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1. INTRODUCTION −WHY FLAGIFIED BOTT MANIFOLDS?‐

This article is a research announcement of the part of the results

in the progress paper [KLSS] about geometry, combinatorics and alge‐
bra (representation theory), so‐called Bott�s triangle, of flagified Bott

manifolds.
In this paper, we introduce the following theorem.

Theorem 1.1. The natural torus action on a flagified Bott manifold
is the maximal torus action preserving its complex structure.

We first introduce the motivation of flagified Bott manifolds. A Bott

manifold, defined by Grossberg‐Karshon in [GK], is �topologically�
obtained as the iteration of complex projectivization of Whitney sum

of two complex line bundles. More precisely, a Bott manifold B_{n} is a

sequence

B_{n}\rightarrow B_{n-1}\rightarrow\cdots\rightarrow B_{1}\rightarrow B_{0}=\{pt\}
of manifolds B_{j}=\mathbb{P}(E_{j}) , where E_{j} is a Whitney sum of two complex
line bundles over B_{j-1} and \mathbb{P}(E_{j}) is its projectivization, i.e., B_{n} is

diffeomorphic to the iterated \mathbb{C}P^{1} ‐bundles. We call \{B_{j}|j=0, . . . , n\}
a Bott tower of height n (or an n ‐stage Bott tower). On the other hand,
Grossberg‐Karshon also introduce the complex manifold by using the

notion of �Lie theory called a Bott‐Samelson variety. Here, a Bott‐

Samelson variety is defined as follows. Let G be SL(r+1, \mathbb{C}) ,
and

B be its Borel subgroup. Let W be the Weyl group of G , which is

isomorphic to the symmetric group S_{r+1} . Fix the generators (simple
reflections) of W(\simeq S_{r+1}) , and choose some s_{j}, j=1 ,

. . .

,
n

,
from

the generators. The following submanifold X (sl, . . .

, s_{n} ) \subset(G/B)^{n},
determined by these generators, is called a Bott‐Samelson variety:

X (sl, . . .

, s_{n} )
= { (g_{1}B, g_{2}B, \ldots, g_{n}B)|g_{j-1}^{-1}g_{j}\in\overline{Bs_{j}B} , for all j=1 ,

. . .

,
n},
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where g_{0}=e . A Bott manifold is also obtained by deforming the

complex structure of a Bott‐Samelson variety. Using this deformation,
Grossberg‐Karshon studies the interesting relations among geometry,
combinatorics and algebra of Bott manifolds, so‐called Bott�s triangle.

Apart from the original motivation, toric topologists generalize Bott

manifolds from topological point of view in [CMS, KS14, KS15] as an

effective testing ground for cohomological rigidity problems. Their def‐

initions are just changed the assumptions of complex vector bundles E_{j}
in the (topological) definition of Bott manifolds. Namely, if we change
the assumption of each E_{j} to any Whitney sum of complex line bun‐

dles then B_{n} is called a generalized Bott manifolds in [CMS], and if we

change that to any complex vector bundles then B_{n} is called a complex
projective towers (or \mathbb{C}P ‐tower) in [KS14, KS15]. Both manifolds are

diffeomorphic to the iterated complex projective bundles. However, it

seems to be hard to find the (natural) counterparts corresponding to

Bott‐Samelson variety for these topological generalizations. Therefore,
from the point of view of studying Bott�s triangle, these topological
generalizations are not so effective. So in this paper, we introduce

more natural generalization of Bott manifolds (from the point of view

of studying Bott�s triangle).
In our definition in Section 2, the obtained topological space is the

iterated flag bundles instead of the iterated complex projective bun‐

dles, so we call it a flagified Bott manifold. We also define a flagified
Bott‐Samelson variety as a generalization of a Bott‐Samelson variety.
Moreover, we show that the flagified Bott manifold has the structure

of a GKM manifold in the sense of Guilleminn‐Zara [GZ]; however, \mathrm{a}

flagified Bott‐Samelson variety with the natural torus action does not

have the structure of a GKM manifold though they are diffeomorphic.
In Section 3, we give an outline of the proof of Theorem 1.1 by using
the invariant defined in the paper [Ku].

2. FLAGIFIED BOTT MANIFOLDS

We first introduce the definition of flagified Bott manifolds. To do

that, we prepare the general notations. Let F be \mathrm{a} (smooth, compact,
connected) manifold and E be a complex vector bundle over F . Let

E_{p}\subseteq E be the fibre over p\in F . The associated flag bundle Flag (E)\rightarrow
 F is obtained from E by replacing each fiber E_{p} by the flag manifold

Flag(Ep), i.e., the set of full flags \{0\}\subset V_{1}\subset V_{2}\cdots\subset V_{n}=E_{p} in E_{p},
where V_{i} is a complex i‐dimensional vector subspace in E_{p}(\simeq \mathbb{C}^{n}) (Cf.
the definition of projectivization of complex vector bundles).
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Definition 2.1. \mathrm{A} flagified Bott tower \{F_{j}|j=0, . . . , m\} of height
m (or an m‐stage flagified Bott tower) is a sequence:

F_{m}\rightarrow F_{m-1}\rightarrow. . . \rightarrow F_{1}\rightarrow F_{0}= {pt},

of manifolds F_{j}=Flag(E_{j}) ,
where E_{j} is a complex vector bundle over

F_{j-1} which splits into complex line bundles (we often denote E_{j}=
\oplus_{i=1}^{n_{j}+1}$\xi$_{i,j} by a complex line bundle $\xi$_{i,j} over F_{j-1} ). We call F_{j} the j‐
stage flagified Bott manifold of the flagified Bott tower. In particular,
we call F_{m} a flagified Bott manifold.

2.1. Properties of flagified Bott manifolds. Because each line bun‐

dle over F_{j-1} is a torus equivariant bundle and the flag manifold has

the natural torus action, there is an (n_{1}+\cdots+n_{m})‐dimensional torus

action on F_{m} which preserves the complex structure. Moreover, by
definition, it is easy to check that the flagified Bott manifold F_{m} is

equivariantly diffeomorphic to the following twisted product:

F_{m}\displaystyle \cong\prod_{j=1}^{m}PU(n_{j}+1)/\prod_{j=1}^{m}T^{n_{j}}
:=PU(n_{1}+1)\times$\tau$^{n_{1}}(PU(n_{2}+1)\times$\tau$^{n_{2}}(\cdots\times PU(n_{m}+1)/\mathcal{I}^{m_{m}})\cdots) ,

where PU (n+1)\simeq SU(n+1)/\mathbb{Z}_{n+1} , i.e., the quotient group of SU(n+
1) by its center, T^{n_{j}}\subset PU(n_{j}+1) is the maximal torus and T^{n_{j_{-}}}

action on the latter factors, i.e., the action on PU (n_{j+1}+1)\times\cdots\times
 PU(n_{rn}+1) factor, is determined by the structure of fibres. Note that

a flag manifold is a GKM manifold (see [GZ] for details), i.e., the one‐

skeleton of orbit space of torus action has the structure of a graph;
more precisely, zero‐dimensional orbits are regarded as vertices and

invariant 2‐spheres consisting of one‐dimensional orbits are regarded as

edges in the orbit space. By using this fact and the above equivariant
diffeomorphism, we have the following proposition.

Proposition 2.2. The flagified Bott manifold is a GKM manifold.

2.2. Flagified Bott‐Samelson varieties. There is the Bott‐Samelson

variety counterpart for the flagified Bott manifolds, called a flagified
Bott‐Samelson variety. Let us briefly introduce it (see the upcoming
paper [KLSS] for details). We first choose an element w_{j}\in W from the

Weyl group of G for j=1 ,
. . .

,
n . Moreover, we assume that each w_{j} is

the longest element of some Weyl subgroup W_{j} in W , i.e., W_{j} is gener‐
ated by some (fixed) generators in W . Then, the following subvariety
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X(w_{1}, \ldots, w_{n})\subset(G/B)^{n} is called a flagified Bott‐Samelson variety:

X(w_{1}, \ldots, w_{n})
= { (g_{1}B, g_{2}B, \ldots, g_{n}B)|g_{j-1}^{-1}g_{j}\in\overline{Bw_{j}B} , for all j=1 ,

. . .

,
n},

where g_{0}=e . If we choose each w_{\dot{j}} as the simple reflection s_{j} ,
then

this is nothing but the Bott‐Samelson variety. In the above case, it

is known that X(w_{j}) is the flag manifold whose dimension depends
on the length of w_{j} ; for example, X(s_{j}) is \mathbb{C}P^{1} . Therefore, by iterat‐

ing the projections from the 1st factor of X(w_{1}, \ldots , w_{n}) ,
we see that

X(w_{1}, \ldots, w_{n}) is the iterated flag bundle. In particular, we have the

following fact:

Proposition 2.3. The flagified Bott‐Samelson variety X(w_{1}, \ldots , w_{n}) is

a smooth manifold.

In [KLSS], we show that X(w_{1}, \ldots , w_{n}) is diffeomorphic to a flagified
Bott manifold. However, the natural complex structure induced from

(G/B)^{n} (i.e., regarding as a complex submanifold of (G/B)^{n} ) is differ‐

ent from that of the flagified Bott manifold induced from the flagified
bundles (i.e., regarding as a \mathbb{C}P‐tower, see Section 2.3); in [KLSS],
we also construct a deformation of complex structures from a flagified
Bott‐Samelson variety to a flagified Bott manifold.

2.3. Relations among the generalizations of Bott manifolds. As

a final part of this section, we remark the relations among the general‐
izations of Bott manifolds. Due to the examples in [KS15, Section 2],
the flag manifold may be regarded as a \mathbb{C}P‐tower. From this observa‐

tion, we also know that the flagified Bott manifold is also a \mathbb{C}P‐tower.

Moreover, the lowest dimension of flag manifolds is the one‐dimensional

complex projective space \mathbb{C}P^{1} . This shows that the intersection of the

set of flagified Bott manifolds and the set of generalized Bott mani‐

folds is nothing but the set of Bott manifolds. Therefore, there is the

relations in Figure 1 among the manifolds which are generalizations of

Bott manifolds.

3. OUTLINE OF THE PROOF OF MAIN THEOREM

We next give an outline of the proof of Theorem 1.1, see [KLSS]
for details. Recall that we can define a free abelian group with finite

rank \mathcal{A}( $\Gamma$,  $\alpha$, \nabla) for the GKM graph ( $\Gamma$,  $\alpha$, \nabla) in the paper [Ku], called a

group of axial functions. We have the following fact (see [Ku, Corollary
3.1]):
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Bott

manifolds

FIGURE 1. The relations among the generalizations of

Bott manifolds.

Theorem 3.1. Let ($\Gamma$_{M}, $\alpha$_{M}, \nabla_{M}) be the GKM graph inducedfrom the

2m ‐dimensional GKM manifold with n ‐dimensional torus T^{n} ‐action.

If rank \mathcal{A}($\Gamma$_{M}, $\alpha$_{M}, \nabla_{M})=n , then this T^{n} ‐action is the maximal torus

action which preserving the almost complex structure.

Therefore, because the flagified Bott manifold M=F_{m} defined in

Section 2.1 is a \displaystyle \sum_{j=1}^{m}n_{j}(n_{j}+1)‐dimensional GKM manifold with the

natural (n_{1}+\cdots+n_{m})‐dimensional torus action, it is enough to check

that its induced GKM graph ($\Gamma$_{m}, $\alpha$_{m}, \nabla_{m}) satisfies that

rank \mathcal{A}($\Gamma$_{m}, $\alpha$_{m}, \nabla_{m})=n_{1}+\cdots+n_{m}.

For the flagified Bott manifold F_{m} , because its sequence of flag bundles

is equivariant, it is easy to show that there is the following sequence of

GKM fibrations (see [GSZ] for details) on its induced GKM graph:

($\Gamma$_{m}:$\alpha$_{m}, \nabla_{m})\rightarrow($\Gamma$_{m-1}, $\alpha$_{m-1}, \nabla_{m-1})\rightarrow\cdots\rightarrow($\Gamma$_{1}, $\alpha$_{1}, \nabla_{1}) ,

where ($\Gamma$_{1}, $\alpha$_{1}, \nabla_{1}) is the GKM graph of the n_{1}(n_{1}+1)‐dimensional flag
manifold with T^{n_{1}} ‐action with the fixed connection, i.e., the connection

induced from the invariant complex structure on SL(n_{1}+1, \mathbb{C})/B . In

this paper, we only give the outline of the proof for the case of m=2,
i.e., 2‐stage fiagified Bott manifold, because we can easily generalize
the proof for this case to the general m‐stage flagified Bott manifold.

We first claim the following fact:

Proposition 3.2. The GKM graph ($\Gamma$_{(n)}, $\alpha$_{(n)}, \nabla_{(n)}) induced from the

flag manifold M=SL(n+1, \mathbb{C})/B satisfies that \mathcal{A}($\Gamma$_{(n)}, $\alpha$_{(n)}, \nabla_{(n)})\simeq
\mathbb{Z}^{n}.
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Therefore, the T^{n}‐action on the flag manifold SL(n+1)/B is the

maximal torus action. Moreover, as a corollary of this proposition, we

have that

\mathcal{A}($\Gamma$_{1}, $\alpha$_{1}, \nabla_{1})=\mathcal{A}(1).
We next consider ($\Gamma$_{2}, $\alpha$_{2}, \nabla_{2}) , the induced GKM graph from F_{2},

where the 2‐stage flagified Bott manifold F_{2} satisfies the fibration SL(n_{2}+
1)/B\rightarrow F_{2}\rightarrow F_{1}=SL(n_{1}+1)/B . We can check the graph $\Gamma$_{2} is com‐

binatorially equivalent to $\Gamma$_{(n_{1})}\times$\Gamma$_{(n_{2})} . The following fact is the key
fact to show the main theorem:

Proposition 3.3. Up to weak equivariant diffeomorphism on F_{2} , we may

change the axial function on ($\Gamma$_{2}, $\alpha$_{2}, \nabla_{2}) which satisfies the following
properties: there exists two GKM subgraphs \mathcal{G}_{1} and \mathcal{G}_{2} in ($\Gamma$_{2}, $\alpha$_{2}, \nabla_{2})
such that

\bullet \mathcal{G}_{j}=($\Gamma$_{(n)}j, $\alpha$_{(n_{j})}, \nabla_{(n)}j) ;
\bullet the intersection of \mathcal{G}_{1} and \mathcal{G}_{2} is the one vertex.

Note that the maximality of the dimension of torus acting on a man‐

ifold is not changed by the weak equivariant diffeomorphism, i.e., equi‐
variant diffeomorphism up to automorphism on the torus.

By the computation of the group of axial functions, this proposition
shows the following lemma:

Lemma 3.4. rank \mathcal{A}($\Gamma$_{2}, $\alpha$_{2}, \nabla_{2})\leq rank \mathcal{A}(\mathcal{G}_{1})+ rank \mathcal{A}(\mathcal{G}_{2})=n_{1}+n_{2}.

On the other hand, because there is an (n_{1}+n_{2}) ‐dimensional torus ac‐

tion on F_{2} ,
it follows from [Ku, Theorem 3.1] that n_{1}+n_{2}\leq \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}\mathcal{A}($\Gamma$_{2}, $\alpha$_{2}, \nabla_{2}) .

Together with the above lemma, we establish the following equality:

rank \mathcal{A}($\Gamma$_{2}, $\alpha$_{2}, \nabla_{2})=n_{1}+n_{2}.

Consequently, by Theorem 3.1, we have that

Theorem 3.5. The natural (n_{1}+n_{2}) ‐dimensional torus action on F_{2}
is the maximal torus action.

The detailed proofs of the above facts and Theorem 1.1 will be ap‐

peared in [KLSS].
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