On the theory of Laplace hyperfunctions in several variables

 $\mathbf{B}\mathbf{y}$

NAOFUMI HONDA* and KOHEI UMETA**

Abstract

We survey the theory of Laplace hyperfunctions in several variables in [1, 2, 9]. A Laplace hyperfunction in one variable was first introduced by H. Komatsu ([3]-[8]) to consider the Laplace transform for a hyperfunction. We here construct Laplace hyperfunctions in several variables and their Laplace transform.

§ 1. A vanishing theorem of cohomology groups for the sheaf of holomorphic functions of exponential type

We briefly recall the vanishing theorem of cohomology groups on a Stein open subset with coefficients in holomorphic functions of exponential type and the edge of the wedge theorem for them.

Let n be a natural number, and let M be an n-dimensional \mathbb{R} -vector space. Let E be the complexification of M. We denote by \mathbb{D}_E the radial compactification of E which is defined by

$$\mathbb{D}_E := E \sqcup ((E \setminus \{0\})/\mathbb{R}_+) \infty.$$

Let U be an open subset in \mathbb{D}_E . A holomorphic function f(z) in $U \cap E$ is said to be of exponential type if, for any compact subset K in U, there exist positive constants C_K and H_K such that

$$(1.1) |f(z)| \le C_K e^{H_K|z|} (z \in K \cap E).$$

We denote by $\mathcal{O}_{\mathbb{D}_E}^{\text{exp}}$ the sheaf of holomorphic functions of exponential type on \mathbb{D}_E .

2010 Mathematics Subject Classification(s): 32A45, 44A10.

Key Words: Laplace transform, hyperfunctions, sheaves.

Supported by JSPS KAKENHI Grant Number 15K04887

*Department of mathematics Hokkaido University, Sapporo 060-0810, Japan.

^{**}Department of mathematics Hokkaido University, Sapporo 060-0810, Japan.

To recall the vanishing theorem of cohomology groups on a Stein open subset for $\mathcal{O}_{\mathbb{D}_E}^{\text{exp}}$, we give the definition of the regularity condition at ∞ for an open subset in \mathbb{D}_E . We denote by E_{∞} the set $\mathbb{D}_E \setminus E$. For a subset V in \mathbb{D}_E , we define the set $\operatorname{clos}_{\infty}^1(V) \subset E_{\infty}$ as follows. A point $z \infty \in E_{\infty}$ belongs to $\operatorname{clos}_{\infty}^1(V)$ if and only if there exist points $\{z_k\}_{k \in \mathbb{N}}$ in $V \cap E$ which satisfy $z_k \to z \infty$ in \mathbb{D}_E and $|z_{k+1}|/|z_k| \to 1$ $(k \to \infty)$. Set

$$(1.2) N_{\infty}^{1}(V) := E_{\infty} \setminus \operatorname{clos}_{\infty}^{1}(E \setminus V).$$

Definition 1.1. An open subset U in \mathbb{D}_E is said to be regular at ∞ if $N^1_{\infty}(U) = U \cap E_{\infty}$ is satisfied.

Note that this condition is equivalent to saying $E_{\infty} \setminus U = \operatorname{clos}_{\infty}^{1}(E \setminus U)$. Now we state our vanishing theorem of cohomology groups for $\mathcal{O}_{\mathbb{D}_{E}}^{\exp}$.

Theorem 1.2 ([2], Theorem 3.7). Let U be an open subset in \mathbb{D}_E . Assume that $U \cap E$ is pseudo-convex in E and U is regular at ∞ , then we have

(1.3)
$$\mathbf{H}^{k}(U, \mathcal{O}_{\mathbb{D}_{\mathbf{F}}}^{\exp}) = 0 \quad (k \neq 0).$$

The regularity condition of U at ∞ plays an essential role in our vanishing theorem of cohomology groups for $\mathcal{O}_{\mathbb{D}_E}^{\exp}$ as the following shows.

Example 1.3 ([2], Example 3.17). We consider the radial compactification $\mathbb{D}_{\mathbb{C}^2}$ of \mathbb{C}^2 . Let $(1,0)\infty\in\mathbb{D}_{\mathbb{C}^2}\setminus\mathbb{C}^2$. Set

$$egin{aligned} V := \left\{ (z_1,\, z_2) \in \mathbb{C}^2; \, |\arg(z_1)| < rac{\pi}{4}, \, |z_2| < |z_1|
ight\}, \ U := \left(\overline{V}
ight)^\circ \setminus \{(1,0)\infty\} \subset \mathbb{D}_{\mathbb{C}^2}. \end{aligned}$$

It is easy to check that $U \cap E = V$ is pseudo-convex in \mathbb{C}^2 and U is not regular at ∞ . In this case, we have $H^1(U, \mathcal{O}_{\mathbb{D}_E}^{\exp}) \neq 0$.

Furthermore, by showing a Martineau type theorem for $\mathcal{O}_{\mathbb{D}_E}^{\exp}$, we have the following theorem, which is a kind of the edge of the wedge type theorem for $\mathcal{O}_{\mathbb{D}_E}^{\exp}$. Let \overline{M} be the closure of M in \mathbb{D}_E .

Theorem 1.4 ([1], Corollary 3.16). The closed subset $\overline{M} \subset \mathbb{D}_E$ is purely n-codimentional relative to the sheaf $\mathcal{O}_{\mathbb{D}_E}^{\exp}$, i.e.,

(1.4)
$$\mathscr{H}_{\overline{M}}^{k}(\mathcal{O}_{\mathbb{D}_{E}}^{\exp}) = 0 \qquad (k \neq n).$$

§ 2. Laplace hyperfunctions and their Laplace transform

In this section we construct Laplace transform for Laplace hyperfunctions with support in an \mathbb{R}_+ -conic closed convex cone in \overline{M} and their inverse Laplace transforms. We first recall the definition of Laplace hyperfunctions:

Definition 2.1. The sheaf of Laplace hyperfunctions on \overline{M} is defined by

$$\mathcal{B}_{\overline{M}}^{\exp} := \mathscr{H}_{\overline{M}}^{n}(\mathcal{O}_{\mathbb{D}_{E}}^{\exp}) \underset{\mathbb{Z}_{\overline{M}}}{\otimes} \omega_{\overline{M}}.$$

Here $\omega_{\overline{M}}$ is the orientation sheaf $\mathscr{H}^n_{\overline{M}}(\mathbb{Z}_{\mathbb{D}_E})$ and $\mathbb{Z}_{\mathbb{D}_E}$ is the constant sheaf on \mathbb{D}_E having stalk \mathbb{Z} .

Let $a \in M$ and K be an \mathbb{R}_+ -conic closed convex cone in M. Let us denote by K_a the set $\{z+a; z \in K\}$ and denote by $\overline{K_a}$ the closure of K_a in \overline{M} . We first get the representation of $\Gamma_{\overline{K_a}}(\overline{M}, \mathcal{B}_{\overline{M}}^{\text{exp}})$ by the relative Čech cohomology groups with coefficients in $\mathcal{O}_{\mathbb{D}_E}^{\text{exp}}$.

Let us prepare some notation and the proposition below. For a subset $Z \subset \mathbb{D}_E$, set

$$(2.2) N_{\infty}(Z) := E_{\infty} \setminus \overline{(E \setminus Z)}.$$

For an open subset $U \subset E$, define

$$\widehat{U} := U \cup N_{\infty}(U).$$

Definition 2.2. Let Ω be an open subset in \overline{M} and Γ an \mathbb{R}^+ -conic open cone in M. Let U be an open subset in \mathbb{D}_E . We call U a wedge of the type $\Omega \times \sqrt{-1}\Gamma$ if U satisfies the following conditions.

- 1. $U \subset (\Omega \times \sqrt{-1}\Gamma)$,
- 2. For any open proper subcone Γ' of Γ , there exists an open neighborhood V of Ω in \mathbb{D}_E such that

$$(2.4) (M \times \sqrt{-1}\Gamma') \cap V \subset U.$$

We have the following proposition.

Proposition 2.3. Let K be an \mathbb{R}_+ -conic closed cone in M and Γ a proper open cone in M. Assume that Γ is given by the intersection of finite number of half-spaces in M. Then there exist an open neighborhood Ω of \overline{K} in \overline{M} and an open subset U in \mathbb{D}_E such that the following conditions are satisfied.

- 1. U is a wedge of the type $\Omega \times \sqrt{-1}\Gamma$.
- 2. U is Stein and regular at ∞ .
- 3. U is an open neighborhood of $\Omega \setminus \overline{K}$ in \mathbb{D}_E .

Now let us consider the representation of $\Gamma_{\overline{K_a}}(\overline{M}, \mathcal{B}_{\overline{M}}^{\text{exp}})$ by the relative Čech cohomology with coefficients in $\mathcal{O}_{\mathbb{D}_E}^{\text{exp}}$. Choose vectors $\gamma_0, \ldots, \gamma_n \in S^{n-1}$. By Proposition 2.3, we can take an open neighborhood Ω of $\overline{K_a}$ in \overline{M} and an open subset $U_j \subset \mathbb{D}_E$ which is the wedge of the type $\Omega \times \sqrt{-1}\gamma_j^{\circ}$, Stein and regular at ∞ , and furthermore,

an open neighborhood of $\Omega \setminus \overline{K_a}$. Here γ_j° denotes the polar set $\{y \in M; y\gamma_j > 0\}$ of γ_j . We also take a neighborhood U of $\overline{K_a}$ in \mathbb{D}_E which is Stein and regular at ∞ . Then $\mathfrak{U} = \{U, U_0, \ldots, U_n\}$ and $\mathfrak{U}' = \{U_0, \ldots, U_n\}$ give a relative open covering of the pair $(U, U \setminus \overline{K_a})$. Hence we have

$$(2.5) \qquad \Gamma_{\overline{K_a}}(\overline{M}, \mathcal{B}_{\overline{M}}^{\text{exp}}) = \frac{\text{Ker}\{\bigoplus_{j=0}^{n} \mathcal{O}_{\mathbb{D}_E}^{\text{exp}}(\bigcap_{l \neq j} U_l) \to \mathcal{O}_{\mathbb{D}_E}^{\text{exp}}(\bigcap_{l=0}^{n} U_l)\}}{\text{Im}\{\bigoplus_{j \neq k} \mathcal{O}_{\mathbb{D}_E}^{\text{exp}}(\bigcap_{l \neq j, k} U_l) \to \bigoplus_{j=0}^{n} \mathcal{O}_{\mathbb{D}_E}^{\text{exp}}(\bigcap_{l \neq j} U_l)\}}.$$

Let us define the Laplace transform for an element $f=\bigoplus_{j=0}^n F_j$ of the above representation of $\Gamma_{\overline{K_a}}(\overline{M},\mathcal{B}_{\overline{M}}^{\text{exp}})$. Set, for $j=0,1,\ldots,n$,

$$D_j := \{ x + \sqrt{-1}y \in E ; x \in \Gamma, y = \varphi(x)\gamma \},\$$

where we take an appropriate closed cone $\Gamma \subset \Omega$ which contains K and a point $\gamma \in \bigcap_{l \neq j} \gamma_l^{\circ}$. Further, the continuous function $\varphi : \Gamma \to \mathbb{R}_+ \cup \{0\}$ is chosen to satisfy the following conditions: $(1) \varphi(x) = 0$ in $\partial \Gamma$, $(2) \overline{D_j} \cap \overline{K_a} = \emptyset$, $(3) \overline{D_j} \subset U_j$. Note that such Γ , γ and φ always exist for each j.

Definition 2.4. Under the above situation, the Laplace transform of $f = \bigoplus_{j=0}^n F_j \in \Gamma_{\overline{K_a}}(\overline{M}, \mathcal{B}_{\overline{M}}^{\text{exp}})$ is defined by the integral

(2.6)
$$\mathscr{L}(f)(\lambda) := \sum_{j=0}^{n} \sigma_{j} \int_{D_{j}} F_{j}(z) e^{-\lambda z} dz,$$

where $\sigma_j := \operatorname{sgn} \left(\operatorname{det}(\omega_0, \dots, \omega_{j-1}, \omega_{j+1}, \dots, \omega_n) \right)$.

Note that the Laplace transform does not depend on the choice of Γ , γ and φ .

Definition 2.5. Let Ω be an open subset in \mathbb{D}_E . The set $\mathcal{O}_{\mathbb{D}_E}^{a,\inf}(\Omega)$ consists of a holomorphic function f(z) on $\Omega \cap E$ such that, for any compact subset $K \subset \Omega$ and $\epsilon > 0$, f(z) satisfies

$$(2.7) |e^{az}f(z)| \le C_{K,\epsilon}e^{\epsilon|z|}, z \in K \cap E.$$

with a positive constant $C_{K,\epsilon}$.

Then we find that the Laplace transform gives the following morphism.

(2.8)
$$\mathscr{L}: \Gamma_{\overline{K}_a}(\overline{M}, \mathcal{B}_{\overline{M}}^{\text{exp}}) \longrightarrow \mathcal{O}_{\mathbb{D}_E}^{a, \inf}(N_{\infty}(K^{\circ})).$$

Here K° denotes the dual open cone of K in E. Since the above morphism does not depend on the representation of $\Gamma_{\overline{K}_a}(\overline{M}, \mathcal{B}_{\overline{M}}^{\exp})$, \mathscr{L} is well-defined.

Definition 2.6. Let T be an open subset in E_{∞} , and U an open subset in \mathbb{D}_E . We say that U has the opening wider than or equal to T at ∞ if $T \subset N_{\infty}(U)$ is satisfied.

We have the following lemma which plays an important role in establishing the inverse Laplace transform.

Lemma 2.7. The following conditions are equivalent:

- 1. $f \in \mathcal{O}_{\mathbb{D}_E}^{a, \inf}(N_{\infty}(K^{\circ}))$.
- 2. There exists an open subset U in E whose opening is wider than or equal to $N_{\infty}(K^{\circ})$ such that f is holomorphic on U and, for any compact subset K in \widehat{U} , there exists an infra-linear function $\phi_K(s)$ satisfying

$$|e^{az}f(z)| \le e^{\phi_K(|z|)}, \quad z \in K \cap E.$$

3. There exists an infra-linear function $\phi(s)$ and an open subset U in E whose opening is wider than or equal to $N_{\infty}(K^{\circ})$ such that f is holomorphic on U with

$$|e^{az}f(z)| \le e^{\phi(|z|)}, \qquad z \in U.$$

Let us define the inverse Laplace transform.

Definition 2.8. We define the morphism

$$(2.9) \mathscr{S} : \mathcal{O}_{\mathbb{D}_{E}}^{a,\inf}(N_{\infty}(K^{\circ})) \longrightarrow \mathcal{B}_{\overline{M}}^{\exp}(\overline{M})$$

by

$$\mathscr{S}(f) = \bigoplus_{0 \leq k \leq n} \sigma_k f_k, \qquad f \in \mathcal{O}_{\mathbb{D}_E}^{a,\,\inf}(N_\infty(K^\circ)).$$

Here f_k is given by the integral

(2.10)
$$f_k(z) := \frac{1}{(2\pi\sqrt{-1})^n} \int_{T_k} f(\lambda)e^{\lambda z} d\lambda.$$

The path of the integration T_k is given as follows. Set

$$\Sigma_k := \{ \eta \in M; \eta = \sum_{j \neq k} t_j \gamma_j, t_j \geq 0 \}.$$

Let ψ be an infra-linear function, and let $\hat{\xi}$ be a point in the dual open cone of K in M. Then we put

$$(2.11) T_k := \left\{ \lambda = \xi + \sqrt{-1}\eta \in E ; \eta \in \Sigma_k, \quad \xi = \psi(|\eta|)\hat{\xi} \right\}.$$

Note that the integral f_k does not depend on the choice of ψ and $\hat{\xi}$ if ψ is rapidly increasing. We can see that f_k is a holomorphic function of exponential type on $(M \times \sqrt{-1} \bigcap_{i \neq k} \gamma_i^{\circ})$ by Lemma 2.7.

Furthermore, we have:

Lemma 2.9.
$$\operatorname{supp}(\mathscr{S}(f)) \subset \overline{K_a}$$
 for $f \in \mathcal{O}_{\mathbb{D}_E}^{a,\inf}(N_{\infty}(K^{\circ}))$.

Hence we have the inverse Laplace transform, and we can show that it satisfies the following theorem.

References

- [1] Honda, N., Umeta, K., Laplace hyperfunctions in several variables, *Journal of the Mathematical Society of Japan*, to appear.
- [2] Honda, N., Umeta, K., On the sheaf of Laplace hyperfunctions with holomorphic parameters, J. Math. Sci. Univ. Tokyo, 19 (2012), 559-586.
- [3] Komatsu, H., Laplace transforms of hyperfunctions: A new foundation of the Heaviside calculus, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 34 (1987), 805-820.
- [4] Komatsu, H., Laplace transforms of hyperfunctions: another foundation of the Heaviside operational calculus, Generalized functions, convergence structures, and their applications (Proc. Internat. Conf., Dubrovnik, 1987; B. Stanković, editor), Plenum Press, New York (1988), 57-70.
- [5] Komatsu, H., Operational calculus, hyperfunctions and ultradistributions, Algebraic analysis (M. Sato Sixtieth Birthday Vols.), Vol. I, Academic Press, New York (1988), 357-372.
- [6] Komatsu, H., Operational calculus and semi-groups of operators, Functional analysis and related topics (Proc. Internat. Conf. in Memory of K. Yoshida, Kyoto, 1991), Lecture Notes in Math., vol. 1540, Springer-Verlag, Berlin (1993), 213-234.
- [7] Komatsu, H., Multipliers for Laplace hyperfunctions a justification of Heaviside's rules, *Proceedings of the Steklov Institute of Mathematics*, **203** (1994), 323-333.
- [8] Komatsu, H., Solution of differential equations by means of Laplace hyperfunctions, Structure of Solutions of Differential Equations (1996), 227-252.
- [9] Umeta, K., A Laplace transform of Laplace hyperfunctions in several variables, RIMS Kôkyûroku Bessatsu, B57 (2016), 085-091.