.63, p.464]
For any cofibration a : A — B, we choose a cofibration V(a):

(AL14)

with Cyl,(A) and Cyl,(B) the cylynders of A and B.
Fo a class F of cofibrations, we set

[%(A) 11 (B]_[B)} — Cyl,(B)

V(F)={V(a) |a € F}
ValF) =V (Vuer(F))
Voo F) = UnenVu(F)
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4 .

e Fix a sub-class A C Ar (Ho(9M)) . Let A C Ar(9M) be a up to an isomorphism lift
of A, consisting of cofibrations between cofibrant objects. When A is essentialy
small, we implicity suppose A is a set. Then, set

VoolA) :=Im (V(4) = Ho(M)) ,
which is shown to be independent of a choice of A (by Lemma 4.2.62, p.463).

— An object X of M is called A-local when for any arrow a; A — B of V. (A),
the morphsim »

hom(f, X) : homHo(gm)(B, X) = homgem) (4, X)

is invertible.

— We denote M 4y, (resp. Ho(M) A_';,,C) the full subcategory of 91 (resp. Ho(9))
made of A-local objects.

— Anarrow f: A — Bis called A-weak equivalence when for any A-local object

X,, the morphsim
hom(f, X) : hompem) (B, X) = homyem) (4, X)

is invertible.
— Denote by W4 the class of A-weak equivalences.
~ Set Fiby := RLP (Cof "W 4).

e Let a morphism of A-sequences:

fs fi i
’ s Al . s A7 v.ooAl
Ay » Ay A, P AL

l | |

Ao fo‘Al b,... Ay i Avir

in the left proper model category 91. We suppose that the vertical arrows are
weak equivalences and the horizontal arrows are cofibrations. Then the evident
morphism

Colim,cy A, = Colim,ey 4,

is a weak equivalence.

[Ayoub, Def. 4.2.64, p.465; Lem.4.2.69, p.467] ~
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— [Ayoub, Th.4.2.71, p.468; Prop.4.2.76, p.4'f2; Prop.4.2.82, p.474] EE——
e Suppose the model category 91 is left proper and presentable by cofibrations. If the class A is
" - essentially small, then the quadrupplet
(9N, W 4, Cof,Fiby)
is a model category, which is still left proper and presentable by cofibrations. Moreover, this is
the left Bousfield localisation with respect to A.

o The model category (901, W 4, Cof, Fib 4) is a monoidal model category (see Definition 4.1.57)
when the following conditions are satisfied:
— for A € Ob(9M) cofibrant and f € A, the arrows A® f and f ® A are .A-weak equivalences.
— The model category (901, W 4, Cof, Fib 4) is stable.

o Let 9 be a model category which is presentable by cofibrations and .4 an essentially small class of
arrows in Ho(90t). We suppose that 9 is stable. So that the 4-localized structure of 91 become
still stable, it is necessary and sufficent that one of the following two equivalent conditions are

satisfied:

— the functor 0! : Ho(9t) — Ho(9M) sends the arrows of V. (A) to the A-weak equivalances.

\
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— the functor £! preseres the .A-local objects of Ho(90). : )
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3.4 Review of generél theory of symmetric spectra

s - [Ayoub, 4.3. p.474] ~

Let & = (®,)nen be a unital graded monoid in the category of groups: V(m,n) € N x N, 3 a group

homomorphism
Omn: Pm X B = (pm+n

satisfying the following conditions:
e VY(m,n,r) € N3, the folowing diagram is commutative:

DX
B, X By, X By By X B

Iy, x¢,.lrl( ) 1¢m+n,r

B X By PR Dtntr

o Let 1 be the unit of ®,. Then Vn € N the folowwing two compositions are identities:

B, o~ {1} x B, = By x B, 22 @,

B, = By, x {1} = Bp x B 2% @,

-
\—

[Ayoub, Ex.4.3.1, p.474]

Two important examples of unital graded monoids:

{1} = ({1})nen The trivial unital graded monoid , given on each degree by the group of a single
element {1}.

¥ = (£,)nen The unital graded monoid of symmetric groups , where the group morphism

Gmn i Em X By = Emgn

(f.9)— feog
is defined by " '
ny(i)={f(i) if1sésm, (te{l,...,m+n}).
gli—-m)+m ifm+1<i<m+n. » )
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s [Ayoub, Def,4.3.3, p.475] N

Let C be a category.

e For a group G, denote by Rep(G,C) the category of G-representations in C , i.e. the category
of functors {G} — C where ¢{G} is the category of a single object ® with end(e) = G.

¢ Denote by Suite(®,C) the category ],y Rep(®n,C). Ab object of this category is called a
®-symmetric sequence in €.  This is a family of objects (Xy), o of C equipped with actions
®, — Aut(X,) forn € N.

J

[Ayoub, Def,4.3.4, p.475] ' ~

Let C be a category. A ®-symmetric endofunctor of C is a-functor ¥ : C — C equippedwith an

action ar : ®, — Aut (F°") for any n € N, such that the following diagram is commutative for any

(mvn)ENXN:
. » ; ]
e e P ——
®,, x &, —— Aut (Fd---oF) x Aut (Fo...op)
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Let F be a ®-symmetric endofunctor of C.

e A ®-symmetric F-spectrum (orsimply (F, ®)-spectrum ) X is a $-symmetric sequence (Xn),,cy
_in C equipped with a assembly map v, : F(X,) = X,1 such that for any (m,n) € N? the

composite

o(m—1)
Fom () S0, petnd (¢, ) -
>_) F(Xm—1+n) M"’ Xm+n
is ®,, x ®,-equivariant relative to:

— The action on F°™(X,,) is induced by the action of &,, on F°™ and the action of &, on X,.

— The action on X, is obtained by restricting the action of ®,,, via the morphism ¢, » :

D X By, 2 Py

e A morphism of (F, ®)-spectra from X = (X,,),cy t0 Y = (Y4), oy is a morphism of &-symmetric
sequences X,, = Y, such that the following diagram is commutative for any n € N:

Fxn — Xn+l

|

FY,—— Yo

We denote by Spect}l.-’-(C) the category of ®-symmetric F-spectra.
e For n € N, define Ev,, : Spect3(C) — Rep(®,,,C) and Ev,, : Spect:(C) — C as follows:
Ev, : Spectz(C) — Rep(&,,C)
X=(Xn)pen  ++ Xn with the &,-action

Ev, : Spect‘};’-(C) -C
X = (Xn)neN = Xn

[Ayoub, Def,4.3.6, p.475] ~
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-

® Suppose that a category C admits relevant colimits. Let a : H — G be a group morphism.
— Denote the evident restriction functor
a. : Rep(G,C) — Rep(H,C)
by Oub§ .
— It-admits a left adjoint functor
o : Rep(H,C) = Rep(G,C),
" which is denoted by Indg .

Let F be a &-symmetric endofunctor of C, which commutes with relevant colimits.For p € N the
functor Ev,, admits a left adjoint

Sust 4 : Rep (2,,C) — Spect(C).
For X € Ob (Rep (®,,C)), the (F, ®)-spectrum S_usf;.;q,(X ) is as follows:

- Asa Qn-representation,

S—us-%,Q(X)n =
[ n<p

{Inda‘;:_,,x‘»,, (Fe-P(X) nzp
— TFor n 2 p, the assemply morphism
F [Susho(X)n] = Sush g (X)nsa
is the composite:
F(mddr_ o, (F0P(X))) = (mafie: o, (FFU+2(X)))
= (md3r_ o, (FO+m (X))

o Under the same hypothesis as above , set

{Sus?{, = S_ug’;:q, ° Ind‘f’

Ev,  =Oub;”oEy,
which forms an adjunction
(Sus}. s, Evp) : € = Rep (@,,C) = Spect(C)
For X € Ob(9M), the (F, <I>)-spe§trum Sush: 5(X) is called p-th suspension (F, ®)-spectrum of

X. At the level n 2 p, this (F, ®)-spectrum i given by Indi:_P Fo(»=P) X where the induction is
given by the group homomorphism

¢n—p,p(—y 1);Qn—p s 'I)n

[Ayoub, Lem,4.3.9, Def,4.3.10, p.476] ~

J
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[Ayoub, Def,4.3.13, p.478]

-

For the category of ®-symmetric sequences in C

Suite(2,C) = [ Rep(&x,0),
neN )

given in Definition 4.3.3,
e Denote by
s_ : Suite(®,C) — Suite(®,C)
X = (Xn)nen = s (X)= ((5—(X))n)neN

where (s_(X))n = Xn41 equipped with the ®,-action by the restriction through ¢, 1(—,1) :
&, = &g, '

o Suppose that C admits relevant colimits. The functor s_ admits a left adjoint
s+ : Suite(®,C) — Suite(®,C)
X = (Xn)nen = 54(X) = ((84(X))n)nen
[ n=0

Ind§"  Xno1 021

~ where

(8+(X)n = {

.e Suppose that C admits relevant colimits. Then the above adjunction
(s4,8-): Suite(Q,C) — Suite(®,C)
extends naturally to an adjunction
(s4.8-): Sp’ectg(C) — Spect2(C)
such that the following squares commute:
Spect?(C) ——s:—) Spect2(C)
MBv. l”" .
Suite(®,C) —— Suite(®,C)
Spect?,i(C)—s—“——) Spect®(C)
N ' lnﬂ Bv.

Suite(®,C) — Suite(®, C)
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[Ayoub, Def,4.3.16, p.479] ~N
Let C and C’ be two categories equipped with each ®-symmetric endofunctor F and F'.

e Let K:C— C' be a functor and 7: F' o K = K o F a natural transformation. We sau that 7 is
$-symmetric when the composite: ‘

FroK L FPDoKoF 5. 5y Ko Fo"
is ®,-equivariant.
o If 7 is symmetric, the extension of K (following 7) is the functor

K, : Spect2(C) —» Spect}l},(q’)
X = K (X) = (K- (X))n = K(Xn))en

where the assembly map of K,(X) is given by the composite:

. P (K(X0) D K (F(X,) =+ K(Xnin) )
|Ayoub, Prop,4.3.19, p.480] N

(Let a be an upper bound cardinal of the cardinal of the monoid &®.
¢ Suppose that C is a-presentable in the sennse of Definition 4.2.16 and that the functor

o F admits a right adjoint G which is a-accessible.

Then the category Spect®(C) is equally a-presentable.

. J

‘We now study the preceeding genéra] theory of symmetric spectra in the model category setting. For
this purpose, we make the following hypothesis:
Hypothesis, 4.3.2, p.481

Given a Quillen adjunction : )
(F,G): M = (M, W, Cof, Fib) O

with F : ®-symmetric in the sense of Definition 4.3.4.
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[Ayoub, Def,4.3.20, p.481]

-
Let f: X — Y be an arrow of SpectZ(901).

o We say that f is a levelwise weak equivalence (resp. levelwise cofibration,levelwise fibration) if

for any n € N the arrow f, : X;, = Y, is a weak equivalence (iesp. cofibration, fibration).

o Denote by W,,;, (resp. Cof,;,, Fiby,;, ) the class of levelwise weak equivalences (resp. levelwise

cifibrations, levelwise fibrations).

o We say f is a projective cofibration (resp. iinjective fibration ) when it posseses a left
(resp. right) lifting property with respect to levelwise trivial fibrations (resp. levelwise trivial

cofibrations).

® Denote by Cof,,; (resp. Fib;,; the class of projective cofibrations (resp. injective fibrations).

[Ayoub, Prop,4.3.21, p.481; Def,4.3.22, p.483]

-

Suppose that the model category 90 is presentable by cofibrations (see Definition 4.2.39) and that
the functor G is accessible.

Suppose also that for (m,n) € N2, the group homomorphisms ¢ n(—, 1) : @ — Bmr, are injective.
Then the following two quadruplets are model categories, which are again presentable by cofibrations:

(Spect?}(fm),Wni,,, Cof o5, Fibniv) , unstable projective model structure

(Spectg(im),W,m, Cofni,,,Fibmj) , unstable injective model structure

N

[Ayoub, Lem,4.3.24, p.483]

For p € N, the adjunction
(Sus’}’q,, Evp) : SpectZ (o) — M

is & Quillen adjunction with respect to the unstable projective structure of Spect}};(ﬂﬁ).
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- [Ayoub, w%, p.484]

-

Rmu the adjunction in Def.4.3.10, p.476:
Ind?? Sus?

==F,
(s} Evy) : € = Rep(8,,C) — Spectd(C)
' Oubj? Ev,

Notice
Evpi1 [Susho(X)] = Oub{™ (afz+ F(X))

In fact, as F' commutes with colimits ,
BVp41 [Sushq(X)] = [Susho(X)]

= [_SE‘;P@ (Ind?’ X )]p 1

PeLALP A0 Oubett (Indgr iy, (F(Indf” X))

pt+1

Fooolim=Colmer oupte (1ndgryy, (md3Ls (F(X)))
=Oubf**! (Ind§§+* F(X))

On the other hand, applying an obvious nonequivariaant map for an (G 2)H-set Y:
(Y S Hxy Y S G xy U= 0ubf Ind$ Y), for our (®p+1 2)P1-set F(X), we get

F(X) - Oub¥»+ (Indg;’“ F(X))
By composing (5)with(4), we obtain
F(X) = Evpp [S'-‘S?r,q»(x)]

whose adjoint is nothing but our desired

w : Sushly (F(X)) — Sush 5 (X)

(5)
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-

e Denote by R (resp. Rp) the class of arrows w’ with p € N and X a cofibrant (resp. and
B-accesible) object of 9.

o Denote by W (resp. Wr,) the class of R-weak equivalences (resp. Rg-weak equivalences ) in
the sense of Def.4.2.64.

Suppose that 9 is left proper, presentable by cofibrations, and that G is accessible. -

o Then the stable projective (resp. stable injective model structure on Spect}i}(fm) is the

Bousfield localisation of the unstable projective (resp. unstable injective) model structure of
Def .4.3.22 with respect to the class R.

o Denote by Wy; the class of the R-weak equivalences, which shall call stable equivalences.

o We also denote Fib,,o;_ (resp. Fib;n;_s:) the class of R-projective fibrations (resp. R-injective
fibrations), which we shall call stable projective fibrations  (resp. stable injective fibrations ).

e Finally, we set
: Hoy, (Spectf‘(im)) = Spect (M) [W;']

[Ayoub, R, Rg, Def,4.3.29, p.484] — ~

-

-

\_ J
[Ayoub, Prop,4.3.30, p.485] ~
A levelwise fibrant object X of Specti(ﬂ)t) is R-local if and only if for any n € N the morphism
obtained by adjunction of the assembly morphism
xn g GXn+1
is a weak equivalence. )
[Ayoub, Def,4.3.31, p.486] N
A (F, @)-speétrum X is called a Q;v-@—spectrum (or simply $-spectrum ) if for any n € N, _the
arrow .
Xn = (RG)Xnt1
is invertible in Ho(9).
J
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s [Ayoub, Lem,4.3.34, p.486] ~N

Suppose two model categories, which are presentable by cofibrations, as well as ®-symmetric endo-
functors F and F’ which are left Quillen functors having accessible right adjoints. Let

K:9m—-m
be a left Quillen functor equipped with an invertible ®-symmetric natural transformation:
om —E o

. F ~
T:F'oK —>KoF Fl Ao lF,

M — M
K

Then, the functor:
[ K, : Spect(9m) — SpectZ, (M)

is a left thllen functor with respect to the stable projective structures.

J
[Ayoub, Prop,4.3.35, p.486] - N
If (F, Q) is a Quillen equivalence, then the adjunction
(Sus% ¢, Evo) : M — Spect ()
is a Quillen equivalence when Spectg(ﬂﬁ) is equipped with the stable projective structure.
J

[Ayoub, Def,4.3.36, p.487) N

For 7 € ®;, denote by 7(,) € ®py; the element 7y -~ 7, With 7; = ¢i_1,2,—i(1,7,1) the image of 7
by the morphism

Gi—1,2n-i(1;,—,1) : Do =1x Py x 1

=B X BFP,_; > Ppyy
Then the element 7 € ®; is called symmetric when for any g € ®,, we have:
T(n) " én,l(gs 1) = ¢1,n(179) * T(n)

where ¢, m : B, X B, = Py, determines the monoidal structure of &.

- . J
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[Ayoub, Ex.4.3.37 p.487]

-

The transposition 7 = (12) € X, is a symmetric element of the monoid of symmetric groups % of
Example 4.3.1. In effect, the permutation (,) is equal to the product of transpositions:

(12)(23)--- (n — 1L, n)(n,n+ 1) = (1,2,3,--- ,m,n+ 1)
In particular, its restriction to {1,...,n} is given by i ~» i 4 1. It follows that for g € X, we have

. T(n (901) = (1.9)T(n)
9 (n)

N

J

[Ayoub, Th.4.3.38 p.488]

-

‘It 3r S ¥y, a symmetric element. Then w.r.t. the model category
(SpeCtg(mL Wsh COfproj, Fibproj—st) )

1. The adjunction
(54,5-) : SpectR(9M) = SpectL(M)

is a Quillen equivalence.

2. The adjunction
(Fy,Gr) : SpectL(9M) = Spect k(M)

is a Quillen equivalence.
3. The natural transformation ¢, : Fr — s_ induces an isomorﬁhism

LF, = Rs_
\§

N

J

- [Ayoub, Def,4.3.39, p.489]

G.iven a morphism of graded monoids a : & — ®’. An element o € &), is called symmetric relative
to @ when for n € N and g € ®,, the following relation is satisfied:

O(nyb1 (2(9),1) = 81, (1, a(g)) - o(ny-

with o(ny = 010y, for o; = ¢i_12n-i(1,0,1).

N

The goal of this paragraph is to prove the following:
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( [Ayoub, Th.4.3.40 p.489]

N
Suppose we are given
F 14 . . . . .
. : , -summetric endofunctor of 9, which are respectively left Quillen functor admit-
F 3\

ting accesible right adjoint;
e a graded monoid morphism a : ¥ — ¥/,
e a Y-equivariant natural transf-ormat;ion F— F',
which satisfy the following conditions:
1. 37’ € ¥}, a symmetric element, s.t. ¢ = (7")_l is symmetric w.r.t. \Il;‘
2. ‘for any cofibrant object X € M, F(X) — F/(X) is a weak equivalence;

3. the functor F., : Spect%(9M) — Spect (M) is a left Quillen equivalence,

then the adjunction

((F', ) ®r —,Oubg&,‘pl) : Spect (M) = Spect (M)

is a Quillen equivalence w.r.t. the stable projective model structures.
S o

J

- - [Ayoub, Prop,4.3.42, p.489]

)
o Let F — F’' be a $-equivariant natural transformation bwtween ®-symmetric left Quillen endo-
functors of M which admit accessible right adjoints.

e Suppose that the arrow F(X) — F'(X) is a weak equivalence for cofibrant X € Ob(M).

Then the adjunction

((F’, V) ®py -,Oubg;[,‘l".) : Spect%(9) = Spect¥ (M)

is a Quillen equivalence w.r.t. the levelwise projective model structures.

J

( [Ayoub, Lem.4.3.59 p.498] N
Let f: X = Y be a morphism of F-spectra. Suppose that f, : X, = Y, is a weak equivalence of
ksm for n > N. Then f is a stable equivalence. y
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- [Ayoub, Th.4.3.61 p.499] - ~
For a levelwise fibrant F-spectrum X, the homotopy colimit N-sequence
: Apon
X 2% A(X) = -+ o A°m 222000, polntD)
is an Qp-spectrum. Furthermore, the evident morphism

X — LColim, ey A°™X

is a stable equivalence.

J

The monoidal structure on Suite(X,C) [Ayoub, Def,4.3.63, p.500] —

Consider a unital monoidal category (C,®,1) such that C admits coproducté and that, for any
A € Ob(C), the following functors commute:

A®—, and -Q®A

Then, Suite(X,C) (defined in Def.4.3.3, Ex.4.3.1) is also provided with a unital monoidal structure

as follows:

o Let X = (X"')nGN and Y = (Y,),,cn be two symmetric sequences in C. We define a new symmetric

sequence X ® Y by
XeY)n= [] mdf,s, (X))

iti=n
o The monoidal unit object is provided by 1y = (1,0,...,0,...).

¢ The associativity isomorphism of the above monedal product ® is prrovided at the level n by the

composite: °

Xe¥e2),~ [ md¥ys s, (Xi9(Y;82Z)
i+jt+k=n-

> T mdfysm, (X:®Y;)®2) (X 0Y)82),

i+j+k=n
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EEEEE— The closed structure of Suite(Z,C) [Ayoub, Lem.4.3.64, p.500] _—

Suppose C is left (resp. right) closed and admits relevant limits. Then the monoidal category Suite(X,C) is
left (resp. right) closed.

Proof.
e For X = (Xn)nen, Z = (Zn)nen € Suite(E,C) and (3,n) € N2, denote by
Homz" (X,', Z'H-n)
the sub-object of X;-invariants of Hom (Xi, Z;+») for the action:
. Hom (t71,Z;4n
t € T; ~ Hom (X;, Zits) Homy (7 Zin), Hom, (X, Zi+n)

Hom,, (X;,6i,n(t,1))
—_—

Hom, (Xi, Zi+n)

¢ . acts on Hom (X, Ziyn) by Hom (X, 41,n(1, —)). This X, action commutes with the Z; action above,
and so restricts to Homfi (Xi, Zign).

e Now we can define a Z-symmetric sequence Hom (X, Z)>by:

Hom (X, 2), = [ [ Hom®*(X:, Zi1n).
€N

o This Hom, (X, Z) actually represents homguite(z,c) (X ® —, Z). This is because, for Y = (Yn)nen,

homsuie(s,c) (¥ Hom, (X, Z)) = ] homZ" (¥», Hom, (X, Z).)

neN

=TI ITbomZ (Y,., Hom® (Xi,z,»w)) = I homZ*®(X:®Ya,Resg (%, Zisn)

neNieN {n,i)eN2
= I bomg+ (Indgz;"zn X:® y,.,z,~+,,) = ] homZ™ ( 11 mdgits, Xi®Ya, Z,,.)

(n,i)EN? : meN i+n=m
= JI bomz™*"((X X ¥)m,Zm) = homsuie(z.c) (X ®Y, Z).

(n,i)EN?

e The other case follows from this case by ®-duality.
o )
N\
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(The symmetric monoidal strﬁcture of Suite(X,C) - 1 [Ayoub, p.500; Lem.4.3.65, p.500; Lem.4.3.66, p.501] \

® For n =i+ j, define 6; ; € £,, by:-

b= 42T7 if 1<a<i
YT la—i ifi+l1<a<i+j

Then 6;: = 67 11 and the following diagram is commutative:

bij
T X85 —5 T,

7 (the permutation of factors) 0:,5(=)67 ]
bji
X x X —— X,

Proof. For (A.',Bj) €X; x5; (C GL; x GLj),

_ 0 I A O 0 I 0 B; 0 L
s (3 ) ) D= D6 Y

- (1;3):' /(1).-) = ¢;47(As, Bj).

® For X = (Xn)nen, Y = (Yo)nen € Suite(Z,C), the composite:

05,5
Xi®Y; 5 Y; ® Xi = Indg7yp, (V5 ® Xi) =5 Indr, s, (V; ® Xi)
is ¥; X ¥j-equivariant for:

— the product action on X; ® ¥;-

— the aaction obtained by restricting via ¢;;; : £; x £; = Zp of the action of £, on _Indgg‘xzj (Y; ® Xi).

Proof. For (u,v) € ®; X &;; we have the commutative diagram:

. 0,0
Xi®Y; ——=Y; ® Xi —— Ind3n, 5, (¥; ® Xi) —— IndEry s (¥; ® Xi)

(u,v)Jv (v,u)l Jv%_‘(v.u) laj,iéj,i(vyu)oig

8;.i
Xi®Y; ——Y; ® Xi — IndZr, 5, (V; ® Xi) —— Ind57, 5 (V) ® X:)

e By the above result, the composite:
X:®Y; 5 Y; ® Xi - IndZyz, (¥ ® Xi) 5 ResFryz, IndEy s, (¥; ® Xi)
is ¥; x ¥j-equivariant, and so we get the following ¥,-equivariant morphism:
0: lndg;‘xz,. (X:®Y;) — Ind§;x§,.(Yj ® Xi),
and so, by passage to the coprod []; 4j=n> We get a natural morphism of symmetric sequences:

0: XY »Y®X.

We shall quickly verify that 6 makes the monoidal structure on Suite(Z, M) symmetric:

Here, by the above result, 6;,:¢;,: (v, u)6;, } = ¢i,5(u,v), so the claim follows. O
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59

(—' The symmetric monoidal structure of Suite(X,C) - 2 [Ayoub, Lem.4.3.66, p.501; Prop.4.3.67, p.502] —
e Thearrow 6 : X ®Y — Y ® X is involutive, i.e. 82 = idxgy. Furhermore,the following diagram is

commutative:
(X®Y)®RZ—5Z®(XQY)—— Z(Y ®X)
XQ¥x2) "5 (¥YRZ)®X —— (Z3Y)®X

7 Proof. For this purpose, given a symmetric sequence T = (Tp)nen and evaluate the functor

homsyite(z,c)(—, T) on 62 and on the displayed diagram:
— The map
homgyite(s,c) (0, T) : homsuite(z,c)(Y ® X,T) — homsuites,c)(X @Y, T)
H,-+,-=,. .homREP(Ej xz,0(Y; ® Xi,T)  — Hi+j=n homgep(s; X3;,C) (X:®Y;,T)
- (X,-@)/j LSS AN N AN )3

(Vii)i+i=n
itj=n

Since 7° = id and 6;:6;; = 1, we see immediately that homs.me(g,c)(ez, T) is the identity.

— To show the commutativity of the diagra.m, compute the two composites seperately:

homsyite(z.c) ((Z @ Y) ® X, T) ~ homsuite(s,c) (Y ® Z) ® X, T) — homsuitez,c) (X @ (Y ® 2),T)
ITi+jpi=n hOMRep(s, x5, x2:,0) (Zk ® Y5) ® Xi, T) = [ 154 n BOMRep(s; x5 x54,0) (Xi ® (V5 ® Zx), T)

e sOaad) . Oyons
(vk',-,i)k+,~+i=m(xie»(xfj@zk)A(n®zk)®x,»l><zk®y,~)®x,- Yegi, o GitkiCikd) g itk

i+j+hk=n

homguite(s,c) (Z ® (Y ® X),T) - homsuite(z,c) (Y ® X) ® Z,T) — homsuite(s,c) (X ®Y)® Z,T).
[Tkt jimn hOMRep(z, x5, x24,0) (Zk ® (¥; ® X:), T) = [, 451 kp DOMRep(s; x5, x54,0) (Xi ®Y;) ® Z, T)
ks i it (1055 Or,its
(VegiJitsgimn ((Xi Q)8 Zk D Ze 8 (Xi®Y;) D Z 8 (V; @ X;) L2ty p Lests @), op Butts, T)
. bi+j+k=n

The commutation of the diagram then follows from the commutation of the corresponding diagram in
the symmetric monoidal category C as well as the relation 8;4x,i¢;j+k,i(85.k, 1) = Ok,it+jbr,i+s(1, 91.;}:

From these discussions, we now have the following:
[Ayoub, Prop.4.3.67, p.502]

Let (C,®) be a unital symmetric monoidal closed category. Suppose C admits relevant colimits and
relevant limits. Then (Suite(X,C), ®) is also a unital symmetric monoidal closed cateogry.

\ i -

s [Ayoub, Def,4.3.68, Prop.4.3.69, p.502] ~

Let T be an object of C.
e Denote by 87 the symmetric sequence given at the level n € N by the object ST = T®" equipped with
the ¥, action induced by the permutation of factors.
e Denoteby m the morphism ofsymmetric sequences S¥ ®S7 — S7 given at the level n by the coproduct
decompositions n = % + j with evident arrows:

ndZrys, (:r®“ ® T&") T
Then the sequence ST, equipped wih the coupling m : T ® ST — 57 and the unit 1x — 57, is a unital

commutative algebra in the monoidal category in the mnoidal category (Suite(Z,C), ®) given in Definition
4.3.63.
-
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(— The unital symmetric monoidal product — ® — on SpectZ(C) - 1 [Ayoub, p.503; Prop.4.3.70, p.503]
L

Denote by Modg(ST) (resp. Moda(S”) the caetgory of left (resp. right) ST-modules in the mnoidal
category (Suite(Z,C), ®) given in Definition 4.3.63.

:o Since ST is a commutative algebra, there is an isomorphism:
Mod,y(S”) ~ Moda(ST)
STOM s M) (M@ST ~ST@M — M)
o The category SpectZ(C) is tautologically isomorphic to the caegory Mody(ST) of left ST-modules in
Suite(Z,C).
Proof. The inverse isomorphisms are provided as follows:

SpectZ(C) — Mod,(ST) Given X € SpectZ(C), take

(Xn)nen € Suite(T,C) + Mod,(57),
which is actually in Mod,(ST) by the coupling:
ST ® (xn)neN i (xn)'neN

given on degree n by:
(ST ® (xm)meN)n — Xn

Def.4.3.63; Def.4.3.68

Lt jon IndZr s (T2 © X%,
where c;,; is the adjoint of the assembly map
Y T @ Xy = X
defined in Def.4.3.6; Ex.4.3.1; 4.3.5, p.499.
(homg” (10dZr, 5, (T% @ X,), x;) & homs, xz, (T% ® X;, Res¥lys, x.\))
Ci,j 7 Yirj

Mod,(57) — Spect2(C) Given (Mn)nen € Mod,(ST), take

M = (Ma)nen € Suite(Z, C) + SpectZ(C)
where the assembly map on degree n
Yr-1:T Q@ Mn—1 = Mn
is the adjoint of the component c1,n—1 of the degree n part of the ST-action morphism:
homs,, (xndgyxzn_,(T® M,_1), M,,) & homs, x5, (T ® Ma-1,ResEls, _, M,.)

Cl,n=1F> Yn-1 O

e Since ST is commutative, we also have an isomorphism:

Spectz ~ Mody(S7).
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(— The unital symmetric monoidal product — ® — on SpectZ(C) - 2 [Ayoub, p.503; Prop.4.3.71, p.503] B

o Since S7 is a unital symmetric algebra,

(The category Mod(S7) is still unital symmetric monoidal: ]

If X and Y are two S7-modules, we define X ® Y as the usual coequalizer:
X@Y:=Coeq (X8 8YZXQY),

where X is considered as a right S”-module via the isomorphism Mod,(ST) ~ Mod4(S7).

o -
‘ Suppose C is left (resp. right) closed and admits the relevant limits. then Mod,(S”) is also closed. )

If X and Z are two ST-modules, we define Hom‘:T (X, Z) as the equalizer:
Hom®” (X, Z) := Eq (Hom, (X, ) = Hom (X ® 57, Z))

where the first arrow is that deduced from the structural morphism X ® ST — X of X viewed as right
S7T-module and the second morphism is the composite:

T T T
Hom,(X,Z) —» Hom (X ®S",Z2®S" ) + Hom (X ® 5", 2).

We also note that the left ST-module structure on Homs,T(X, Z) is given by that of Z.

We thus obtain the unital symmetric monoidal category (Spect$(C), ®), which is also closed if C is
closed and admits relevant limits.

o Set:
SUS, 5 : Shite(T,C) — SpectF(C)

X = (Xa)nen = [ ] Sush £(X,),
. PEN '

which functor corresponds via the isomrophism Spect:(C) ~ Modg(87) the “associated free $T-module
functor” which to the symmetric sequence X = (Xn)nen associate the left ST-module ST ® X. In partic-
ular, the functor SUSy 5 is monoidal.

Proof. e The functor SUSy 5 is left adjoint to the forgetful functor Spect?(C) — Suite(E,C).

o The fucntor ST ® — is left adjoint to the forgetful functor Modg(S7) — Suite(Z,C).
The result is now clear. 0 ')

[Ayoub, Prop,4.3.75, p.504] ~

For a unital symmetric monoidal model category 9 = (9, ®, 1), the category Spect?(ﬂﬂ) is a

monoidal model category for its unstable projective structure.

J
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[Ayoub, Th,4.3.76, p.505]

Suppose that the category Spect%(fm) is stable for its stable projective structure. Then
(SPeCt'\f-:'(fm), wsty COfproj 3 Fibproj—st)

is a monoidal model category.

[Ayoub, An application of Th,4.3.76 shall be found in p.540]
l The category SHZ,(F,Z) is a monoidal model category. l

[Ayoub, Prop,4.3.77, Rem. 4.3.78, p.506] —

The model category
(Spect%(ﬁ)’t), Wsty COfproj s Fibpraj—st)

is stable, if and only if there exists an object T" € Ob(90) such that T is isomorphic to SYT) in .
Ho ().

[Ayoub, An application of Prop,4.3.77 shall be found in p.540]
l The category S]]-![g;‘_(f ,Z) is triangulated. ’
4 N\

[Ayoub, Th.4.3.79 p.506]

For the left Quillen functor
(- ®1) =) : Specty(M) — SpectF (M)

to be a Quillen equivalence w.r.t. stable projective structures, it suffices that the following eonditions
are satisfied:

1. The permutation (123) € £3 operates by the identity on 7®3 in Ho(9R).
2. The functor RHom, (T, —) commutes with the transfinite composition as in the hypothesis 4.3.56.

3. The model category (spectg(sm),‘wst,COf,,,oj,Fib,,,oj_st) is stable.

\ J

[Ayoub, An application of Th,4.3.79 shall be found in p.558]
' The category SHax (X) is equivalent to the stable homotopy category of non-symmetric T’x-spebtra. l
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3.5

Model theoretical approach to sheaves on general PreShv(S, )

(—[A-yeub 443. Def442p510 Rem.4.4.3, Prop.4.4.4, Prop.4.4.5, p.511; Def447p512]-ﬁ

8, a small category, F € PreShv(S, Sets),
C, a cocomplete category, K, H € PreShv(S,C)

== we get new objectts in PreShv(S,C):
op FOK
F®K= S ¢ € PreShv(S,C)
U~ FU)QK(U)

gov emmE)_

hom(F, H) = ( ) € PreShv(S,C)

U~ hom.(F x U, H)

Here in general,
hom,(F, H) := Limy, rycon(s/r) H(U) € Ob(C)

(Note: For any U € Ob(S), it appears Ayoub calls an object of PreShv(S)/U a sub-presheaf of sets of

Ueons))

For U € Ob(S), we have a canonical isomorphism
hom, (U, H) =~ H(U)
Let F be a presheaf of sets. The functor
hom, (F, —) : PreShv(S,C) — €
is right adjoint to the composite functor:
¢ =24 PreShv(S,C) 28 PreShv(S,C)

where cst is the functor which associates to A € Ob(C) the constant presheaf Acs: (i.e. s.t. Acst(U) =
for U € Ob(S)).

Let F be a presheaf of sets. The endofunctor hom(F, —) of PreShv(S,C) is right adjoint of the endo-
functor F @ —.

Let F and G be two presheaves of sets on S. There exists a natural isomorphism:
hom(F x G, H) ~ hom (G, hom(F, H))
on H € Ob (PreShv(S,()).
A Grothendieck topology top on a small category S associates to any U € Ob(S) a family
Jiop(U) (€ Ob (PreShv(S)/U))
of sub-presheaves of sets of U such that the following conditions are datisfied:

- U € Jop(U).
— For any arrow V' — U and any R € Jiop(U), the sub-presheaf R xy V C V is in pr(U)

-— Let R € Jiop(U) and P a sub-presheaf of U. If for any V — R € Ob(S/R) the sub—presheaf V xy P

is in Jiop(V'), then P € Jiop(U).

The sub-presheaves in J;o5(U) are called (sieve blanket) of U for the topology top. The pair (S, top) is
called a Grothendieck site .

Suppose S is equipped with a topology top. H € PreShv(S,C), a presheaf valued in C is a sheaf (resp.
seperated) with respect to the topology top when the arrow

H(U) = hom, (U, H) — hom(R, H)

is an isomorphism (resp. monomorphism) for any U € Ob(S) and any sieve blanket R of U.

Denote by Shv;,,(S,C) the full subcategory of PreShv(S,C) whose objects are sheaves.
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—— [Ayoub, p.512; Prop.4.4.8, p.512; Lem.4.4.9 Th.4.4.10, p.513; Cor.4.4.11, p.514] —
o For H € PreShv(S,C), following [SGA], we set:

LH(U) = COlimRerP(U) hOmC(R, H)
(H):H - LH

e Suppose that the monomorphisms of C are stable by small filtered colimits. Let H be a preshaf valued
in C. Then, H is a sheaf if and only if I(H) is invertible: I(H) : H = LH.

e For H € PreShv(S,C), the arrows:
L(I(H)), (L(H)) : L(H) = L(L(H))
are equal. -
e Suppose that C is presentable in the sense of the definition 4.2.16.

(Th.4.4.10) The inclusion
Shv,(S,C) C PreShv(S,C)

admits a left adjoint:
Qtop : PreShv(S,C) — Shvy(S,C)

Furthermore, the functor a:op, commutes with finite limits.
(Cor.4.4.11) PreShv(S,C) and Shv¢(S,C) are also presentable.

Qutline of the proof of Th.4.4.10.
— For any ordinals v < ), define by transfinie induction:

L* : PreShv(S,C) 0, Loex: LY 412

A=0 L°=id and lx<y = id.
A is limit L* = Colim,ex L”. For p € A,
lu<x : LY = Colim, ey L” = L* the resulting evident map.
A=v+1 L*=LoL". For u € A, we take l,<x = I(L") o lu<,-
- Suppdse that C is a-presentable with o larger than the cardinal of S. By Lemma 4.4.9 and Proposition
4.4.8, we see we may take '

azy = L* : PreShv(S,C) — Shv,(S,C) (C PreShv(S,C))

57

]
Outline of the proof of Cor.4.4.11.
This immediately follows from Proposition 4.2.20 and Proposition 4.2.21:
) (|
L _/
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[Ayoub, Def.4.4.15, Prop.4.4.16, p.515; Prop.4.4.17, p.516; Def.4.4.18, p.517 | —
Let 90 be a model category.

o Let f; H — K be an aroow of PreShv(S, ).

— Wesay f is a weak equivalence (resp. injective cofibration , projective fibration ) when
for any U € Ob(S), the arrow f(U); H({U) — K(U) is a weak equivalence (resp. cofibration,
fibration ) of 9.

— Wesay f is a projective cofibration (resp. injective fibration ) when f admits the left (resp.
right) lifting property with respect to the trivial projective fibrations (resp. trivial injective

cofibrations).
— We denote classes of arrows of PreShv(S,9M) as follows:

* W, the class of weak.equiw)alences.
* Cofpro; (resp. Cofiny), the class of projective (resp. injective) cofibrations.

* Fibpo; (resp. Fiby,;), the class of projective (resp. injective) fibrations.
e Suppose M is presentable by cofibrations.

— PreShv(S,M) with the structures (W, Cofpro;, Fiby,,;) becomes a model category, called
projective model structure , which is presentable by cofibrations.

— PreShv(S,M) with the structures (W, Cof;yj, Fibsn;) becomes a model category, called

injective model structure , which is presentable by cofibrations.
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— [Ayoub, Def.4.4.22, Def.4.4.23, p.517; Ex.4.4.24, Def4.4.26, Rem.4.4.27, p.518 | —

o Let M be a stable model category. An object A € 9 is called homotopically compact if for any n € Z,
the functor :

homgzo(amy (4, —[n]) : M — Sets
commute with filered small colimits.
o A model category M is called a category of coefficients . when the following conditions are satisfied:
— 9 is left proper, presentable by cofibrations, and stable.
— Weak equivalences of 91 are stable by finite ;:oproducts,

—~ There exists a set £ C 90 of homotopically compact objects which generates the triangulated category
Ho(91) (see Theorem 4.1.49) equipped with infinite coproduct.

o The two model categories .
Spectgi (A Set), - Spectz (AP Set)

provided with their stable projective structures aer categories of coefficients. The third condition follows
from the fact that a filtered colimit of fibrant objects is once again a fibrant object.

Similary, if A is a ring, the category of complexes of left A-modules COmpl(Mod,(A)) is athe category
of coefficients.

o Let H and K be two objects of PreShv(sS, 9M). We denote by IL,(H, K) the presheaf of sets defined by
I,(H,K) : 8% — Sets

L
U-— hompe(preshv(s,m)) (U ®H,K )

L
Here, the derived functor U @ — is taken w.r.t.the injective structure on PreShv(S,9R) considering U
as a representable set-valued presheaf.

e The associated sheaf of II,(H, K) for the topology top is denoted by Iy’ (H, K).
o When PreShv(S,0) 3 H = A, the constant functor at A € Ob(9N), the presheaf of sets I, (H, K) is

given by:

I, (Aest, K) : 87 — Sets
: L
U — hompePreshv(s,m)) (U ® Acst, K )
= homﬂo(m) (A: K(U))
We shall simply denote
. HO(A,K) = L[a(AcstyK)
whose associated sheaf by II{"(4, K).

59

66



— [Ayoub, Def.4.4.28, Prop.4.4.32, p.518, Def.4.4.34, Lem.4.4.35, p.520 | EEEE—

. Sﬁpp’ose M is a category of coefficients. An arrow f : H — K of PreShv(S,M) is called a top-local
equivalence if for any n€ Z and A € &, the sheaf morphism

057 (A, Hn]) ~ I (A, K[n])

is invertible.

¢ We denote by Liop (resp. Liopp) the class of top-local (resp. those with whose source and target
B-accessible) equivalences.

o If M is a category of coefficients, there exists a cardinal 8 such that
wCenp = w‘ctop,ﬂ -

Furthermore,
Liop = Weiop

e Suppose 9 is a category.of coefficients. The top-local projective (resp. injective) structure
(Wiop, Cofproj, Fibproj—top) (resp. (Wiop, Cofproj, Fibproj—top)) on PreShv(S, M) is the Bousfield
localisation of the projective (respl injective) structure of Definition 4.4.18, with respect to L:op. The
homotopy category of these model structures are denoted by Hoyop(PreShv(S, 90t)).

¢ By the second part of Proposition 4.4.32, W, is exactly the class of top-local equivalences.

(The following Lemma 4.4.35 indicates that for

MM = Spect g (A7 Set), Spect?: (A°PSet)
as in Example 4.4.24, we may regard
PreShv(S,0MM) ~ Spectg (PreShv(S, Set)), Spect§1 (PreShv(S, Set))

with
Ho (PreShv (S, M))
a triangulated category by Theorem 4.1.49):
Ayoub, Lem.4.4.35, p.520

Under the hypothesis of Definition 4.4.34 above, the top-local model structure on
PreShv(S, M)

is left proper and stable.
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s [Ayoub, Def. 4.4.41, Lem.4.4.42, p.523; Cor.4.4.43, p.524 ]
e Let f be an arrow, of Shv, (S, M).
— fiscalled a weak Qﬁivalence once regarded top-local weak equivalence in PreShv(S, ).
Denote the class of weak equivalences in Shv;op(S,9) by W .

— [fiscalled a projective (resp. injective) fibration once regarded top-local projective (resp. injective)
fibration in PreShv(S,M).
Denote the class of projective (resp. injective) fibrations in Shvo (S, M) by Fibyro; (resp. Fibinj).

— fiscalled a projective (resp. injective) cofiration when it admits a left lifting property with respect
to trivial projective (resp. injective) fibrations.
Denote the class of projective (resp. injective) cofibrations in Shvp(S, M) by Cofpro; (resp. Cofinj).

o Both (W, Cofproj, Fibpro;) and (W, Cofinj, Fibin;) define model category structures which are pre-
sentable by cofibrations on Shv:o,(S,9M).

o The latter is Quillen equivalent to PreShv(S,9M) equipped with the fop-local structures. This follows .
from the following general result:

s - [Ayoub, Lemma 4.4.42, p.523]

~
Let (F,G) : C — D be an adjoint pair with C = (C, W, Cof, Fib) a model category which is
a-presentably by cofibrations and D a bicomplete category. Suppose the following conditions are
satisfied:
— G is fully faithful and a-accessible.
— F commutes with finie limits.
— The functor G o F preserve -accessible objects for 3 2 a.
— For any A € Ob(C), the unit

A — Go F(A) is a weak equivalence.

Then (D,G~' W, F Cof,G™! Fib) is a model category, which is a-presentable by ‘cofibrations.
Furhtermore, (F, G) becomes a Quillen equivalence.

&‘ “)

( [Ayoub, 4.4.3. Lem.4.4.44 p.524)

o Given C, a bicomplete category, f : S — &', a functor between small categories,
= f.:PreShv(S’,C) —» PreShv(S,C)
H e~ Hof
o f. admits a left adjoint

f* : PreShv(S,C) — PreShv(S’,C)

(U= f(U))eOb(U\S)

K ( f*K : Ob(S') 3 U’ + Colim K({U) e Ob(C))
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-

[Ayoub, Def. 4.4.47, Def.4.4.50, p.525]
Suppose we are given two Grothendieck sites (S,top) and (S',top’).

o Afunctor f: S —» 8'is called continuous , when for all sheaf of sets F’ on (S, top’), the presheaf
F'o f: 8% — Set is a sheaf on (S, top).

e A pre-morphism of sites f : (S’,top’) — (S,top) is a continuous functor f: S =S’

e Given a pre-morphism of sites f : (&',top’) — (S, top),
f. : PreShv(S') — PreShv(S)

restricts to
f« : Shvyy (S — Shvy,,(S),

called the direct image functor of sheaves, which admits a left adjoint
f* = Otop’ © f;resheaves oincl :

Shvi,(S) nel, PreShv;,,(S) M’

PreShvioy (8') =2 Shv,oy (S')

e A pre-morphism of sites f : (', top’) = (S, top) is called a morphism. of sites when the functor -

f* : Shvyep(S) = Shvyey (S8') commutes with finite limits. -

o A pre-morphism of sites f : (S',top’) — (S,top) is called a pseudo-morphism of sites when the
functor f* : Shvie,(S) = Shvyey (S7) commutes with fiber products and equalizers.

~

J

-

[Ayoub, Th.4.4.51 p.526]

Let 9t be a coefficient category . Let f : (S',top’) — (S,top) be a pseudo-morphism of sites . Then
the adjunction

(f*, f+) : PreShv(S, 1) — PreShv(S’, M)
be a Quillen adjunction w.r.t. projective local structure of the definition 4.4.34. Furthermore, the
functor f* sends local-top equivalences to local-top’ equivalences .

~N

J/
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e [Ayoub, Def.4.4.60, p.530; Th.4.4.61 p.531] N
e Let (S,top),(S’,top’) be two Grothendieck sites provided with P-structures £,£’. Then a pre-
morphism of sites f : (S’,top’) — (S, top) is called compatible with P-structures , when for any
U € Ob(S) :
. the functor fy : S/U — 8’/ f(U) sends £y in E}(U) and induces a functor fE &> 5}(11)7
— the functor f§ defines a peudomorphism of sites f : (f,'}(U), top}(u)) — (cfu, top) .
- ® Given a premorphism of sites f : (8’,top’) — (S, top), which is compatible with two P-structures
on S and &’ as in the definition 4.4.60. Then
(f*, f.) : PreShv(S, ) — PreShv(S’, M)
is a Quillen adjunction w.r.t. the projective local structures.
- _ J
[Ayoub, Prop.4.4.62 p.531] ~
Let 9 be a (resp. symmetric) monoidal model category. Suppose that 90 is presentable. Then the
category PreShv(S, M) is naturally a (resp. symmetric) monoidal model category w.r.t. prejective
and injective structures of the definition 4.4:18 .
J
4.4. .531
- [Ayoub, Prop.4.4.63 p.531] ~
Suppose that the coefficient category M is also a (resp. symmetric) monoidal model category. If the
site (S,top) admits enough points. Then PreShv(S,90) is a (resp. symmetric) monoidal model
category w.r.t. prejective and injective top-local structures .
J
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3.6 Model categories on PreShv ((Sm /(F,Z),9M) and (f,a); 1 (f,@)* 4 (f, ).

( [Ayoub, 4.5.1, Def.4.5.1, Lem.4.5.2, Prop.4.5.3, p.532]

® Given a diagram (F,Z) of S-schemes, We denote Sm /(F,Z) the category:

— an object is of the form
((U — F(i)) € Sm /F(3),i € Ob(Z)),

which shall be.simply denoted by (U, 7).
— an arrow (U’;4') = (U, 4) is a couple (' — U, i’ — i) such that the following square commutes:

U —U
F'(i) —— F(3)
) AAl-morphism (f,a):(G,J) = (F,Z) of DiaSch /S yields a canonical factorisation:

6.9 L (Foa,0) 2 (F,1)

f induces a functor

f=-xrG:Sm/(Foa,J) = Sm/(G,J)
(V= F(a(i)),3) = ((V XF @) 9G):4)) »

which in turn induces an adjunction (c.f. Lem.4.4.44 )
(f*, f«) : PreShv (Sm /(F o a, J), M) — PreShv (Sm /(G, J), M)
e « induces a functor

@:Sm/(Foa,J) — Sm/(F,I)
(U = F@(i)),5) = (U = F(a(5))) , a(5))

which in turn induces the functor (c.f. Lem.4.4.44 )
a" :=a. : PreShv (Sm /(F,Z),M) — PreShv (Sm /(F o o, J), M)

¢ Define the functor
(f,@)* := f*oa" : PreShv (Sm /(F,I),9M) — PreShv (Sm /(G, J), )

. e Explicitly, for H € PreShv (Sm /(F,Z),M), (f,a)*H is given by the association:
(f,a)"H : Ob(Sm /G(j)) — ObM
(V13) = Colimy Lyx . 6())con(\(sm /@iy H(Us ()
e The association (f,a) — (f,a)” extends naturally to a contravariant 2-functor:

PreShv (Sm /(—,—),M) : DiaSch /S — €at )
) (F,I) —» PreShv (Sm /(F—,I-),9)

(6.9 D) » .0y

N
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[Ayoub, Prop. 4.5.4, p.533]
Let (f,a): (G,J) — (F,Z) be a 1-morphism of diagrams of S-schemes.
o The functor (f, a)* admits a right adjoint (f, ).

e If (f,) is smooth argument by argument, the functor (f,a)* admits a left adjoint (f, a)y.

’

J

[Ayoub, Def. 4.5.8, Prop.4.5.9, p.534]

e A morpl‘nisfn f+ H — K of presheaves on Sm /(F,Z) valued in 91 i$ a semi-projective cofibration
if for any ¢ € Ob(Z), the functor

(idr(),i)" : PreShv(Sm /(F,Z), )
— PreShv(Sm /F(i), M),

induced by
(idrqy, i) : F(3) = (F(@), %) = (F,I),

sends the morphism f to a projective cofibration in PreShv(Sm /F (i), ).
o The class of semi-projective cofibrations is denoted by Cofs_p .

o Define the class Fib,_,, of semi-projective fibrations by the right lifting property with respect
to Cof,_p,r "W .

o The triplet (W, Cof,_,,Fib,_,,) defines the semi-projective model structure which is pre-
sentable by cofibrations on the category PreShv (Sm /(F,Z),0n). '

~N

J
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o Set
7 € {Nis, ét}

and equip Sm /(F,Z) with the topology T generated by the families of the form:
((tayidi) = (U, 1) = (U, 9)),
where (u,), form a covering family of U for the topology 7.

e By Proposition 4.4.32, we can Bousfield localize the model structure
(W, Cof,_,, Fib,_,,) of Prop.4.5.9 by 7-local equivalences to obtain the 7-local
semi-projective model structure on PreShv (Sm /{F,J), M) which we denote by
(W, Cof,_,,, Fib,_p-_). '

e Let (f,a): (G,J) = (F,Z) be a 1-morphism of diagrams of S-schemes.

-~ With respect to the 7-local semi-projective structures (W,., Cof,_p,, Fib,_p,_,).
we have the following two Quillen adjunctions:
((f, a)*, (f,a).) : PreShv ((Sm /(F,I),9m) — PreShv((Sm/(g J),Mm).

(fy, f*) : PreShv ((Sm /(G, J), M) — PreShv ((Sm /(F o, J), M)
where the latter is available when f is cartesian and smooth argument by argu-
ment:

— With respect to the 7-local projective structures (W, Cof o, Fibyroj—r). we
have the following three Qulllen adjunctions :
(f*, f«) : PreShv ((Sm /(F o a, J), M) = PreShv ((Sm /(G, J), )
(g, @) : PreShv ((Sm /(F o, J), M) — PreShv((Sm /(F,Z), M)
((f, 0y, (f,0)%) - PreShw ((Sm /(G, J), M) — PreShv ((Sm /(F,Z), M)

where the last is available when (f, ) is smooth argument by argument.
— With respect to the 7-local injective structures (W, Cof 5, Fibj,j;_,). we have
the following Quillen adjunction:

(o, ) : PreShv ((Sm /(F,Z), ) = PreShv ((Sm /(F o o, J ), M) |

[Ayoub, p.535; Th. 4.5.10, p.536] —~
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S [Ayoub, p.538, Prop. 4.5.11, p.536; p.537, Def4.5.12, Lem.4.5.13 p-537] —

e Let (.F T) be a diagram of S-schemes. Consider the class A of arrows of PreShv (Sm /(F, I) m)
- of the form
o(U,i,B) : (U,1) @ Best ——> So®idz 2=, (Af,1) ® Best

with ¢ € OB(I), U, a smooth F(i)-scheme, sg the zero section of the affine line and B a cofibrant
object of M.

Denote by A, the class of o(U, 4, B) with B an a-accessible object.

e Suppose 3 is sufficiently large. Let K € Ob (PreShv (Sm /(F,Z),9%) be fibrant for the structure
(W,,Cof,_,,,Fib,_,,). Then, K is Ag-local if and only if for any ¢ € Ob(Z) and a smooth F| (z)—
scheme U, the arrow K (A}, 1) — K(U, i) is a weak equivalence.

e Consequently, (W) a5 = = (W) 4, which shows that the Bousfield localisation with respect to A
exists.

e Let (F,Z) be a diagram of S-schemes. The A!-local semi-projective (resp. projective, injective)

model structure :

(W, Cofg—pr, Fib,_pr_a1)
(resp. (WAJ y COfproj, Fibproj—A‘) 5 (WA! N COfinj,_Fib,:nj_Al ))

is the Bousfield localisation with respect to A of the 7-local semi-projective (resp. projective,
injective) model structure. The arrows in W: are called the Al-weak equivalences .

e Let (F,Z) be a diagram of S-schemes. We define A},I € PreShv (Sm /(F,Z)) by:

Ak 1 :Sm/(F,I) — Sets
(U, %) = homsgen /7(;) (U ) A.lF(i))
— Let K € Ob (PreShv (Sm /(F,Z),M)) be a fibrant object w.r.t. the 7-local projective struc-

ture (W, Cof 5y, Fibproj—r) . Then, K is Al-local if and only if the arrow hom (A} 7, K) —
K is a weak equivalence of presheaves.

— Let H € Ob(PreShv (Sm /(F,Z),9M)) be an injective cofibrant presheaf. Then, the arrow

H — A% ; ® H induced by the null section is a weak A'-equivalence.

\ - J
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[Ayoub, Th. 4.5.14, p.537; Prop.4.5.16, p.538]
Let (f,a): (G,J) — (F,I) be a 1-morphism of diagrams of S-schemes.

¢ With respect to the Al-local semi-projective structures (W, Cof;_,,, Fib,_p,_a1). we have

the following two Quillen adjunctions:

((f, @)%, (f, 2)x) : PreShv ((Sm /(F,Z),9M) = PreShv ((Sm /(G, J),M).
(s, f*) : PreShv ((Sm /(G, J), M) — PreShv ((Sm /(F o a, J), M)

where the latter is available when f is cartesian and smooth argument by argument.

e With respect to the Al-local projective structures (W1, Cof pro5, Fibproj—a1). we have the fol-
lowing three Quillen adjunctions :

(f*,£.) : PreShv ((Sm /(F o @, 7), M) — PreShv ((Sm /(G, J), M)
(ay, ™) : PreShv ((Sm /(F 0 o, J ), 9M) — PreShv ((Sm /(F,T), M)
((Fra)p (f, @)*) : PreShv ((Sm (G, 7),2) - PreShv ((sm J(F,T),om)

where the last is available when (f, @) is smooth argument by argument.

o With respect to tﬁe Al-local injective structures (W a1, Cof i, Fib;,,j;_a1). we have the following
Quillen adjunction:

(a*, ) : PreShv ((Sm /(F, T),M) — PreShv ((Sm /(F o a, J), M)
e For K, L € Ob (PreShv(Sm /(F,I),9M)), the natural arrow
| (f,0) (K ® L) - (f,0)"(K) ® (£,)*(L)

is invertible. Thus, (f,a)* is a monoidal functor.

~
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3

7 Mgp(F,I) = Spect%__l (PreShv'(Sm/(.F,l'),im_)), (f,a) 4 (f,a)* 4 (f, @)«

[Ayoub, Def. 4.5.18, p.539]

N

N
® Fix a projective cofibrant object T° of PreShv(Sm /S, 9t} such that for any smooth S—scheme U,
the funector )
Hom(T(U),-) : M —> M
is accessible.
o Given a diagram of S-schemes (F,Z), we set
Trz =75 7T € Ob(PreShv (Sm /(F,I),M))
where
TFI: (F,Z) =S
is the projection structure.
e The functor
Hom (Trz,-)
is accessible.
o We denote the category Mr(F,Z) as follows:
Mz (F,Z):=SpectF, , (PreShv (Sm/(F,T),Mm)).
J
[Ayoub, Prop. 4.5.19, p.539] ~
The 2-functor
PreShv (Sm /(—, —),91) : DiaSch /S — Mono
which to a 1-morphism (f, @) asssociate the monoidal functor (f, a)* naturally induces a contravari-
ant 2-functor: _
Mz (—,—) : DiaSch /S — Dono
_/
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) on PreShv(Sm/(F,Z),9) induces Al-stable semi-projective (resp. projective,
injective)  (Wa1_ye, Cofs_pr, Fiby_pr_a1_s1)  (resp. (Wat_st, Cof progs Fibproi_ai_st),
(WAl—sty COfinjv Fibinj—Al-st) ) on

My (F,T) 2" Spect?,_ _ (PreShv (Sm/(F,T),9)).

[Ayoub, Def.4.5.21, p.540; p.543] N

For a diagram of S-schems (F,Z), the semi-projective (resp. projective, injeétive) Al-local struc-
ture 7 (WAl N CDfs_p,-, Fibs_,,,-_‘,-) (resp. (WAI 5 Cof,m,j, Fibp,-oj_-r), (WAI N COfinj, Fibinj_,—)

Arrows in W1_,, are called stable Al-equivalences and

SHE, (F,Z) := Ho (Mr(F,I)).

For X € Sch /S, set
SHZ,(X) := SHE (X, e)

.

Proof. These claims immediately follow from Theorem 4.5.14 and Lemma 4.3.34. O

[Ayoub, Th. 4.5.23, p.540] . ~
Let (f,@):(G,J) — (F,Z) be a 1-morphism of diagrams of S-schemes.

e With respect to the Al-stable semi-projective structures (Wj1_;, Cof s—pry Fibg_pr_pi_st). We |
have the following two Quillen adjunctions:

((f,0)", (f0)2) : Ma(F, 1) > Mz (6,.7),
(fgs f*) : Mr(6,T) > Mr(Foa,T)
where the latter is available when f is cartesian and smooth argument by argument.

o With respect to the Al- stable projective structures (Wi _ s, Cofproj, Fibpyoj—a1—st). We have
the following three Quillen adjunctions :
(f* f) : Mr(Foa,J) = Mr(G, ),
(e, @*) : M(F 0 a, J) = Mr(F,T),
((f? a)”v (f? a)*) : MT(Q»J) —* MT(Fi I)

where the last is available when (f, @) is smooth argument by argument.

o With respect to the A’-local injective structures (W1, Cof i, Fib;y,;;_a1 ). we have the following
Quillen adjunction:
(0*,a,) : Mp(F,Z) = Mp(Foa, J)

Corollary

By taking the homotopy categories, we obtain the following adjunctions:
L(fya)g L(f,a)”
SHZ(G, J) — SHZ (F,T) (_* SHZ,(G, J)
R(f,0)" : R(fia)e -~
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3.8 Left Quillen equivalences Mr(F,Z) :=

: Spect%rz (PreShv(Sm /(F,Z),MM)) RN Spectio ( (Shv, (Sm /(F,T),M))

Tf,z)

[Ayoub, p.543, p.551]

¢ (In the framwork of Grothendieck topology recalled in p.512, Definition 4.4.7, p.512) We introduce the
topology tp on Sm /X for which

{ido,x  (U/X) > (U/X)} (U #0)

J (U10) = {{idm/x L O/X) > /%), 0 ©/X)) (U =0)

where # denotes the pressheaf of emptysets and (§/X) denotes the empty X-scheme.

e K € PreShv(Sm /X,C) is in Shv,,(Sm /X,C)
<= K(8/X) is a final object of C.

o For a presheaf F' the associated sheaf functor at, (which is left adjoint to the inclusion

Shv:,(Sm /X,C) C PreShv(Sm /X,C) )

is given as follows: .
*C (Y o~ (Z)/X)
F)y(U) =

(5 ) {F(U) (v % 0/%)

where *¢ denotes the final object of C.
e When C is pointed, the inclusion
Shvy, (Sm /X,C) C PreShv(Sm /X,C) )
admits a right adjoint
) b : PreShv(Sm /X,C) — Shv,,(Sm /X, C)

which associates to a presheaf F the tp-sheaf b(F) given by

(bF) (U) = F(U) xp@/x) *¢ (U € Ob(Sm /X))

e Recall the important:

[Ayoub, Lemma 4.4.42, p.523] 3

(Let (F,G) : C — D be an adjoint pair with C = (C, W, Cof,Fib) a model category which is
a-presentably by cofibrations and D a bicomplete category. Suppose the following conditions are
satisfied: ' :

— G is fully faithful and a-accessible.

— F commutes with-finie limits. .

— The functor G o F' preserve S-accessible objects for 8 2 a.

— For any A € Ob(C), the unit
A — G o F(A) is a weak equivalence.

Then (D,G~!W, F Cof,G™* Fib) is a model category, which is a-presentable by cofibrations. .

Furhtermore, (F, G) becomes a Quillen equivalence.

J

Let us apply this to: .
(at,incl) : PreShv(Sm /X;9) — Shvy, (Sm /X, 90)

with the A’-local structures on PreShv(Sm /X,9) in Def.4.5.12, p.537.

e The above left Quillen equivalence induces another left Quillen equialence:

aty : Specty, (PreShv(Sm /X, M) — Spectia (%) (Shvy (Sm /X, 90))

N
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4 SHpy : DiaSch — 9tonoTR is a stable homotopy algebraic
derivataeur

4.1 2-functors, exchange structures, Voevodsky’s cross functors

e [Ayoub, Def.1.1.1, Rem.1.1.2, Rem.1.1.3, p.6] ~N

Let D be a 2-category. e.g. D = Cat, the 2-category of small categories.
e Let f: X — Y be a 1-morphism of D. A right adjoint of f is the data giveﬂ by:
- A l-morphism g: Y — X, | |
— Two 2-morphisms ) )
- 15 go0f fogi)l

such that the composition of each of the followmg two planer diagrams is the

/P‘/ V%

— The two 2-morphisms 7 and § are respectiely called the unit and the counit of
the adjunction. Sometimes, we do not mention 2-morphisms 7 and §: we simply

1dent1ty

X

say
“g is a right adjoint of f ”, or
“f is a left adjoint of g .
e The condition imposed on 7 and 4 in the definition above is nothing but the (usual)
- commutatiity of the triangles :

(o}

ffogof goofog

\Jl{n \ y

e The duality of the 2-categories exchange the notion of the right adjunctoin and the
left adjunction. More precisely, the assertions below are equivalent:
— fis a left adjoint of g in D.
— f is aright adjoint of g in D!~.
— [ is a right adjoint of g in D>,
— f is a left adjoint of g in D2,
‘— gis aright a.djoint of fin D.
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[Ayoub, Prop.1.1.5, p.7; Lem.1.1.6, p.8]

e

e Let © be a 2-category aﬂd X and Y two objects of . Let f and f' be two 1-morphism§ and a a
2-morphism of D : : ‘
' i
T
X Uu Y
7
We suppose given right adjoints (g,7,8) and (g¢',%',6") of f and f’ respectively. Then there exists a
unique 2-isomorphism:
g
G

vy ",

X

making the following diagram of 2-morphisms commutative:

Furthermore, the 2-morphism 3 is given by the composite:
dBgofogd Bgofog Layg
and make the following diagram of 2-morphisms alsé commutative:

fog
P b

fog 1
‘ f’~°g’ ‘

e The above morphism 3 shall be denoted by “a.

e Let f,f' and f” be in Morp(X,Y), the category of 1-morphisms from X to ¥ and 9,9 and g” be
respective right adjoints. Also, let o : f = f and « : f' — f” be 2-morphisms. Then we hae the
formula: .

8

o(aloa) =(aa)°(aal)

—

N

J

The following Proposition 1.1.9 generalizes the preceeding Proposition 1.1.5:
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[Ayoub, Prop.1.1.9, p.9; Def:1.1.10, Prop.1.1.11, p.10; ProplllZ pll]—\

) e Suppose a 2-morphism in a 2-category D is given:
oe—2 44

and two right adjoints (fi,m1,61) and (f3,72,62) of fi and f» respectively. Then there exist a unique

2- hism:
morphism: o .4
4 ¥ Tf{
. o ——e
making commutative one ofthe following two diagrams:
fifig2 91fsf2

> \
g2 figif f1922
X / \ /

92f3f2 fifig
Furthermore, this 2-morphism S is given by the composition of the planar diagram:

. f3 92
¢ —r 0 ——— @
X,
\\\52 f2 ﬂa f1 %
1
—)
. - ‘—T)l

and made the above two diagrams commutative.
Lack of a better terminology, we say S is obtained from a by adjunctions (f1, f1) and (fo, f3) -

.
o (' Compatibility with the vertical compositions ) Suppose a planar diagram in a 2-caetegory D is given:
. _)93 .
h. h
e —— 0
92
f; 1
2‘[ ”u l 1
L] _)91 L]
and right adjoints (f{)"’h 51)1 (féy 72, 62)? (h,b’?/h 6;) and (h’23 7?&! 63) of fls f2i h1 and ha, respectively. We
denote by 8 and B’ the 2-morphisms obtained from o and o’ using preceeding adjunctions. We provide
fiohi and fj o hy with the structures of right adjoints of f1 o k1 and fs o ha.
Then the 2-morphism 3’ o B is the 2-morphism obtained from adjunction of a0 &'
o ( Compatibility with the horizontal compositions ) Suppose a planar diagram in a 2-caetegory D is given:
L] ~—)h . ———) L]
1 4 1/24 J,jl
2
° h—) ° —) .
and right adjoints (f1,71,01), (fg,ng,éz) and. (f4,73,83) of fi, f2 and fa, respectively. We denote by 81
and B, the 2-morphisms obtained from @) and a; by adjunction.
Then the 2-morphism 1 0 82 is the 2-morphism obtained from az o by adJunctlons (f1, f1) and (f2, f3).
N
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Ve

[DV, Def.2.2, p.5; Rem.2.4, p.6]

o A 2functor (also called: pseudo-functor ) from a category C to a 2-category D
is: '
(a) amap F : Ob(C) — Ob(D); _
(b) for X,Y in C, a map from Hom(X,Y) to the set of 1-morphisms from F(X) to
F(Y);

(c) for X Lyszim C, an invertible 2-morphism
c(9,f) : Flgf) = F(9)F(f)

it is called he composition isomorphism .

The data should satisfy:

(1) (Aydub calls this cocycle axiom ) for a triple composite hgf in C, the diagram
of isomorphisms deduced from the isomorphisms (c)

F(hgf) —— F(hg)F(f)

F(WF(gf) — F(R)F(g)F(f)
is commutative.

(ii) for X in C, F(Idx) is an equivalence, that is, there exists u : F(X) — F(X)
“such that u o F(Idx) and F(Idx) o u are isomorphic to the identity of F(X),

e A category is a special case of a 2-category in which the only 2-morphisms are
identitities. To generalize the above concept of a 2-functor to the general notion
of 2-functor between 2-categories, we must modify as follows:

(b) F is a functor from Hom(X,Y) to Hom(F(X), F(Y)),

(c) c(g, f) is assumed to be functorial in f and g.

~
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[Ayoub, Prop.1.1.17, p.13; Def.1.1.18, Lém.1.1.19, p.15 |

-

\.

Let C be a category and D a 2-category. Let F: C - D Vbe a covariant 2-functor. Suppose that the for any

arrow f: X — Y of C the 1-morphism
) ' F(f) : F(X) = F(Y)
admit a right adjoint.

e Then there exist:

1. a contravariant 2-functor G:C — 9.

2. a couple of 2-morphisms (7y,ds) for each arrow f of C, s.t.
— for any object X of C, F(X) = G(X).
— for any arrow f : X — Y, the triple (G(f),ny,85) defines a rlght adjoint of F(f).
— for any sequence of composable arrows of C:

xLhv sz

the composition of following two planar diagrams below give the same 2-morphism:

F(X) ' F(X)
IG(“ &(f)
ns  F(Y) G(gof) =2 F(Y)

oo AN 4

FX) 5 FY) = F(2) F(X) Flgo) F(Z)

F(f)
N

F(Y)

where cr and ¢ are connection 2-morphisms for F and G respectiely. This condition is also expressed
by the commutativity of the following solid diagram:

F(2)

F(Y)
c(/) \ /m

Furthermore, these are unique up to an isomorphism. We also have analogous conditions for the counit
2-morphism (J,).

e Under the above situation, we say that the 2-functor provided with the 2-morphisms 7. and de is a_global
right adjoint of the 2-functor F.

e Let f: X = Y be a 1-morphism in a 2-category ©. We suppose given (g, 7, d), a right adjoint of f. Let
Z be an object of D.

1. The two functors between the categories of 1-morphisms as in Lemma, 1.1.6:
fo: Morp(Z,X) = Mors(Z,Y) go: Morp(Z,Y) - Mors(Z, X)

form an adjoint functor pair: go is right ajoint to fo.

2. The two functors between the categories of 1-morphisms as in Lemma 1.1.6:
og : Morp(X,Z) = Moro(Y,Z) o f: Morp(Y,Z) = Morp(X, Z)

form an adjoint functor pair: go is right ajoint to fo.

N
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r— [Ayoub, p:20; Def.1.2.1, p.20 (very economicak, possibly confusing, notaions!) | —
e C; and C; are two categories such that Ob(C1) = Ob(Cs).
e Call mixed square a diagram:

such ‘that:
- X,X'Y,Y' are objects ofél, so also of Cp.
— g,¢ are arrows of C;.
— £, f are arrows of C,.
o & is a (fixed) class of mixed squares which are stable by horizontal and vertical compositions.
e D is a given 2-category.
o Gien two functors F; : C; :— D (i = 1, 2) such that F1(X) = F2(X) = F(X) for any X in Ob(C1) = Ob(Cz).
Then an exchange structure on the pair (F1,F2) thh respect to & is the data for any mixed square (C) in

E: v s x'
vl 1
Yy -5 x
of a 2-morphlsm e(C) of D (called exchange 2-morphism associated to the.mixed square (C) ):
FY') €55 F(X)
F2(f") IFz(f)
Fi(g)

7
F(Y) +— F(X)
The 2-morphism e(.) means the constant (i.e. independent of mixed square). The family of these 2-morphisms
must verify the following two compatible conditions: '

o (compatibility with the horizontal composition of mixed squares) For any horizonal composable mixed
squares C; and Cs: ) ._9_,._).

the following solid diagram is commutative:

Fi(h'og")

Fi(¢)

F2(f"") 1(h") F2(f)

F1 (hog) 2(!')

F1(9) : : F1(h)

o (compatibility with the vertical composition of mixed squares) For any,vertical composable mixed squares
C1 and Cs: e —re
s l K

libl
4L
¢ —>0

the following solid diagram is commutative:

. Fi(g")
Fa(f") , . F2(h)
TF (e'of")
. . F2(eof)
l Fi(g") e
Fz2(e') . - (2)(2)
1(g.

o We sometimes denote the exchange on (F1,F2) by the family of is exchage 2-morphisms,: (e(C)) e -
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[Ayoub, p.24; Prop.1.2.7, p.25] : ~

-

For a category C stable by fiber products, set C; and Cz be one of the following four cases:
1. Gi=C=C. ’ '
2. i =Cand C; =C.
3. Ci=C?and C; =C,
4. 1 =C=C?.
Suppose the following conditions are satisfied:
e Two s'ubcategories C* and C? of C are given, both of which contain all the isomorphisms of C and stable
by base change .
e We suppose these subcategories C; and C> generate the category C.
e Fori,j =1,2, enote by CJ the category C? viewed as the sub-category of C; (C! C C;).
. Spppose given a 2-category © and covariant 2-functor
. Fi:C;—>®
for eqch j € {1,2}. We note by 7 F; the restriction of the 2-functor F; to C7.

We furhter suppose:
e any arrow f of C factorise:

. f=pos
with p in Cz and s in C;. We suppose given a codirectional exchage of type  on each of the pairs:
- (*F1,Fa).
W
- (L), e
such that for any cube: \‘ \
¥ o L 3.
J!l
. —-) . f
\ \
L] —) L]
haing
— the two faces parallel to the plane of the sheet : the commutative square of C; w1th g and hin C} and
f and k in C3.
— the four faces parallel to the plane of the sheet : the mixed squares which are cartesian in C and with
ain Ca.
the cube in D: : FL (b))
. o —— e
Y{(a) ‘(‘a)
, Fi(h)
Fi(k') o —— e
J(ﬁ "
Fi(g")
. —_— e F1(f)

F2(a)

F2(a) F1(k)

/
/4

1

L]
formed by taking 2-morphisms: F1(9)

— on the faces parallel to the plane of the sheet : the exchange 2-isomorphisms relatie to the trivial
exchange on the pair (Fy, Fy). .

— on the faces paerpendicular to the plane of the sheet and honzonals the exchange 2-isomorphisms
relatie to the exchange on the pair (*Fi,F2). 78

— on the faces paerpendicular to the plane of the sheet and verticals : the exchange 2-isomorphisms
relatie to the exchange on the pair (*Fy,Fa).

is commutative. Then there exist a unique exchange on (F1, F2) extending the two given exchanges.

N\ ' : J
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- [Ayoub, Def.1.2.12, p.35)

a cross functor denoted by
(G, F1,F2,G%) : (C1,C2) = D
‘ 1s characterised by
1. two covariant 2-functors F; : C; — D,
2. a global left ;Ldjoint G! of F1,
3. a global right adjoint G2 of F2,
4. an exchange on (Fq, F3) of type ./,

5. an exchange on (G!, G?) of type ./,

such that for any mixed square of &:

o—2 e
f
o——e
the two 2-morphisms:
G‘(g ) Gl(g')
— e ———m—————— o
F2(f") a} N F2(f) Falf )J ‘[Fz(f)
— 0
Gl(g) Gl(g)

‘are the inverse isomorphisms of one another. In an equivalent way, remarking that %(al) = b? and
2(b3) = a2, the two 2-morphisms

Fi(g') Fi(g")
¢ ¢ — "
G’(f')] ]G’(f) G*(f >[ ]G’(n
e L I e ———.

Fi(g) ) Fi(g)

are the inverse isomorphisms of one other.
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- [Ayoub, Prop.1.2.14, p.36]

Let G! : C; — D be a contravariant 2-functor and F; : C; — D a covariant 2-functor.
o We suppose given an exchange on (G, F2) of type N\ which turns out to be an isoexchange.

e We also suppose that G! and F» admit each righf global adjoint which we denote F; and G2
respectively.

Then there exist:

between F; and GL.

o an’exchange on (G!, G?) obtained from the isoexchange inverse (of type \) on (G!,F;) and the
adjunction between G2 and F,.

The data of (G!, Fy, F2, G2) as well as the adjunctions and the above exchanges define a cross functor.
Furthermore, the isoexchange on (F;, G?) is obtained by adjunction from that of (G!,F5).

e an exchange on (Fy, F3) obtained from the isoexchange (of type <) on (G, F2) and the adjunction ‘
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Given Data A:

Let C be a category with fiber products. Let C; and C2 be two sub-categories (not necessarily full) of C

satisfying the following conditions:

1. The isomorphisms (of C) are in C; and Ca. Arrows of C; (resp. C2) are stable by pull-back along any
arrow of C.

2. Any arrow f of C factorizes: f = fao f1 with f; in C; for i = 1,2.

3. For any arrow B — A of C the diagonal B — B x4 B is in C;.

Given Data B:
Suppose given a 2-category D and two covariant 2-functors:
H.' : C,* —-D

such that for any X € Ob(C), H1(X) = H2(X) = H(X). We also suppose that a codirenctional isoexchange
of type  on th(-; pair (Hi,Hz) for the class of commuutative squares having the vertical arrows in C2 and
horisontal arrows in C; is given. More explicitly that for any commutative square (C):

1

i

—_—e
|

i
L)

—_—

with 4,7’ in Cy and f, f’ in Ca, we have a 2-isomorphism:

H1 ()
—_—

.
Hzm} ¢ juzm
L]

S 4
Hi(3)

a(C) : Ha(f) o H1 (i) =5 H1(2) o Ha(f') :

compatible with the connection 2-isomorphisms ¢; of 2-functors H; in the usual manner (see Definition 1.2.1

(or 1.4.2. p.56)). .
We furhter suppose that for ¢ = id and #' = id (resp.  f = id and f' = id) the 2-morphism a(C) is the

identity.
==
Conclusion:

Thn there exists a 2-functor:
H:C—D

such that H(X) = H1(X) = Hz(X) for any X € Ob(C), as well as isomorphisms of 2-functors:
u,-:Ho[Ci -—)C]—)H,
for i = 1,2 which becomes the identity on the objects and that the exchanges on (Hy,H2) becomes the

restriction of the trivial exchange on (H, H) by the isomorphisms u; and us. Furthermore the triplet (H, u1, u2)
is unique up to an unique isomorphism.

[Ayoub, Th.1.3.1, p.36] N

J/
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4.2 A summary of (pre-)derivataer theory

[Ayoub, Def.2.1.34, p.191]

(A tnam!u]a.ted pre-derivateur with domain Dia is a 2-functor (not necessarily strict) 1-contravariant and

2-contravariant: D: 5 TR
1f there is no possibility of confuswn, we denote for a functor u (resp. a natural transformation &) of Dia,

u” the functor D(u) (resp. o the natural transformation a*).
A pre-derivateur D is a derivateur if it satisfies the following list of axioms.

1. (@) = 0, the zero category.

2. Let I and J be two categories of Dia. Cornsider the evident coupling :
' DI x J) x I® = D(J)
(X,i) = (i xids)* X
where ¢ : e =& I. By adjunction, we deduces a functor
D(I x J) = HOM(I°?,D(J))
This is called the I-skeleton functor . The image of X € Ob(D(I x J)) by this functor is called the
I-skeleton of X. The I-skeleton functor satisfies the following.three properties:
e It is conservative for all the categories I and J of Dia. ‘
o It is full and essentially surfective for I = 1.
e It'is an equivalence when I is discrete.

3. For any functor'u : A — B of Dia, the functor »” : D(B) — D(A) admits a right adjoint u. and a left

adjoint uy. ‘
4. Let u: A — B be a functor of Dia a}}dbb an object of B. ina
A/b — A b\A A A
PAsb ﬂ o ) w Pova ﬁ/f u
B i %
induces by 2-functonahty the twojfaaces of TR: i
D(A/b) «L D(4) D(b\4) e D(A)
T ~
Phsb b/ u* Phva Yse u
D(e) +———D(B)  D(e) +——D(B)
b b*
The two faces obtained by a,djunctu])p i
D(A/B) L D(A)  DB\A) ——2 DA
¢ Exy
PA/B)w Ea? Q 2e (Po\ AR \l{ # uy
D(e) — D(B) D(e) — D(B)

are invertible.
5. Denote by O the category 1 x 1: (1,1) +—— (0,1)

(11 0) — (01 0)
Denote by 4- : [~ — O the full subcategory having objects Ob(0)\ {(0, 0)}. Dencte by i_ : -| — O the full
subcategory having objects Ob((J)\{(1,1)}. Let I be a category of Dia. An object X of D(O x I is called
cartesian (resp. cocartesian ) if the evident morphism X — (i_j)+(4_)" X (resp. (i-)s(3-)"X — X) is
an isomorphism In a triangulated derivateur I), an object of D(IJ x I) is cartesian iff. it is cocartesian.
6. Kepping the notations of the preceedmg axioms. Define a functor X : D(J) — ID(I) by the formula

=(0,0) (lr)u(lr—) (L, 1)

There exists an lsomorpﬁlsm of functors ¥ — [32] between ¥ and the autoequivalence of suspension
of the category D(I). Furthermore, let X be an object both cartesian and cocartesian of D(O x I). We
define a morphism (0,0)*X — £(1,1)*X by the following composite:

(0,0)"X € (0,0)" (i )4 (3-)" X — (0,0)" (i ) (3- )™ (1, 1) (1,1)* X = B(1,1)*X =~ (1,1)" X [+1]
Suppose that the object (1,0)* A is null, then the triangle: .

(1,1)*X = (0,1)*X = (0,0)"X — (1,1)* X[+1]

is a distinguished triangle.
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[Ayoub, Def.2.1.119, p.230; Def.2.1.148, p.239; Def.2.1.149, p.240] ————————~

Let (C,®) be a monoidal category. We say it is left closed if for any object A of C, the functor A ® —
admits a right adjoint. We say that C is right closed if for any object A of C, the functor — ® A admits
a right adjoint.

A monoidal category C is right closed if the ®-opposed category € is left closed and vice versa. So just
to study one type of the closed monoidal categories.

Thereafter, we consider mainly the right closed monnoidal categories. We denote by Hom(A, —) the right
adjoint of — ® A. There is thus isomorphisms:

home(U ® A, V) =5 home (U, Hom(A4, V))

as well as the arrows:

ev: Hom(A,v)® A=V and "6:U — Hom(A,U ® A)

natural in'U and V of C.

When we will need to cisider right and left closed monoidal categories, we denote, to distinguish,
Hom, (A, —) and Hom,(A, —) the respective right adjoints of A® ~ and — ® A.

A monoidal (resp. symmetric monoidal) triangulated category is is an additive monoidal category
(T,®,0) (resp. (T,®,0,7)), with a structure of triangulated category on 7 as well as the isomorphisms:

A[+l]®B (A® B)[+1] - - A® B[+1]

" which are natural on (4, B) € Ob(T)? and commute in the evident manner with the associativity (resp.

the associativity and the commutativity) isomorphisms. Also, two supplementary axioms are imposed:

— For any distinguished triangle A — B — C — A[+1] and any object D of 7" the two diagrams below:
A®D—->B®D > C®D — (A® D)[+1]
D®A—->D®B—-DQC — (D® A)[+1]

are distinguished. In other words, the functors — ® D and D ® — provided with the isomorphisms s
and sg respectively, are triangulated functors.

~ .For any A and B of T, the square below is commuative up to the multiplication by —1:

A[+1] ® B[+1] —— (A[+1] ® B) [+1]

(A® B[+1]) [+1] —— (A x B)[+2]

Let (7,®) and (7,®’) be two triangulated monoidal (resp. symmetric monoidal) categories. A
pseudo-monoidal (resp. symmetric pseudo-monoidal) triangulated functor from 7 to 7" is a pseudo-
monoidal (resp. symmetric pseudo-monoidal) functor between underlying additive monoidal categories,
which is triangulated and compatible with the isomorphisms sy and sa.

Suppose unit objects are given in 7 and 7’. A triangulated pseudo-monoidal and pseudo-unital functor
is simply a triangulated pseudo-monoidal functor provided with an arrow e which makes it also a pseudo-
monoidal and pseudo-unital.

A monoidal (resp. symmetric monoidal) triangulated derivateur is a triangulated derivateur D provided
with the following supplementary data:

— For each I € Ob(Dia) a monoidal (resp. symmetric monoidal) category structure (D(I), ®;, ).

— For each functor u : A — B of Dia a monoidal (resp. symmetric monoidal) functor structure on u*.
A triangulated unital monoidal (resp. symmetric monoidal) derivateur is a triangulated monoidal (resp.
symmetric-monoidal) derivateur provided with a unit object 1; € Ob(D}(I)) for each I € Ob(Dia) and
an isomorphism u*1r =~ 1; for each u : J — I € FI(Dia) making »* a unital monoidal (resp. symmetric
monoidal) functor.
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[Ayoub, Def.2.4.12, p.312]

( )
Let © be a strict 2-category. algebraic pre-derivateur valued in D is a (not necessarily
strict) 2-functor D from the 2-category DiaSch /S to D, which is 1-contravariant
and 2-contravariant. Explicitly, a pre-derivateur ID is a set of the following data:

o An object D(FZI) of D for any diagram of S-schemes (F,Z).
e A l-morphism (f,a)*:D(G,J) — D(F,Z) in D for any 1-morphism of diagrams
of S-schemes (f, ) : (F,I) = (G, T).
o To a 2-morphism of diagrams of S-schemes:
(f.a)
F1 - bt (6,9
(f"0')
" a 2-morphism in D:
(f’,al)i
DFI)  tt  DGJ)
(fi)*
o To a composable sequence of 1-morphisms of diagrams of S-schemes:
F.1) Y2 g,7) 9, (Heal, k)
a 2-isomorphism of connection
c((f,a),(9,8)) : (f, )" o (9,8)" = (9o f,Boa)"
in®. v
o These data should satisfy the properties of 1-opposite and 2-opposite of the defi-
nition 2.1.32. )
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[Ayoub, Def.2.4.13, p.313]

-

An algebraic pre-derivateur
: D : DiaSch /S — TR,

valued in the 2-category of triangluated categories, is called a stable homotopy algebraic derivateur when

the following axioms DerAlg0, DerAlgl, DerAlg2d, DerAlg2g, DerAlg3d, DerAlg3g, DerAlg4,

DerAlg5 are satisfied:

- DerAlg0 Let (F,Z) be a diagram of quasi-prpjective S-schemes. If Z is a discrete category, then the
1-morphisms ¢ : (F(i),e) = (F,Z) for i € Ob(Z) induce an equivalence of categories:

pF, ) Zee@ 1T prFe)

1€0b(Z)

DerAlgl Let (F,Z) be a diagram of quasi-projective S-schemes and o : J — Z an essentially surjective
functor. Then the triangulated functor

o :D(F,I) 3 D(Foa,J)

is conservative (i.e. detects the isomorphisms)_.

DerAlg2d For any l-morphism (f,a) : (F,Z) = (G, J) of DiaSch /S, the functor (f,a)* admits a right
adjoint (f, a)s.

DerAlg2g For any 1-morphism (f,a) : (F,Z) — (G,J) of DiaSch /S, which is smooth argument by
argument, the functor (f,a)* admits a left adjoint (f, @)g-

Let f : G — F be a morphism of Z-diagrams of quasi-projective S-schemes and a': J — Z a functor in
Dia. We have a square:

(Goa,J) —=—(G,T)
fl:l ) lf
(Foa,J) —=— (F,T)
which is commutative (even cartesian) in DiaSch /S.

DerAlg3d The exchange 2-morphism o fu —+ (f|7)« 0a*, associated to the above commutative square,
is a 2-isomorphism.

DerAlg3g Suppose f is cartesian and smooth argument by argument. Then the exchange 2-morphism
(fl7)soa* = o* fy is a 2-isomorphism.

DerAlg4 For any quasi-projective S-scheme X, the 2-functor:
D(X,~) : Dia = TR
I—ID(X,T)
is a triangulated derivateur in the sense of Definition 2.1.34.
DerAlg5 The 2-functor
D(—,e):Sch /S — IR
X (quasi-projective) — D(X, e)

is a stable homotopy 2-functor.

\_
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4.3 The axioms DerAlg 0 - DreAlg 4 and the Projection Formula in DerAlg
5 of DiaSch /S 3 (F,I) — SH%,(F,T) € TR

{Ayoub, Th. 4.5.24, p.540] ~N

N

The associations (F,Z) — SHZ(F,Z) and (f, @) = L(f,@)" naturally extends to a contravariant 2-functor:
SHZ; : DiaSch — MonoTHR

Proof. This is shown in the following three steps:

S]H[g,(}',l) is a symmetric monoidal triangulated category This follows from Propositions 4.2.76,
4.2.82, 4.4.63, 4.3.77, Theorems 4.3.76, 4.1.49, and Lemma 4.1.58.

The functor L(f,a)* is monoidal triangular This follows from Theorem 4.5.23, Proposition 4.5.16, and
Lemma 4.1.51.

Construction of the required 2-functor Then simply take the composite of 2-functors:

SHE,

Mz (-,-) Ho(—),L

DiaSch /S ————— Mod€at ——————— 5 Cat
(F,I) ——— Mr(F, I) ———— SHg(F, I)

where 9t00€at denotes the 2-category of model categories and left Quillen functors.

_ | _ o )
- [Ayoub, Cor. 4.5.26, p.541] N
Let a: J — Z be a functor between small categories. Let (F,Z) a diagram of S-schemes. The functor
‘ o :Mr(F,I) » Mr(Foa, J)
preserve the stable A'-equivalences. It therefore derives trivially. )
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[A}yrmb, DerAlg 0,1,2,3 for SHZ; Lem.4.5.25, Cor.4.5.26, Prop.4.5.27, Lem.4.5.28, p.541; Th. 4.5.30, p.542 ] ™

The axioms DerAlg 0, DerAlg 1, DerAlg 2, DerAlg 3, DerAlg 4 (in Definition 2.4.13) are satisfied
for SH (in Theorem 4.5.24: )

SHay : DiaSch — MMonoTR

(F,Z) v SHR(F, T)
Proof.
DerAlg 0 This is trivial:
—euT

e DerAlg 0 for D = SHyy ~

Let (F,Z) be a diagram of quasi-prpjective S-schemes. If Z is a discrete category, then the 1-
morphisms ¢ : (F(i),e) = (F,I) for i € Ob(Z) induce an equivalence of categories:

SHG(F,7) 2= @ Y, [T sEL(FG)
K i€Ob(T) J

DerAlg 1

DerAlg 1 for D = SHE, -
Let (F,T) be a diagram of quasi-projective S-schemes and a : J — I an essentially surjective
functor. Then the triangulated functor
Q" : SHp(F,Z) — SHip (F o o, J)
\_is conservative (i.e. detects the isomorphisms). )

For this, Ayoub proved the following Lemma 4.5.25:

Let (F,Z) be a diagram of S-schemes. The functors i* : My (F,Z) — Mz (F(3)) with i € Ob(Z)
preserve and detect the A'-weak equivalences.

From this, Ayoub immediately deduced the Corollary 4.5.26:

Let a: J - Zbea fundor between small categories. Let (F,Z) be a diagram of S-schemes.
The functor a* : Mz (F,Z) = Mr(F o a, J) preserves the A'-stable equivalences. It thus derives
trivially.

DerAlg 2d, DerAlg 2g Ayoub obtained this statement Proposition 4.5.27, as a direct consequence of
Theorem 4.5.23.

DerAlg 2d+2g for D = SHY, (Prop.4.5.27)
For a 1-morphism (f,a) : (F,Z) = (G,J) of DiaSch /S :

e The functor L(f,a)* : SH(F,Z) — SH(G, J) admits a right adjoint R(f, &)..

e When f(j) is smooth for any j € Ob(J), the same functor L(f,a)* : SH(F,Z) — SH(G,J)
admits a left adjoint L(f, a)y. .

DerAlg 3d, DerAlg 3g Ayoub proved this Lemma 4.5.28 by resorting to Theorem 4.5.23, which allowed
to obtain the.claim as a direct consequence of Lemma 4.5.7:

DerAlg 3d+3g for D = SHL, (Lem.4.5.28) ~
(Let f: G = F be a morphism of Z-diagrams of quasi-projective S-schemes and o : J — Z a functor
in Dia. We have a square: Goa,J) LY G,T)

s |

(Foa,J) —=— (F,TI)
which is commutative (even cartesian) in DiaSch /S: Then,

o The transformation a*Rf. — R(f|7).a™, is invertible.
o If furthermore that f is cartesian and levelwise smooth. Then L(f|7)joa* — o”Lfj is invertible.

(to be continuted...) O
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[Ayoub, Prop.4.5.4, p.533; Lem.4.5.5, Lem.4.5.6, Lem457,p534]—\

e Let (f,a):(G,J) — (F,I) be a 1-morphism of diagrams of S-schemes.

— The functor (f,a)* admits a right adjoint (£, @).

— I (f, @) is smooth argument by argument, the functor (f, a)* admits a left adjoint (f, a)y.

Proof. Use the decomposition (f,a) = ao f:

The case of f:(G,J) > (Foa,J) f* is the inverse image w.r.t. the functor

f=(-%xrG):Sm/(Foa,J) = Sm/(G,J)
It admits a nght adjoint, i.e. the direct image functor which to a presheaf H on Sm /(G, .7 ) associates
Ho
) Whefl the morphism f(j) are smooth, the functor f : Sm /(F o @, J) = Sm /(G, J) admits a right

adjoint ¢ which to (V — G(j), j) associates the pair (V = G(j) — .F(a(j) 7)). The left adjoint f; of
f* is then given by c}. Then furhtermore f* = (cs)..

The case of a: (Foo,J) = (F,I). The functor o* is constructed as the direct image of the functor
@. It thus admits a left adjoint ay = @* and the right adjoint a. = @' o

Let (f,a) : (G,J) = (F,Z) be a 1-morphism of diagrams of S-morphisms. For i € Ob(Z) we form the

square boundary in DiaSch /S: ()

(G/i, Ty —— (6,T)

(f/z)l yf/ l(!,a)
J.'
FO) i3t rr— 1)
Then the natural transformation

(i), 8)" (F,@)s = (£/)a (id, )"
is invertible.

When F and G are constant valued at the S-scheme F, we can form the square face: -
(Fi\T) —— (F.7)
,l 7 l
(Fi) —— (D)

Then the natural transformation (afi)yus - i*ay
is invertible.

Let f : G — F be a morphism of Z-diagrams of S-schemes. For a functor o : J — Z, we form the
commutatie square:

(Goa,J) =—(G,T)
ful f
(Foa,J) —— (F.1)
Then the natural transformation

o= (fig), 0"
is invertible. Suppose furthermore that f is ca.rtesna.n an?:f smooth level by level. Then

(fﬁ’)g a" s fﬂ
is invertible.
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(——[A-_yvu'b,—BerAlg 4 for SHE, p.541; p.542; Lem.4.5.29, Th. 4.5.30, p.542] ~

The axioms DerAlg 0, DerAlg 1, DerAlg 2, DerAlg 3, DerAlg 4 (in Definition 2.4.13) are satisfied
for SH (in Theorem 4.5.24:

SHZ; : DiaSch — DonoeTR
(F,Z) » SR (F,T)

Proof (continued).
DerAlg 4

DerAlg 4 for D = SHZ,
For any quasi-projective S-scheme X, the 2-functor:

SHZ (X, —) : Dia —» TR
I~ SH(X,Z)

is a triangulated derivateur in the sense of Definition 2.1.34.

In the Definition 2.1.34, only part 4, 5, 6 are verificd:

Part 4 For this, Ayoub proved the following Lemma 4.5.29:

Recall Lemma 4.5.5 and Lemma 4.5.6: )
e Let (f,a):(G.J) = (F,I) be a 1-morphism of diagrams of S-morphisms. For i € Ob(Z) we
form the square boundary in DiaSch /S:

(id,u;)

(G/i, T3y —= (6, T)
<f/z‘>l /. l(f.a)
F(@) (£

—_—
(d g (3),1)

Then the natural transformation
(idray, 1) (£, ) = (F/i)s (id,us)*

is invertible.
e When F and G are constant valued at the S-scheme F, we can form the square face:

(Fi\J) —— (F,7)
a/il rﬂ la
(Fi) —— (R 1)
Then the natural transformation
(atft)yu; — "oy
is invertible.
‘Then, Ayoub proved in Lemma 4.5.29 that these levelwise invertiblitities hold also at the model
category Mz(—, —) level:
(idri), §) " R(f, @)s = R(f/i)x (idyw)",  L(a/i)yui = i"Lay

are invertible.

Part 5, 6 These follow immediately from the construction of the triangulated sturucture of the ho-
motopy category (see Theorem 4.1.49) and from Theorem 4.1.56 (homotopy cartesian = homotopy
cocartesian).

[}
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— The projection formulae [Ayoub, Def. 4.5.17, p.538] ~

1. Let f : G — “F. be a Cartesian smooth morphism of Z-diagrams of S-schemes. For K €
Ob (PreShv (Sm /(F,Z),M)) and M € Ob (PreShv (Sm /(G,Z),9M)), the strucural morphism of

f*-projector is invettib?e: f (FK) @ M) 2 K ® fy(M)
2. Let a: J — I be a functor of Dia and X a S-scheme. For K € Ob (PreShv (Sm /(X, Z),9)) and
M € Ob (PreShv (Sm /(X, J),9M)), the following morphism is invertible:
ap (" (K)®@ M) = K@ ayM
3. Let (f,a) : (G,J) = (F,Z) be a 1-morphism of diagrams of S-schems. Denote by 77,z the structual
projection: mrz: (F,I) = 8.
For T € Ob (PreShv (Sm /S,9)), M € Ob (PreShv (Sm /(G, J),M)), the following is invertible:

(s ((f, )" (m72T) @ M) = (n7,2T) @ (f, )y M.
N\ v : J

An outline of the proof:

Case of (1) By Lemma 4.5.7, we may reduce to the case Z = *; we may assume f : Y — X, a smooth
morphism of S-schemes. Since involved functors commute with colimits, we may suppose K = U ® (Acst)
- and M = V®(Best) with U a smooth X-scheme, V a smooth Y-scheme, and A, B € Ob(9t). We then have
the following chain of lsomorphlsms whose composition is seen to coincide with the canocical morphism

in the statement:

Jo (F*(U ® Acat) ® (V @ Bewr)) = fy ((UxxY)® Acst) ® (V @ Best)) = fi (U xx Y) Xy V) ® (A® B)est)
= (U Xx (V —Y = X)) ® (A®B)cst = (U ®Acst) ® ((V Y > X) ® Bcst)' ~ (U ®Acst) ® fﬂ(V ® Bcn)

Case of (2) By Lemma 4.5.6, we may reduce to the case Z = *; we may assume « : J — . We may suppose
K =U® (Acst) and M = (V, j) ® (Best) with U, V smooth X-schemes, j € Ob(J), and 4, B € Ob(M).
We then have the following chain of isomorphisms :

‘o (" (U ® Acst) ® ((V,5) ® Best)) 22 0y (U xx V,5) ® (A® Best)
2 (UxxV)® (AR B)est ~ (U ® Acst) @ oy ((V 7) ® Best)

Case of (3) We may suppose T = U®(Acst) and M = (V, j)Q(Best) with U asmooth S-scheme, j € Ob(J),
V a smooth G(j)-scheme, and A, B € Ob(9M). We then have the following chain of isomorphisins :

(£,0)1 ((£:0)"75,2(U ® Acar) ® ((V,5) ® Beat)) = (£, )1 ((U x5V, ) ® (A® B)est)
=(UxsV = Fla(h)),7) ® (A® Blesnr 2(U @ Acst) ® (V — F(a(4)), ) ® Bost)

2‘7[;.-,1'([/ ® Acst) ® (fy a)ﬁ ((‘/a 3) ® Bcst) D

Projection formula in DerAlg 5 for SHZ;, (Prop.4.5.31) - ~

1. Let f : G — F be a cartesian smooth morphism of Z-diagrams of S-schemes. For K € Ob (Mg (F, , 7))
and M € Ob (Mr(G,Z)), the following morphism is invertible:

Lf (Lf’(K) ot M) S K@ LM
2. Let a: J — I be a functor between small categories and X a'S-scheme. For K € Ob (Mr(X,Z))
and M € Ob (Mz(X, 7)), the following morphism is invertible:
Loy (a‘(x) ot M) -+ K@ LayM

.

An outline of the proof:
Case of (1) This follows from the above Prop.4.5.17 and the fact that all the functors involved are left
Quillen w.r.t. the Al-stable semi-projective structure (using that f is Cartesian).

Case of (2) Apply Lem.4.5.29 to the case Z = x. In this case, we are asked to show that for K projective
cofibrant the functor o*(K) ® — is left Qullen w.r.t. the Al-stable projective structure, as an exerciseD

N\

(—{A-ymb—Pro:[ectwn formula in DerAlg 5 for SHZ, Prop 4.5.17, p.538: Prop.4.5.31, p.542] N
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4.4 A cross functor structure on (H* H,,M*Hy,1"H*) and the smooth base
change theorem

[Ayoub, Prop.1.4.12, p.61] ~

-

(There exists a cross functor structure on the quadruplet:

(H", H., LissH!h LiséHt) )

We have a cross functor from (Sch /S) and (Sch /S$)* to TR with respect to the class of cartesian squares
with vertical smooth. This cross functor is defined by the data:

o The 2-functor H* and its right global adjoint H.,
o The 2-functor 1**H* and its left global adjoint M**Hy, -
o The trivial exchange structure on (H*,*H*),

o The exchange structure on (H., “**Hy) deduced from the isoexchange of type \\, inverse of the isoexchange
on (H*,“5Hy) (with respect to the ca.ﬂ;esnan squares) and the global adjunction between H. and H*.

L]
l,«
L]
with f smooth, the exchange 2-morphism of the exchange structure on (H., “*H*) is given by Ex;, applied
to the commutative square:

For a cartesian square (C) :
N

I

oi——e

—_

.
EAN

“
o——0o

]

e——eo
@

The exchange 2-isomorphism of th eexchange sructure on (H*, Li“"Hﬂ) is given by the 2-morphism Ez}(C).
Finally, the exchange 2-morphism Ez.4(C) relative to the exchange on (H.,“**Hy) is given by the composite:

-1
fig'« — 9.9" fuds L), g f19" g\ = gu f

N , J
r [Ayoub, Prop.1.4.13, p.61] N
( Smooth base change theorem ) Consider a cartesian square in Sch /S:
x <y x
f’l J,I
y 25y

with g smooth. Then the exchange 2-morphism

Y

EBzl:g"fu _)f-

is invertible. In other words, the exchange on (L’“H’ H.) is an isoexchange (with respect to the cartesian

squares).

J
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4.5 Construction of i' for a closed immersion

Ayoub, i : Shv:, (Sm /X, M) — Shvy, (Sm /Z,9m) Prop.4.5.32, Lem.4.5.33, p.543; Th.4.5.34, Rem.4.5.35, p-€\44]

Let i : Z — X be a closed immersion of S-schemes. Then

o The functor
. iy : Shve,, (Sm /Z,2) — Shvy_ (Sm /X, M)

is a left Quillen functor for the injective structures (W, Cofin;, Fibin;) (with topology tp) and
(W, Cofinj, Fibr_in;) (with topology 7).

o Here the right adjoint is given by:
i' = b 0 ihesnear 0 incShvy, (Sm /X, 9%) — Shvy, (Sm /Z, M)
where b is the right adjoint defined in p.543:
b : PreShv(Sm/X,C) — Shv;,(Sm /X, C)
which associates to a presheaf F' the tg-sheaf b(F) given by
(bF) (U) = F(U) xp/x) *¢ (U € Ob(Sm /X))

and i;,,eshea s is the usual right Kan extension:

' PreShv(Sm /X, ) — PreShv(Sm /Z,9)

H & ipresneasH = (V. = Z) v Limyx , zv H(U))

Now apply the Bousfield localisation w.r.t. the A'-equivalences to this Quillen adjunction as in Remark

4.2.59, we obation the following Quillen adjunction whose right adjoint is given by Ri', which we still use
denote by 7' : On the other hand, since i. preseres A'-weak equivalces, 4. derives trivially Li. 2 i. below:

e (To prove the above claim (Prop.4.5.32) that ¢* is left Quillen, by Def.44.60, Th.4.4.61, we need the
following claim (Lem.4.5.33); )

The natural transformation .
Qr Olx = %u O Q7

is invertible when evaluated on the tg-sheaf of sets.
Rough outline of the proof of Lem.4.5.83.

— For F € PreShv(Sm /Z) and U a smooth X-scheme, using the functor L in Proposition 4.4.8, we
have L(z. F)(U) = ’

Colimy, ,v),ecov, vy Eq (l'L F(Uixx 2) = [1,,; F (Ui xu Uy) xx Z))
— When U xx Z #0,
Cov,(U) = Cov (U xx Z)
Ui = U)i Uixx Z U xx 2),
is cofinal and so L(i.F)(U) is isomorphic to:
L(iF)(U) = Colim(y, .y 2) ccovwix 2 E (F(u-) 3 [IF (Vi xuxxz v,-))

05

=LF (U xx Z) = &, LF(U).
— On the other hand, for a tg-sheaf F, when U xx Z ~ 0/Z,
LG F)(U) = + = L(F)() = LF (U xx Z) = i.LF(U).

— Thus L(i. F) ~ i, LF, which is equal to a,(i. F) ~ i.a, F.

e The functor . .
s : Shve,, (Sm/Z,9M) — Shv,, (Sm/X, M)

is also a left Quillen functor for the A’-local injective structures (W1, Cofinj, Fibai_;,;) (with topology
7). Actually, i. preserves the A'-weak equivalenggs, and so derives trivially:

Lix ™ ix =~ Rix
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Spectatm(Tx) (Shv:y(Sm /X, 7)) — Spectat (xz) (Shviy (Sm /Z,90)) Prop.4.5.45, p.551; Lem.4.5.4ﬁ,\{).552]

[Ay
rLet i:Z—>Xbea closed immersion of S-schemes. Then the functor
i Spectiw (5 (Shve, (Sm /Z,5m)) — Spectio (rx) (Shveg (Sm /X, 9))

obtained by applying:
e levelwise;
the natural transformation as, (Tx) ® iu(—) = 4 (¢, (TZ) ® —) , to the structure maps,
is a left Quillen functor with respect to the stable injective structures on the spectra induced from the Al-loqal
injecture structures (W41, Cofinj, Fib;,;_a1) on the categories of t-sheaves. (Unlike the left Quillen functor
j* for the complementary open immersion treated after Prop.4.5.43, this is NOT covered by Th.4.5.23).
Rough outline of the proof.
o By Def.4.1.24, Prof.4.1.23; Def.4.3.29; Def.4.5.12, it suffices to:
— construct a right adjoint of .;
— show i, preserves the stable injective cofibrations and stable injective A’-trivial cofibrations.
o We can construct the right adjoint i' of 4. : For
_ E€ Spectf‘a(Tx) (Shve, (Sm /X, 9))
define i'E by:
‘B =F = (Fn),ey € Specty, (1) (Shvey(Sm/Z, M),
Fn = Eq ([Tyey Hom, (a,,,(:rz)@a 'Bryn) = [ew Hom, (a4, (T2)®, i'Hom, (a4, (Tx ), Erg14n)))
where ¥, operates on F, by the following restriction 1 X B, C 2 X Zp C Zm+n of the action of

Zm+n o0 Emypn. The two arrows in this equalizer are given by the adjoints of the assemby morph:sm of
a1, (Tz)-spectrum E and by the composite:

Homg (agm (TZ)M,;'-(_)) o Homg (ata(Tz)®’° I,Homg (at@ (Tz),i!(—))) = Homg (aq,(Tz)m'l,i’Ho_mg (az,(

We can easily verify that the product of arrows:

Fo > Hom, (a4, (T2)°*, B i) ~ Hom, (aeg (), Hom, (a1y (T2)%*", B 14111

factors through the sub-object Hom, (asy (T2), Frt1) -
We thus obtain a symmetric as, (Tz)-spectrum F, for which we can verify the funcor hom(i.(— E) is
represented by F.

By Theorem 4.5.34, i, levelwise preserves injective cofibrations and injective A'-trivial cofibrations.

To strengthen the above preservation property to the stable setting as in Definition 4.3.29, we shoudl
verify that, for any injective cofibrant K' € Ob (Shv:,(Sm /Z,M)) and p € N, i. sends wi of page 484
to stable A'-equivalences. To see this, consider:

wf .
Sus a:,,(Tx) 5 (a1y(Tx) ® 1a K) —— Susf, (1), (i K)

g
. Susm ()% (ato (Tz)® K) B i Susl, (1) £(K)

To see i.wk is an A'-equivalence, for w,-‘ x is so, it suffices to show the vertical arrows are levelwise
A'-weak equivalences. Thus, suffices to show the arrows:
ary (TR") @ inK i (az, (T") ® K)

are Al-weak equivalences.

To see this, let j be the immersion of the complementary open, and we apply the “unstable” conservation
theorem w.r.t. (Li*,5*) of Corollary 4.5.44:

3* 3" [azy (TF") ® i K] = §° [in (aey (TE7) ® K)] is invertible.
Proof. This is the unique arrow between null objects for j*i. = 0. a
Lit Lé* [agy (TR") ® 4 K] — L™ [iu (ary (TF") Q)] is invertible.
Proof. For this, consider the commutative diagram:
Li* [ae, ( ®’) @i K] — Li* [i. (a;, (187) ® K)]
@y, (TS ) Q Li*in K —————— a4, (Tég') ®K

Then the claim follows from the latter. part of Cor.4.5.44 which claims Li*i. is invertible. (Here, we
need not to derive . for we are considering the sheaves like Prop.4.5.34, Rem.4.5.35, unlike Cor.4.5.44).

Px)v _))




Ayoub, 1.4.4. i' : H(X) » H(Z , Lem.1.4.6, Lem.1.4.7, Lem.1.4.8, p.58; Prop.1.4.9, Cor.1.4.10, p.59
)

Next, we would like to define
. i' :H(X) = H(Z)

for a closed immersion i : Z — X. As is expressed in [Ayoub, p.58], for each A € Ob(H(X)), we would like
to have a distinguished triangle in H(X) :

iAo Ao Gt A T i Al
Since i*i.B = B for B € Ob(H(X)), we shall define
i'A— = i* Cone (A — j.j* A) [-1]
Now the difficulty is making this construction functorial. This difficulty is taken care of in the following:

Leét j : U — X an open immersion (between quasi-projective S-schemes) and i : Z — X be a complementary
closed immersion.

o There exists'a unique 2-morphism ¢ such that the sequence:

.. S5 0) MG o b ox
1d I’——»Id,.,( )—m..z 2)]” (+1]

becomes a distinguished 2-triangle.

The 1-morphism j*i. is null.
Suppose for each A € Ob (H(X)) a distinguished triangle in H(X) is chosen:
A> g A5 C(A) - Al+1)

Then for any morphism & : A — B in H(X) there ex:sts a unique morphism C(a) : C(A) = C(B)
making the following square commutative:
C(A) —— A[+1]
C(a),L ,La[+1]
C(B) —— B[+1]

This same morphism also make the next diagram commutative:

Jej*A—21 C(A) » A[+1]
al al . c@l Jal+)
B j=j*B » C(B) » B|+1]

Then the associations: A - C(A) and a = C(a) define a triangulated endofunctor of H(X).

1. For i: Z — X there exists a 1-morphism ,
i : H(X) = H(Z)
and a distinguished 2-triangle: p .
T B a5t D i Al
Furthermore, the paii made of the functor i' as well as the 2-triangle above is unique up to an
isomorphism.
2. If a: A — B is an arrow of H(X) the morphlsm
iui' (@) 1 isi' A = iai' B
is the unique morphism of H(Y") making the square:
iiA—— A
i.i’ul _Lu
ixi'B—— B
commutative. It gies a morphism of distinguished triangles
ivitA y A y juj' A s i A[+1]
ivi'ad loe ssal inilad
isi'B y B—— j.j'B s i’ B[+1]

3. Finally, the 2-morphism &' is right adjoint of 2 1-morphism #,. The counit 2-morphism i,i' — id is
the one that is contained in the distinguished 2-triangle. The unit 2-morphism is a 2-isomorphism.

There exists a 2-functor

=R (Sch /8)™ — TR,

uniqute up to an isomorphism, which is a global right adjoint of the 2-functor ™™ H,. Denote by c'(f, g)
the 2-isomorphism of connection of this functor.

J
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4.6 The axiom of locality

102

([Ayoub, it Shv:, (Sm /X, 9) — Shv:,(Sm /Z,90) Prop.4.5.32, p.543; Th.4.5.34, Rem.4.5.35, p.544; Lem.4§g.4_3, p-550]

Let 2: Z — X be a closed immersion of S-schemes. Then

e The functor
i, : Shve (Sm /Z.2M) — Shv,__ (Sm /X.9N)

is a left Quillen functor for the injective structures (W, Cofin;, Fibin;) (with topology tp) and
(W5, Cofinj, Fib,_in;) (with topology 7).

o The functor
is : Shvi, (Sm/Z, ) — Shv;_, (Sm /X,90N)

is also a left Quillen functor for the A'-local injective structures’ (WAx ,Cofinj, FibAl_,-",-) (with topology
7). Actually, i, preserves the A'-weak equivalences, and so derives trivially:

L. =~ i, =~ Ris

Let X be a S-scheme and u: U — X a smooth cover for the topology 7. Then

e The functor
) u” : PreShv(Sm /X, ) — PreShv(Sm /U, M)
preserves and detects the A'-weak equivalences.

( And so, whenever a Quillen adjunction involving »* is available, u* derives trivially:

Lu* ~u” ~Ru")

NG
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([Ayoub, {(Morel-Voevodsky, Th.2.21, p.114), the locality for S*-spectra, Th. 4.5.36, proof outline, p.545—550]\
( This is the locality for S*-spectra:
Hoy: (Shve, (Sm /X, %)) = Hoy (PreShv(Sm /X, 90))
2 Ho,: Spectg: (PreShv(Sm /X)) 2 She:i(X))
If H is a projective cofibrant object of Shvt, (Sm /X, 9t). The commutative square
j43i*H —— H

| |

* ——— 1" H
is homotopy cocartesian relative to the Al-local model structure.

Proof outline.

(Lem.4.5.37, p.545) Reduction to the case H = a:, (X’ ® Acs:) : proving the following square ((4.101),
p.548):
a1y (U ® Acot) — a6y (X' ® Acst)

|

* —> i:ata (ZI ® Acst)
is homotopy cocartesian-(using the fact, the functors jy, j*, 4" commute with the functor as, ), where Acst
is the constant presheaf valued at a cofibrant object A of M and U’, Z’ are defined by the following
commutative diagram of cartesian squares starting with a smooth X-scheme X' :

4 E x' ! z'
U2 Xtz
(Lem.4.5.41, p.548) Reduction to proving the following square is homotopy cocartesian in

Ho,: (PreShv(Sm /X, 9)) :
U'® Acst — X' ® Acst

[

U ® Acst _).iﬂz, ® Acat
i.e. proving the following is an A'-weak equivalence:

(G® Acst d F®Acat) = ([X, HU] ® Ac;l - i*ZI ® Acst)
[’

(Cor.4.5.40, p.547) Reduction to proving
TY,s g Acst —-Y® Acst

is an A'-weak equivalence of PreShv(Sm /Y, ), where Y is a X-scheme with a section s : ¥ — F and
Ty,s = Y is as below: ’

tth eq's — p*yG Xpr P Y not stéted.,..
i Y

| 0 I B

1
p;rF s :F/*
(Just before Prop.4.5.42, p.549) Final reduction to the case Y = X.
(Prop.4.5.42, p.549) Completion of the proof Proof of Proposition 4.5.42, which is the final reduction.

: ]
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s [Ayoub, Morel-Voevodsky, Th. 4.5.36, p.545]

If H is a projective cofibrant object of Shv;,(Sm /X, 90). The commutative square

jii*H— H

|

* ——— i, i*H

is homotopy cocartesian relative to the A'-local model structure.

\-

[Ayoub, Lem. 4.5.37, p.545]
—

It suffices to prove Theorem 4.5.36 for

H = ay (X' ® Acst)
with A a cofibrant object of 9 and X’ a smooth X-scheme (and Ac: is the constant presheaf valued at A
introduced in Proposition 4.4.4).

Rough idea of the proof.
o Projective cofibrations of Shv.,(Sm /X, 90) are generated by the class C of arrows:
Aty (XI ® Acst) — at, (X{ ® Bcst)

with A — B a cofibration of 9t whose target is B-accessible (3 being a sufficiently large cardinal) and
X' a smooth X-scheme. :

o Any projective cofibrant H is a retract of ®¢ g(# — H) (see Proposition 4.2.26).
o Thus, it suffices to prove Theorem 4.5.36 for

cs(0 — H) = Colimper (0 - ¥1 5 ¥z = - =5 ¥y 5 ¥y =2 ) 0y
which we prove by transfinite induction:

Case p = v + 1 Then we can prove the claim since ¥, = ¥, is the pushout of the diagram:

Hi Qg (X: ® (Ai)cst) — Y,

I aey (Xi ® (Bi)est)

with u; : A; = B; the cofibrations of 9 and X/ the smooth X-schemes.
Case u is a limit ordinal Applying Lemma 4.2.69 to

0 > Cof (jyi* 01 - W) 33 Cof (y* 0, = ¥,) » Cof (j3j" ¥uir = Yug1) 3 -+

1

0 N Jpm——— ixi*, SN 5o
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[Ayoub, Lem. 4.5.41, p.548] ~
There exists a commutative square of presheaves of sets:

UI ) XI

U——iZ

where the horisontale lower arrow is given by the unique element hom(U,i.Z’) = hom(@, Z'). Furthermore,
so that the square
Qg (U’ Q Ac_;g) ) (XI g Acst)

| l

* 3 14014 (2’ ® Acst)

becomes homotopy: cocartesian, it suffices that the following square:
U'® Acst —— X' @ Acst
U Acst —1s2' @ Acst
is homotopy cocartesian (in Hoy: (PreShv(Sm /X, 9M)) (of Def.4.5.12) ).

Rough idea of the proof.
o The commutativity of the square follows from the fact hom (U’,i.2Z’) = *.

e The latter claim follows from the fact that the pushout of

U® Acst — 12’ ® Acst

*

is canonically identified with a:,(ixZ2’ ® Acet) (Lem.4.5.33).
)

2

98

105



[Ayoub, Cor. 4.5.40, p.547] ~
r Let G — F be a morphism of presheaf of sets on Sm/X. For a section s : ¥ — F with Y a smooth
X-scheme, we denote by Ty,s the presheaf of sets on Sm /Y defined by

Ty. =pyG xpyrY ( I prefer to thnk as the pullback: | (Ty,s = Y) = s*(G > F) | )

‘with py the structured pmJecf.lon of Y on X and the arrow Y — p} F utilised in the fiber product is the
adjoint of (py )Y ~Y 5 F.

tt Ty, = %G XppF y et stated....

s

244

.
~_ L/

v F — F

" Let A be a cofibrant object of M and suppose that for any smooth X-scheme Y and any section s € F(Y)

the morphism:
TY,; ® Acst 7 Y ® Acst

is an A'-weak equivalence of PreShv(Sm /Y, 90). Then
G ® Acst - F ® Acst
is also an A'-weak equivalence.

Rough idea of the proof.
e (By Theorem 4.4.61, Th.4.5.11) The continuous functor pp.: (Sm/X) /F — Sm /X induces a Quillen

adjunction:
((pr)1, (pr)™) : PreShv ((Sm /X)/F, M) — PreShv(Sm /X, M)

for the A’-local projective structures.projective structures. )
]

e (By Corollary 4.5.39) The arrow
G ® Acst -3 F ® Acst

can be identified with the result of the functor L (pr), applied to the arrow:
(GF ® Acst = *® Acat) € PreShv ((Sm /X)/F, o)
o Observe that the A'-weak equialences in PreShv ((Sm /X)/F,90) are detected by:

~ ((Y/X) - F)" : PreShv ((Sm /X)/F,2) — H PreShv(Sm /Y,9R)
(Y/X)—FeOb((Sm /X)/F) (Y/X)—FeOb((Sm /X)/F)

e Thus, to show GC® At =+ F® Auer

is a Al-weak equialences, it suffices to show )
" (GF @ Acst — * ® Acst) € PreShv ((Sm /Y, )

is an A'-equivalence, for any section (s : (Y/X) — F) € Ob((Sm /X)/F).
o Finally, the proof is complete by observing

s* (GF Q@ Acst > *® Acst)

is given by Ty,s ® Acst = Y ® Acst
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e For W € Sm /X,

X'HU (W) = homx (W, X') H homx (W, U) = {hom:(W,X’) ifWxx Z#0

U’ hom x (W,U” UHWxxZ=0

Proof. x( )

The case W xx Z# 0 homx(W,U) = homx(W,U’) = @, and so the coproduct is clearly
homx (W, X7).

The case W xx Z =0 homx(W,U’) = homx (W, X’) and homx (W, U) = *, and so the coproduct is
clearly *. &

e Now, for each s : Y — 4.Z, consider the pullback construction , (Ty,s 5 Y)=8"(G— F)|for (G —

F) = (X'11, U — i.2Z"), for which, Ayoub used more detaild symbol Tx' y,, to denote Ty,s. Then for
any P € Sm/Y,

homx(P,X') Xhomz(Px x Z,2') * fPxx Z#@
*

T""Y"(P_’Y)={ ifPxxZ=0

Proof. From the pullback characterization of Tx/y,s : Tx/,v,, — X'[],,,U and the above calcula-
4+ - v
Y ——— i, 2’
tion of [X’]],, U] (W), we have the following pullback of sets:
homx(P,X') ifPxxZ#0
* if P B% X Z = 0
4
homx (P, i;Z') =homz(i*P, Z").
= homg (P Xx Z, Z’)

Tx'y,s(P—>Y) —

*={pp:P—>Y}——>(

From this, the claim follows. a

Lift everything by py : Y — X and denote by (—) the object obtained by lifting (—). Then construct
the following commutative diagram, in which the solution set of the dotted arrows P — — > X' makeing
relevant faces commute is nothing but Ty, (P — Y). However, contemplating on this diagram, we
find this sokution set is the as the solution set of those dotted arrows P — — > X' =Y xx X/,
which is nothing but T,z (P = ¥ = X), where § : X = Y — 7.2 (=7.X") is the adjoint of

5:0X=Z=YxxZX%yxx2 =2 (—) X’) . Thus, it suffices to treat this case, which is, after
rewriting those Z:_j by simply (—), treated in Proposition 4.5.42.

PxgZ=Pxx 2= 37-YxxZ

r [Ayoub, Just before Prop:4:5.42, p-549] ~
Recall the commutative diagram of cartesian squares starting with a smooth X-scheme X' :
v z s X! L z
[J} j X ;r(sl:lnooth . é
complementary open v N closed embedding
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*=(prz)Xx (s

P xxi

[Ayoub, Prop. 4.5.42, p.549] N
(Let X’ be a smooth X-scheme and s : Z — X' a partial section defined on Z. Denote by Tx s the presheaf
of sets (on Sm /X) defined by:

1 .
T o(P) = {ilomx(P,X ) Xnom(Pxxz,2) * P xxZ#b

if Px X Z= 0
Then the arrow Txr,s ® Acwt = X ® Acs
is an A'-weak equivalence.
Rough idea of the proof.
Step 1 Reduction to the case:
o X is affine,
e s:Z — X' admits an affine neighborhood in X',
e The normal sheaf N, of the immersion s is free.

. To see this, we consider a family of étale morphisms (u; : X; — X)), , which is a covering for the topology
7. For each 1, as in 4.5.1, p.532; proof of Proposition 4.5.4, p.533, u; : X; — X induces

u;: Sm/X — Sm/X;
(P=2X)— (PxxXi— Xi),

which admits a right adjoint

Cu; :Sm/X; = Sm /X
(Pi = X)) (P> Xi > X)

with the identification: u
i =(cu),

Now, Lemma 4.5.43, p.550, 1mphes we can reduce our proof to showing
uz (TX',s ® Acst - X ® Acat)

is an A'-weak equivalence.
However, for a smooth X;-scheme P;, we have:

(wi (Tx,s) (P = Xi) = ((ew,), (Txr,6)) (P = X:)
=Txr s ((cu;) (Ps = X3)) =Txr s (Ps = X = X),

which, by contemplating the commutative diagram below, we can identify with:
TX,’.sg (R - X’) .

Therefore, u (Txr,s) = Txs..
and so U (Tt @ Aot = X ® Acst) = (Txp, ® Aot = Xi © Acat)

Thus, it suffices to prove the claim for the case stated.

(prz))
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[Ayoub, Prop. 4.5.42, p.549)

-

Let X’ be a smooth X-scheme and s : Z — X' a partial section defined on Z. Denote by T s the pr%heaf\

of sets (on Sm /X) defined by:

X' , if P
Ty o(P) = {l*lomx(P, ) Xnom(Pxxz,z)* P XxZ#0

ifPxxZ=0

Then the arrow Txr.o @ Acst = X ® Acst

is an A'-weak equivalence.
Rough idea of the pmbf (continuted).
Step 2 Reduction to the case:
e X is affine,
o X' =A%, .
® 5:Z — X' = A% is the null section,
To see this, starting with the reduction of Step 1, let us construct

null section
s affis

b'd . AY

Here X is an affine neighborhood of s in X’ and Z — A% is the null section. We would like to reduce
to the stated case from that of Step 1 in two steps:

Z 8 X, — Z XO . Znull secno&n

I N N

X
For this, it suffices to prove that for any commutative diagram:
z 5 x"
S »l«r:et.ale
Xi

with 7: X" — X’ etale, the evident morphism of presheaf
Txn’sl — Txl,s
(whose construction can be seen using the diagram below) becomes an isomorphism upon the sheafication
with respect to the topology 7. For this, we may suppose 7 is Nisnevich and it suffices to construct an
TSe mMaj
inve P Txr,s(Y) = TX”,s’ (Y)
for each Henselian localisation Y — X of a point in a smooth X-scheme with Y xx Z # 0.
Then, given f € T s(Y), so f: Y — X, we may construct the uniqute f’ € Txrn (V) as f': Y = X"
by constructing the commutative diagram below. Here, the condition:

Y xx: X7 228 V! etale

was used to uniqutely lift the map ¥ Xxx Z 2 Y Xxx X" tor;: Y =Y xx X" :

AN
Y x
Z189PTZ 7.
VA S,
Y xx Z Y: Henselian

(Proof continuted...) ]
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-~ [Ayoub, Prop. 4.5.42, p:549]
of sets (on Sm /X)) defined by:

Ty o(P) = homx (P, X') Xnom(Pxxz.z)* P Xx Z#D

. * fPxxZ=0
Then the arrow Txr.s ® Acet = X ® Acet
is an A'-weak equivalence.
Rough idea of the proof (continuted).
Step 3 Completion of the proof: Proof that
TA; 080 Acst = X @ Acst,

which is the case reduced in Step 2, is an A'-weak equivalence.

To see this, it suffices to construct a homotopy between the identity of Taz, ,0(Y) and the null map, which
is provided by:

Tag 0(Y) X Ak (Y) = Tag o(Y)

(1) (Y YDy pn a1t ) o o), A&)

(Proof completed!) a

Let X' be a smooth X-scheme and s : Z — X’ a partial section defined on Z. Denote by Tx:,s the presheaf\
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[Ayoub, Lem. 4.5.38, p.546; Cor. 4.5.39, p.547]

e Let F be a presheaf of sets on a small category S. We define
N(F) € Ob (A”? (PreShv(S)))
which:
— to n € Ob(A) associate:
) . U(0)
U=(U(0)=—=U(n)):n—>S/F
— to an increading function 7 : m — n associate the coproduct ofarrows:

v U0y~ I v

V:mS/F

where the second arrow is identified with the corresponding component of the composite functor:

m—n—S/F .
We will see N(F) as a presheaf of sets on A x S.
Denote by p : A x 8§ — S the-projection on the second fa,ctor Then for any cofibrant object A of 9M;
the evident morphism:

Lp” (N(F) ® Acst) = F® Acst

is an isomorphism in Ho (PreShv(S,9)).

e Let S be a small category and G — F a morphism of presheaves of sets on S. Denote by Gr the presheaf
of sets on S/F wwhich to an arrow s : U — F € Ob(S/F) associates the fiber product G(U) X pw) *
with x = F(U) the application which points the section s.

Denote by pr : S/F — S the evident functor and

Pk : PreShv(S, —) — PreShv (S/F, —)

‘the functor of the right composition by pr.

(This is the convention of the derivateur of Grothendieck. In the usual notation, this is of course
written as follows:

(pr)s : PreShv(S, —) - PreShv (S/F, -).
Here, in the proof of Corollary 4.5.38, and possibly in some other places, the notatlons of
Grothendieck’derivateurs are employed:

Convention The right composition | Its left adjoint
The usual Pa 7 . |)
Grothendieck’s derivateur p* . Py

For any cofibrant object A of 91, the evident morphism
L(pr)s (GFr ® Acet) > G ® Acst
This is in Grothendieck’s derivateur notation. In the usal notation, this is written as follows:
L(pr)" (Gr ® Acst) = G ® Acst

is invertaible in Ho (PreShv(S,9M)).

-

[Ayoub, Lem. 4.5.43, p.550]
Let X be a S-scheme and u : U — X a smooth cover for the topology 7. The functor
u” : PreShv(Sm /X, M) — PreShv(Sm /U, 9M)

preserves and detects the A'-weak equivalences.
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Forgotten (?) to be stated by Ayoub, because these are commen seneses? N
Consider a smooth morphism U — X which is open for the topology 7 (e.z. the complementary open
immersion of a closed imersion).
o By Lemma 4.5.43 and its proof, which used Def.4.4.60, Th.4.4.61; Prop.4.5.4 and its proof; and The.4.5.10,
we have a Quillen adjunction:

(G, 37) = ({¢5)", (c5)+) : PreShv(Sm /U, 9) = PreShv(Sm /X, m)

for the structure (WAI, Cofproj, Fibp,,,j_Ax) . )
. jt= (cj)+ : PreShv(Sm /X, 9) — PreShv(Sm /U, M) preserves W1, and so j* drives trivially.

o Thus, the above Quillen adjunction induces the adjunction:
(Lj1,5") : Ho (PreShv(Sm /U, 9M)) — Ho (PreShv(Sm /X; 7))
o Furthermore, levelwise application of above (j,5*) = ((c;)™, (¢j)) induces a Quillen adjunction:
. (ju,j.') =((c;)", (cj)») : Spect?-u (PreShv(Sm /U, 9M)) — Spect?x (PreShv(Sm /X, 7))

~ for the structure (W a1 g1, Cofprojy Fibyro; a1 1) -

Actually, these are special cases of Th.4.5.14 and its stable generalisation Th.4.5.23 obtained using
Lem.4.3.34. Although we have to show j*w} is an A'-weak equivalence, this is easier than that of i.
for a closed immersion i treated in Th.4.5.45 and its proof. Actually, in the analogous commutative diagram:

~*S p+1 T H j.“}:’ "S v H
7" Susi o (Tx ® H) — j* Sush. o(H),
+ WP, -

Sush!o(Ty ® 5" H) —— Sush 5 (5 H)

where
Tx =pxT, Tv =puT = (U = X)'pxT = (U = X)'Tx

via the commutative diagram U ~ X , we can easily deduce the A'-weak equivalence property

% X &px
of j*w¥ from that of w;i'. - This is because the vertical morphisms are isomorphisms, which are essentially
canonical isomorphisms: : P (T 9 H) ST ®°H
Together with the easier part of Lemma 4.5.43, this argument indicates j* derives trivially even for the stable
case with the structure (Wa1_ s, Cofproj, Fibproj—a1—ss) -

e Thus, we obtain an adjunction:
(Ljy,5") : Ho (Spect;“‘av (PreShv(Sm /U, QJI))) — Ho (Spect?x (PreShv(Sm /X, sm)))

induced by the structure (W1_g;, Cofproj, Fiby,oi_a1-st) -
e Also, by Theorem 4.5.23, we obtain the adjunction:

(5", Rj.) : Ho (Spectix (PreShv(Sm /X, svt))) — Ho (Spect¥u (PreShv(Sm /U, m)))

induced by the structure (Wi _;, Cofproj, Fibpoj_at_ss) -

e For a cofibrant object E in Spect?x (PreShv(Sm /X,9)), we may take jyj*E for Ljj*E €
Ho (Spect?, (PreShv(Sm/X,))). This is because 5*E is still cofibrant, for (j*,j.) is a Quillen
adjunction, and so we do not have to derive j; for this element.

- [Aybub, Cor. 4.5.44 and its proof, p.550] N\
Let i: Z — X be a closed immersion of S-schemes and j-the complementary open immersion. )

e Then the couple of functors (Li*, *) is conservative on Ho,: (PreShv(Sm /X, 9)).
e Furhtermore, the counit morphism Li*Ri, is invertible. (We should derive i. and so, we should use Ri.

\_ here, because, unlike Prop.4.5.34, Rem.4.5.35, we are not restricting to t-sheaves.) )
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113

[Ay?u Spectwm(Tx) (Shv, (Sm /X, M) — Spectat (r5) (Shviy (Sm /Z,9N)) Prop.4.5.45, p.551; Lem.4.5.46,~{>.552]

Leti:Z - X be a closed immersion of S-schemes. Then the functor

Spectat (1) (Shve, (Sm /Z,90)) — Spectat (rx) (Shve, (Sm /X, 9M)),
obtained by applying:

ix levelwise]
the natural transformation as, (Tx ) ® is(—) — iv (atg (Tz) ® —) , to the structure maps,

is a left Quillen functor with respect to the stable injective structures on the spectra induced from the A'-local
injecture structures (W 41, Cofinj, Fib,,;_ Al) on the categories of t-sheaves. (Unlike the left Quillen functor
j* for the complementary open immersion treated after Prop.4.5.43, this is NOT covered by Th.4.5.23).
Rough outline of the proof.
o By Def.4.1.24, Prof.4.1.23; Def.4.3.29; Def.4.5.12, it suffices to:
— construct a right adjoint of i.;
— show i, preserves the stable injective cofibrations and stable injective A-trivial cofibrations.
o We can construct the right adjoint ' of 4, : For
E € Specty, (zi,) (Shve, (Sm /X, 2)),
define i'E by: . ’
¢E :=F = (Fn),cn € Spect, (r,) (Shvy, (Sm/Z,m)),
Fr :=Eq([I;eyHom, (az, (Tz)8> i Brtn) = H,eN Hom, (azy(Tz)®,i'Hom, (asy(Tx), Eir14n)))
where L, operates on F, by the following restriction 1 x £, C B, X I, C Zmyn of the action of

Ym+4n o0 Emyn. The two arrows in this equalizer are given by the adjoints of the assemby morphism of
at;(Tz)-spectrum E and by the composite:

Ho_mg (a:,(Tz)m,i'(—)) :HO_mg ato(TZ)Qk_lvﬁomg (ata (TZ)?":!(_))) — Hom, (ato (TZ)®k_l)i!H°—mg (ato( Ix), _))

We can easily vérify that the product of arrows:

Fn — Hom, (“ta (Tz)ak,i!Ek+n) ~ Hom, (atu(Tz),Homg (atD(Tz)gk_l,i!Ek_HHn))

factors through the sub-object Hom, Hom (“to (Tz), F,.H)
We thus obtain a symmetric ae, (Tz)-spectrum F, for which we can verify the funcor hom(i.(-), E) is
represented by F.

e By Theorem 4.5.34, i. levelwise preserves m]ectlve cofibrations and injective A’-trivial cofibrations.

e To strengthen the above preservation property to the stable setting as in Definition 4.3.29, we shoudl
verify that, for any injective cofibrant K € Ob (Shve,(Sm /Z,9)) and p € N, i. sends w} of page 484
to stable A'-equivalences. To see this, consider:

“’:’,K .
Susat“(TX)'E (atp (Tx) ® in K) —— Susf;ta (15,50 K)
- s v
. +1 TeWie
s Sus"ﬂ’“a (T).S (a2 (Tz) ® K) —> i Sussta(Tz)'z(K)

To see i.w} is an' A'-equivalence, for w? g is so, it suffices to show the vertical arrows are levelwise
A'-weak equivalences. Thus, suffices to show-the arrows:

sy (TR") ®in K = i (a1 (T7) ® K)
are A'-weak equivalences.

o To see this, let j be the immersion of the complementary open, and we apply the “unstable” conservation
theorem w.r.t. (Li*,j*) of Corollary 4.5.44:

37 5" [azg (TE7) @ K] — " [in (as, (TE7) ® K)] is invertible.
Proof. This is the unique arrow between null objects for j*is = 0. o
Li* Li* [asy (T27) @ i K] — Li* [in (as, (TE7) 8 01‘;:)] is invertible.
Proof. For this, consider the commutative diagram:
Li* [ay (TE") ® i K] — Li* [in (az, (TE") ® K)]
aeg (TE") ® Li*is K —— as, (TE") @ K

Then the claim follows from the latter part of Cor.4.5.44 which claims Li*i. is invertible. (Here, we
need not to derive 7. for we are considering the sheaves like Prop.4.5.34, Rem.4.5.35, unlike Cor.4.5.44).




r [Ayoub, Locality for the stable case, Cor. 4.5.47, p.552] ~N

" Let i : Z — X be a closed immersion of S-schemes and j the complementary open immersion. Then (we
obtain an distinguished 2-triangle in SHE;(X) :

Ljpj" —id = Ri,Li® — -+,
and so) the couple of funcotrs (Li*, j*) is conservative on' SHZ, (X). 7
Furthermore, the counit morphism Li*Ri, is invertible.
Rough outline of the proof.
o For a projectively cofibrant a:, (T'x)-spectrum valueed in Shv:,(Sm /X, 90), the commutative square :

jiiE—E

|

* —— ,i"E
is a levelwise homotopy cocartesian by Proposition 4.5.36. Thus, it is a homotopy cocartesian of spectra.

A proof of this fact:

If a commutative square of spectra is levelwise a homotopy cocartesian square of spaces, it is
homotopy cocartesian.

may be found for instance in the proof of Lemma 2.6 of

[LRV] Wolfgang Lueck, Holger Reich, Marco Varisco, Commuting homotopy limits and smash
products, K-Theory 30-2 (2003) 137-165.

e By Proposition 4.5.45,
i Spectfta (r5) (Shve, (Sm /Z,9)) — Spectft“ (x) (Shvey (Sm /X, 1))

preserves the stable A’-equivalences, and so derives trivially.
o Then, for a cofibrant object E in Spectfta(rrx) (Shv:,(Sm /X,90)) , we may take

ivi'BE
for Ri.Li*E € Ho (Spectfw () (Shveg (Sm /X, mt))) . This is because: °

— we do not have to derive 7" for this cofibrant object E, for we have a Quillen adjunction (i*,4.);
— we do not have to derive i. we so above.

e As we discussed between. Lem.4.5.43 and Cor.4.5.44, for a cofibrant object' E in
Spectio (1) (Shve,(Sm /X,9)) , and so also a cofibrant object in Spect,, (PreShv(Sm/X,M)), we
may take o

, JiTE
for Lj;5*E € Ho (Spect?x (PreShv(Sm /X,9))) . This is because j*E is still cofibrant, for (j*,j.) isa
Quillen adjunction, and so we do not have to derive jy for this object j*E.
e By the above discussion, we obtain an distinguished 2-triangle in SHZ;(X) :
Ljyj” — id = Ri,Ls® — -+,
and so, (Li", j) is conservative on SHZ; (X). .

e The invertibility of the counit morphism Li*Ri, follows from the analogous unstable result of Corollary

4.5.44 by Lem.4.3.59, becase . derives trivially for the ¢t-sheaves. .

\ . o)
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4.7 Finishing the verification of the stable homotopy 2-functor axiom DerAlg
5 of DiaSch/S 3> (F,I) — SH%(F,ZI) € TR - smooth base change and
homotopy invariance

- smoth base change [Ayoub, Th.4.5.48, p.553] N
- Given a cartesian square of S-schemes:
x -L,x
£ J, lf
vy 25y

with f smooth. The base change morphism Lf;Lg"* — Lg*Lf; is invertible.
N L] 1

Rough outline of the proof.

e Given four functor fy,9%,¢'" and fi are.left Quillen wrt. the Al-stable projective structure
(Wai_st, Cofproj, Fibpoi_a1_s,) , it suffices to prove that the natural trasformation fig'"" — g*fy is
levelwise w.r.t. the 9 valued presheaves.

o Since the four functors in question commute with small colimits, it suffices to evaluate U’ ® Acs: with U’
a smooth X'-scheme and A € Ob(9M).

e We then obtain the arrow:
U'ex Y 2Y 5Y)®Ac = (U = X' 5 X) xxY) ® Acst

Now the result follows from the transitivity of fiber product of schemes.

0O
- J
homotopy invariance [Ayoub, Prop.4.5.49, p. 553] N

Let X be a S-scheme and denote p : A} — X the projection of the affine line on Ax. . Then the unit morphism
id = Rp.Lp* is invertible.

Rough outline of the proof.
o It is equivalent to prove the counit LpjLp* — id is invertible.
o By the projection formula, we deduce an isomorphism LpyLp*(—) ~ (L;nﬂ 1y ) ® (—) with 1 Al the unit
object of the monoidal category Mr (Ak) .
* By definition of py, the object py1,1 is the suspension Tx-spectrum Sus%, = (Ak ®1).

o Thus, it suffices to show the following morphism is a levelwise weak A'-equivalence:
Sus}, 5 (Ak ® 1) - Susd, 5 (idx ® 1)

o At the level n € N, this arrow is given by A ® T§™ — T@"™. Now the result is clear.

\__ ' J
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5 Construction of the adjunction f : Sh(X) 2 Sh(Y) : f'

5.1 Thom autoequivalence
Consider a sequence of S-morphisms

such that p o s = Idx and p smooth.
e Define a 1-morphism :

I

Pt
T

Then there exists a 2-isomorphism

—— [Ayoub,1.5.1, Def.1.5.1, Prop.1.5.2, p.66; Lem.1.5.3, p.67; Th.1.5.7, p.69] —_—

X5vix

Th(s,p) = ps 0 5. : H(X) = H(X)
e This 1-morphism Th(s; p) admits a right adjoint Th™(s,p) defined by '
Th (s,p) :=s' 0 p" : H(X) — H(X)
o By utilising the adjunction between Thy(...) and Th™*{(...) we define by Proposition 1.1:9 a 2-morphism:
¢-1(f): f*Th™"(s,p) = Th™'(s',p) "
Ai}vays by Proposition 1.1.9, the following diamond (of the commutatiity with the unit):

f*Th™*(s,p)Th(s,p)

w}

Th™'(s',p')f* Th(s,p)

$(f)

Th™(s',p')Th(s',p') "
is commutatie. There also exists an analogous commutative diamond for the counit.

e Let f: X’ — X be a S-morphism. We choose a commutative diagram of cartesian squares:
b'd s’ > V! » U

|

X——v-—L2,x

N

#(f) : Th(s',p')f* = f*Th(s,p)

defined by the composition of the planar diagram:

H(X") >
~ Bzt \&

H(X) -

s H(V') B L HXY)
p* Bzy 3\ IS
——— H(V) S H(X)
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[Ayoub, Th.1.5.7, p.69; Cor.1.5.8, p.70] ~

( .

e The 1-morphisms Th(s,p) and Th™!(s, p) are inverse equivalences of each other.

o The 1-morphisms Th(s,p) (resp. Th™!(s,p)) is therefore called Thom equivalerice (resp. inverse Thom
equivalence) associated to the section s of the smooth morphism p.

e Suppose X is a quasi-projective S-scheme and X > V 5 X a sequence of S-morphisms such that
pos =idx and p smooth. For any object X’ — X of (Sch /X) one form the diagram of cartesian square:

x Ly T x
. X——=sv-L,x
with V/ =V xx X’. Then the pair of families
((Th(s',p')) xrx, (S(F)) 5:x71 > x7)

define an autoequivalence of 2-functor H{(sen /x) Which is the restriction of the 2-functor H* to (Sch /X).
Y .

s

[Ayoub, Th.1.5.9, p.71] ~

Let X = V 2 X be a sequence of S-morphisms such that pos = idx and p smooth. For any object X' = X
of (Sch /X) one form the diagram of cartesian squares:

, ,
X <5 v-Zyx

[, 1,1

X—v-2ux
For any X-morphism f : X" — X’, we have the following 2-isomorphisms:
o 4(f): Th(s",p")f* = f*Th(s,p) ,
e Y(f) : fTh(s",p") = Th(s',p') fs ,
o x(f): fiTh(s",p") = Th(s',p') fy if f is smooth,
o ¢(i) : Th(s",p")i' = i'Th(s’,p’) if i = f and is an immersion.

The family of equivalences (Th(s',p")) x/— x. provided with the 2-isomorphisms (¢(.) (resp. %(.), x(.). and
£(.) ) define an autoequialence on he 2-functér H* resp. H.;Y*Hy and ™™ H') restricted to X-schemes.

Furthermore, these autoequialences are compatible with all the exchange structures construced until now.

J

110

117



[Ayoub, p.72; Prop.1.5.11, p.72; Cor.1.5.13, p.73 ]

o Suppose given a commutative diagram:
w
SN

X—oV—X

with s a closed immersion, p and ¢ sﬁooth and po s = idx. Then it follows that
pogot=pos=idx

and that ¢ is a closed immersion. We can form the diagram:
u=tXid r=pr2

X =X Wxx —)X

‘We then have that u is a closed immersion, r is smooth and 7 o u = idx.
‘We will construct a 2-isomorphism (of composition):

C : Th(t,poq) = Th(s,p) o Th(u,r)

For this we form the diagram of S-schemes :

ks

and we take the composition of the following planaer diagram:

14

te
Un

4,

)

Prie (pog)
g (]
4::. ,l %
.

Py ®

T4

.(——-——.(—’0

*’1

The 2-morphism thus obtained is invertible becuase Ez.y is an !somorphlsm since ¢ is smooth and s is
a closed immersion (see Corollary 1.4.18).

(This statement completes Theorem 1.5.9):

Under the hypothesis of Theorem 1.5.9, the 2-isomo:phisms, which we just built, define an isomorphism
of autoequlalences between the autoequialence (Th(t,p’ o ¢'))x’—x nd the composed autoequivalence
(Th(s’,p") o Th(v, ")) x— x, which is for the restrictions of the 2-functorss :. (H*, H., “**H; and ™™ H'
to the category (Sch /X).

The Thom equivalences switch between them. More precisely; if X =% Vi 2% X and X 22 V2 25 X
be two sequences as before,then there exists a 2-isomorphism:

Cm : Th(s1,p1) o Th(sz,p2) = Th(sz,p2) o Ths1,p1)

Furthermore, Crn define an isomorphism'of autoequivalences between (Th(s},p}) oTh(s’gl, P5))x' X zla.nd
(Th(s}, ph) o Th(s},p}))x/_sx, which is for the restrictions of 2-functors : H*, H.,“*H' and ™™ H' to
the category (Sch /X).
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Thi

( .

e From a commutative diagram of S-schemes:

form a commutative diagram:

and the sequence :
XS UxvX)Xwxy) X=UxwX 35X

Then the following square of 2-isomorphisms is commutative:

Th(n,pogqom) ———— Th(t,poq) o Th(w,y)

Th(s,p) o Th(v,” 0 £) —— Th(s, p) o Th(u,r) o Th(w,y)

e Suppose given a commutative diagram:

as before and keep thg preceeding notations. Let X < R % X be a third such a sequence. Then the
following diagram is commutative:

Ch(t,poq) o Th(z, k) I > Th(z, k) o Th(t,p o q)
(o] (o] '

s, p) 0 Th(y, 1) 0 Th(z, k) —==+ Th(s, p) o Th(z, k) o Th(u,r) —==+ Th(z, k) o Th(s, p) o Th(u,r)

\_

[Ayoub, Prop.1.5.14, p74; Cor.1.5.15, p.76) —
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-

[Ayoub, Def.1.5.16, Th.1.5.17, Th.1.5.18, p.77]

e Suppose given a commutative diagram:

with s a closed immersion, p and ¢ smooth and po s = idx. With the preceeding notations, we set C’
the composed 2-somorphism

C': Th{t,po q) < Th(s,p) o Th(z,) <= Th(u,r) o Th(s,p)

The 2-isomorphism C’ is called the 2-isomorphism of the change composition . The inverse of the adjoint
of C’ shall be denoted by C”_;, which is the composite:

CL,: Th™'(t,pogq) RN Th™'(u,r) o Th™'(s,p) SEm, Th™(s,p) o Th™ (u,r)

Under the hypothesis of Theorem 1.5.9, the 2-isomorphism C’ define an isomrophism of autoequiva-
lences between the autoequivalence (Th(t',p’ 0¢')x’_,x and the composed autoequivalence (Th(u',r') o

Th(s’,p’))x'—»x, which is for the restrictions of the 2-functors : H*, H., " Hy and ™™ H' to the category

(Sch /X).
Furthermore, under the hypothesis of Proposition 1.5.14, the square of 2-isomorphisms:

Th(n,pogom) ————— Th(w,y) o Th(t,po q)

~ ~

Th(v, 70 z) © Th(s, p) —3 Th(w,y) o Th(u,r) o Th(s,p)

e Let £ be a locally free Ox-module of finite d;ivn:;w?f:._}l)fnote by

the associated vector bundle. This is the spectrum of the symmetric Ox-algebra ®;>0 Sym’ £ associated
to L. If s : X — V(L) is the zero section, we denote by Th(L) the equivalanece Th(s,p).

® When £ = Ox we also set Th(Ox)A[-2] = A(+1). The 1-morphism
Th(Ox)[-2] : A — A(+1)

is known under the name of Tate twist .

e For an exact sequence of locally free O x-modules :

0N MoL—0
there exists a 2-isomorphism of composition :
C : Th(M) - Th(N) o Th(L)
and a 2-isomorphism of change composiﬁion :

€’ : Th(M) = Th(L) o Th(N)
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5.2 fif'in (Sch/S)Y* and a cross functor structure on (H*, H*,Lisng,LissH!)

Definition of f' For a smooth morphism f, set
f'=Th(@)o f*
where Q; is the sheaf of relative diffrentials.

Definition of th econnection 2-morphism For a sequence of smooth S-morphisms e ENPREN o, we take
c(f,g) by the composite:

(go ) i'g
» € (F29) « s C . . e ST . .
Th (Qes) (g0 f)" — Th (Qges) f*9° —— Th(Qs) Th (f*Q,) f*g" —— Th(Qs) f*Th(Qy) g
with C’ the change composition 2-isomorphism (Th.1.5.18) associated to the short exact sequence:
0= "y = Qgog = Qy >0
Cocycle axiom [DV, 2-functor, Def.2.2] Cosider three composable smooth morphisms:
elreBhelhe '

We must verify that the following diagram is commutative:
(hgf) — (@'’

|

k f'(hg)' _).f!g!h!

Ayoub, 1°H'| p.78-79
I Y y P ] ] \

s [Ayoub, =H,, p.79]

By Prop.1.1.17, there exists a unique global left adjoint “***H, of **H' such that :

e For any smooth S-morphism f,
Hi(f) = fi = fiTh™(Qy)

e The unit and the counit 2-isomorphisms are respectively::
id —— Th(2)Th ™ (Qs) and fiTh Q) Th(Q)f* — fif* :

Th(Q)f* fTh™ (%) id
o The connection 2-isomorphism relative to the sequence e Lo % ais given by the composite of the
2-isomorphisms::
(go gfi

_ cy(f.9) - oLy 1w - - -
e Th Y (Qgos) = gafiTh™* (Qgor) —— gufyTh™* () Th™! (Q7) —— gyTh™* (Qg) fyTh™* (Qy)

/
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[Ayoub, Prop.1.5.19, p.79-81] =

There exists a cross functor structure on the quadruplet:
(H", H.,LsH,, LissH!)

such that for any cartesian square of S-schemes (C) :

{

1: The exchange 2-morphism Ez.((C) : figh — g.fi relative to the exchange on (H.,***H:) and associated
to the square (C) is given by the composite of planar diagram:

g
—

o——o
-

LN
with | f smooth, we have:

Th=1(Q,,) Th~(8y)

l;ax\ l,e\

i

o——0i——o0

]

]
3

e — 00

2. The exchange 2-morphism Ez*'(C) : ¢'* f' = F''g" relative to the exchange on (H‘ Lisspy! ) and associated
to the square (C) is given by the composite of planar dlagram

Th(Q,) Th(fy)

s ——— o

5 T

P2

I

&y

P
1

I

3. The exchange 2-isomorphism Ez.(C) : f'g. ¢ gl f’ " relative to the exchange on (H.,™**H') and associ-
- ated to the square (C) is given by the composite of planar diagram:

’
*

o

o4 «—" e
Th(ﬂ,/)I N Tn.(n,) Th(ﬂ,;)T N TTh(nl)
! PA ! IS
rhadye]r | g
. —) . *e——e

r™
in the direction of the exchange (N or /).

4. The exchange 2-isomorphism Ez}(C) : g* fi ¢ f{g'" relative to the exchange on (H., Li’“H!) and associ-
ated to the square (C) is given by the composite of planar diagram:

1%

1 1%

] (—i—'- . or [ (g— [
'rh-l(nf,)l AN l'rh-‘(n,) 'rh-‘(n,,)‘[ N\ J:rh*%n,)
. {g— . ] (g—- .

s | =i
e i——e ei——e -

g*
in the direction of the exchange (< or ).
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5.3 fi - f'in (Sch/S)
[Ayoub, p.145, Prop.1.6.43, p.145; Prop.1.6.44, p.149] ~

e Starting with two 2-functors:

Tyt (Seh /$)™™ — IR
L=H': (Sch/$)“* — TR
we would like to apply Theorem 1.3.1 to construct a contravariant 2-functor:
H:: (Seh /S) — TR
~and the isomorbhisms of 2-functors:
Tmmyt v, fmmpt, Lisspyl o, Lisspy!

We have noted as usual f* instead of HY(f). To apply Theorem 1.3.1, for any commutative square (C):
z—*5x
|
T—5Y
with f, g smooth and %,k closed immersions, we must:‘

— construct a 2-isomorphism:
a(C): K'f' =5 g'd'

~ and then verify the compatibilities with the compositions of squares.
e To construct a(C), form the commutative diagram:

k

2 Xy T4 x

S )
i

T ——Y
and we take a(C) by the composite of 2-isomorphisms:

PN (B2')? S I g

In other words, a(C) is the composite of the planar diagram:

X!

4

H(Z) 2 H (X xy T) <X — H(X)

ST oy P

H(T) «———H(Y)

o The compatibilities with the compositions of squares are verified in the following propositions, whose
proofs forced Ayoub to draw so many commutative and planar diagrams!

Prop.1.6.43 The 2-isomorphisms a(C) are compatible with the vertical composition of the squares.

Prop.1.6.44 The 2-isomorphisms a(C) are cdmpatible with the horizontal composition of the squares.

J
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[Ayoub, p.152, Lem.}.ﬁ.flﬁ, p.152; Prop. 1.6.46, p.153] ~
® So, we are in the condition to apply Theorem 1.3.1. One thus obtain a contravariant 2-functor:
H: (Sch/S) —» TR
and the isomorphisms of 2-functors:
Tmmpgt ~ Ymmpt. Lissyl o, Lissy!

We have noted as usual f* instead of H(f).

o To construct the 2-functor H;, we remark that for any S-morphism f, which admits a factorization
f=pos

with s a closed i_mmersion and p smooth, the 1-morphism

o =5 =5'Th(Q,) px

admits a left adjoint fi given by: .
fi=pTH () 5.

o Replacing H' and H, Ey the isomorphic 2-functors, we may suppose the equalities:
Lissyl _ Lissyyt, * Tmmpl _ Tmmyl, LissH!_= Lisspy . !mmH!-= Immy,

e What has been shown can be summarized as‘follows:
[Ayoub, Prop.1.6.46, p.153] ~

(There exists a unique, up to an isomorphism, pair of 2-functors:
H', H: : (Sch/S) = TR

globél adjoint each other (H' is a right global adjoint of Hy) such that:
— H' extends (in strict sense) the two 2-functors : Tmmpyt and issy',
— H, extends (in strict sense) the two 2-functors : ™™ H, and Y**H,,

— The exchange with respect to the commutatie squre on the pair (I"‘“‘H!, LissH!) constructed in
the sub-section 1.6.5, becomes the trivial exchange induced by the connection 2-isomorphism of
H'.

N ' _J
: J
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5.4 A cross functor structure on (H*, H,, ™mH,, Im““H!) and proper base change
theorem (for a closed immersion)

~ [Ayoub, Lem.1.4.14, p.61] ~
( Proper base change theorem (for a closed immersion) ) Consider a cartesian square:
——) V4
y 24 x

with ¢ a closed immersion. Then the exchange 2-morphism
Ez:g"i. S i.g™

is invertible.

s [Ayoub, Prop.1.4.15, p.62] ~

(There exists a cross functor structure on the quadruplet:

(H‘, H,, ™y, "“’“H’) )

We have a cross functor from (Sch /S) and (Sch /8)"™™ to TR with respect to the class of cartesian squares
with vertical arrows closed immersions. This cross functor is defined by the data:

e The 2-functor H* and its right global adjoint H.,
o The 2-functor ™™H' and its left global adjoint ™"H,,
o The trivial exchange structure on (H.,™™H,),

o The exchange structure on (H*,"™®H') deduced from the isoexchange of type \,, inverse of the exchange

on (H*,'™™H,) (with respect to the cartesian squares) and the global adjunction between ™™H, and
Immyy!
H.

For a cartesian square (C) :

with i a closed immersion, the exchange 2-morphism of the exchange structure on (H.,™™H') is given by
Ez\,(C) = * (Ez%(C)). It is therefore the composite:

f/ () ti f/ e ()t z(zof),.z —z(foz) z;‘ ex(i'yf) zf:‘l.ll [ACH) lf,.

The exchange on (H*, oyt ) is given by the exchange 2-morphism Ez"*(C) : f™*i' = ¢'f* equal to the
composite:
FADIREON m(t) fi 2 Bzl(O)7} i'!f‘i.i! [AQ) i'!f'
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5.5 A cross functor structure on (H* H,, H, H')

[Ayoub, p.153, Prop.1.6.47, p.153]

.

e Starting with two exchange structures:
— (H*,"™mH') (seé Prop.1.4.15),
(H*,1**H') (see Prop.1.5.19),
we would like to apply Proposition 1.2.7 to construct an exchange on

(H*,HY

e Suppose given a commutative diagram of S-schemes:

Z — X m
n f
g T — Iy
A A

isomorphisms below:

'
| %« Ez™ 1

I'm'a* == l'a*f' ——Em—l‘) o’k f!

| Iy

1.0 1 .1
nja’ ——na’t ——a"gi
Ez'* E:E“

is commutative. In other words, the cube:

|

is commutative.

obtain an exchange structure on

(H*,H)

To apply Proposition 1.2.7, we shall prove the following Proposition 1.6.47:

with 4,7, k,1 clﬁsed immersions, f, g, mn,n smooth morphisms, and such that the four squares having
tow parallel ediges worded (by these eight morhipsims) are cartesian. Then, then the diagram of 2-

e Ayoub proved the above claim by drawing many commutative and planar diagrams. In this way, we

J
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[Ayoub, p.155; Prop.1.6.48, Lem.1.6.49, p.155] N

-o Now we would like to prove:

[Ayoub, Prop.1.6.48, p.155]

There exists a unique cross functor structure on the quadruplet (H*,H., Hi, H!) which exctends the
following two cross functors: )
— (H‘, H.,I'“'“Hg,l'““‘H!) of Proposition 1.4.15.

— (H",Ha,"=H,, L=} of Proposition 1.5.19.

by applying Proposition 1.2.14 with
(H*,Ha, Hi, H') = (G*,F1, F2, G2)
e Actually, this is now easily taken care of as follows:
— From Prop.1.6.47 and Prop.1.2.7, we established an exchange structure on
(H*, HY).
On the other hand, from Prop.1.6.46, p.153, we obtain a global adjoint pair
Hy 4 H'
From these, we obtain an exchange structure on
(H*,Hy) = (G, Fy)

— We must show this (H*, H:) is an isoexchange, but this claim follows from the isoexchange properties
of the following two exchange structures:

* The cross functor structure on (H*,H.,"™™H,,"™™H'} of Proposition 1.4.15 gives an exchange
structure on

(H‘, lmmH!)‘
* The cross functor structure on (H*, Hx, “**Hy, 1**H') of Proposition 1.5.19 gives an exchange struc-
ture on .
(H', L:ssH!).

Actually, the former is an isoexchaange by the (proper) base change theorem for a closed immersion
(of Lerma 1.4.14, p.61) and the equality

=1
valid for a closed immersion 3.
The latter is an isoexchange from the axiom 3 and the equality

fi={Th™ (2)
valid for a smooth S-morphism f. _
In this way, Proposition 1.6.48 is established. ) O

The established cross functor structure (H*, H,, Hy, H') enjoyé the following property:

o The exchange structure on the pair ("™™H.,H;) induced by restriction of the cross functor constructed
in Prop.1.6.48 coincides, module the equality ™™H, = "™%H,. with the exchange induced by restriction
of the trivial exchangé (i.e. obtained using the connection 2-isomorphism) on the pair (H, Hi).

J
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6 The proper base change theorem

: ( [Ayoub, Def.1.7.1, p.157] ~
Given a S-morphism between quasi-projective S-schemes:
f: XY

(which becomes separated) - we form the cartesian square:

X xy X 223 x

and denote A the diagonal immersion:
X—->XxyX

The immersion A is closed since f is separated. In particular, we have the equality A, = A. (in effect :
Tomy, — ooy
We then take for a = ay the composite :

s+ fi= fildx. 25 fipra e 22 fopry Al
" -1
= fuprnA 2 fldx = £
In the language of the plane diagram, oy is the composite:

H(X)

H (x Xy X) ——3 H(X)
Pnn f!l

H(X ) -— H(Y)
F [Ayoub, Th.1.7.9, p.167] N

Let X be a quasi-projective S-scheme. Denote by pn the canonical projection P — X. Then, the 2-morphism

Qpy * Pny = Pr,

is invertible.
N y,

[Ayoub, Cor.1.7.13, Cor.1.7.14, p.173] ~N

( Let p is the projection P% — X.
e The 2-morphism
ap :pp* = pap”
is invertible.
e The 2-morphism ) :
Gpipp PP
is invertible.

U ) _/
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{Ayoub, Th.1.7.17, Cor.1.7.18, p.177]
e Let f: X > Y be a projective S-morphism. The 2-morphism
as: fi— f«

is invertible.

. Supl;ose given a cartesian square of S-schemes:

x'Zx
I /1 lf
Y’ —Y
"with f projective. Then the exchange 2-morphism
! Ix

Ezi: g fu = fig

is invertible.
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- [CD, Prop.2.3.11, p.34] —

Consider a morphism of complete triangulated P-fibred categories over S:
¢*: F— F
o For any morphism f:Y — X there is an exchange transformation [CD,1.2.5.1]:

Ex(¢*, fi) : ¢xJo — fudy

o If 7 and F' satisfy the support axiom and f is separated of finite type, another
exchange transformation is constructed [CD, Prop.2.2.11]:

Exz(¢", fi) : ¢%fy = fidy
o These exhange transformations enjoy the following properties:

— Leti:Z — X be aclosed immersion such that F and F’ satisfy property (Loc;).
Then the exchange
Ex(¢*,ix) : Pxis — ixdy
is an isomorphism.
— Assume F and F’ satisfy property (Loc). Then the following conditions are
equivalent:
(i) For any integer n > 0 and any scheme X in S, the exchange Ez(¢*,pn,) is an
isomorphism where p, : P% — X is the canonical projection.
(ii) For any proper morphism f : Y — X, the exchange Ez(¢*, f.) is an isomor-
phism. ‘ 4
— Assume F and F’ satisfy properties (Loc) and (Supp). Then conditions (i) and
(ii) above are equivalent to the following one: '

(iii) For any separated morphism f : Y — X of finite type, the exchange Ez(¢*, fi)

is an isomorphism. -

- : J
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