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1 Introduction

Let  be a bounded domain with smooth boundary 89 in R?, d = 2,3. We assume that
Q is occupied with a material which has the dielectric constant e; < 0 with dissipation
§ > 0 and the matrix R?\  has the dielectric constant €, > 0. So the total distribution

of the dielectric constant is written as

€. +10, in Q,

€= _
€m, inR\Q,

which is called the plasmonic structure.

We also assume that Q is diametrically small and there exists the polarizable dipole
source a - V4, outside , where a € R¢ is a constant vector and 4, is the Dirac mass
at z € R\ Q. Then we consider the following dielectric equation under the quasi-static

approximation:
V. -eVu=a-Vé, inRY

u(z) = O(|z|*"%)  as |z| = oo.

Let u; be the solution of (1). The resonance is characterized by the blow-up of | Vaus|| z2():

“Vu;;lle(Q) — 00 as 6 — 0.

In particular, we are interested in anomalous localized resonance, which is characterized

as follows:

1. Es := 8[| Vusl|}2(q) — o0 as § =0,



2. there exist R > 0 and C > 0 such that |us(z)| < C for |z| > R.

Anomalous localized resonance (ALR) is discovered in [13], and applied to cloaking by
anomalous localized resonance (CALR) [11]. There are many results on this subject; see
e.g. [1] and the references therein. So far, however, ALR has been mainly studied in the
core-shell structure.

Here we consider simply connected structure for 2, and show that ALR occurs on ellipse
in two dimensions; on the other hand, it does not occur on ball in three dimensions.
We emphasize that in [12] the authors consider the plasmonic structure on disk in two
dimensions and showed that the complete resonance occurs.

2 Neumann-Poincaré operator and symmetrization

Let T be the fundamental solution to the Laplacian on R?, d = 2,3, which is given by

The single layer potential on 9 is defined by

Soalel(z) = /a T -p)doy), @ ER"

and the Neumann-Poincaré (NP) operator by

Koaalpl(z) = /an %I‘(z - ye(y)do(y), =€ dQ,

whose L%(0)-adjoint K, is also called the NP operator. Here we denote by -3% the
outward normal derivative in y-variable on 9. There holds the following jump relation:

aSmle]| @ = (5+Kin) W@, e on, ©

where the subscript + (resp. —) indicate the limits to 8 from outside (resp. inside) of
2. Moreover, the Plemelj’s symmetrization principle (also known as Calderén’s identity)
holds: '

SE)QK:SQ = Ks0Ssa. (4)

We denote H*(9Q2), s € R, the L®-Sobolev space on 912, whose norm is written as || - [|,.
Define
(0, V) = —(p, Soalt]) 12(om) (5)



for ¢, € Hy /*(89) := {p € HY*(89); (¢,1) 125 = 0}. Note that the right hand side
of (5) is well-defined, since Spn maps H~Y/2(8Q) to H/2(09). It is known that (-,-),. is
an inner product on Hy “/?(8Q2), which induces the norm equivalent to the original norm
of H=1/2(8Q):

ol = [lell-1/2 (6)
for all ¢ € Hy Y2(5Q); see {8]. Put Hy := Hy 2(5Q) equipped with the inner product
(*,-)2+. Then the Plemelj’s symmetrization principle (4) implies that K3 is self-adjoint
on Hg.

Let us consider the symmetrization of Kaq. If Spq is invertible, multiplying Sa—(% from the
right and left side in (4), we can obtain an analogue of the Plemelj’s symmetrization for
Kaq and symmtrize it in the same way as in the case of K}q. It is true in three dimensions;
unfortunately, there exists a domain 2 in two dimensions such that Saﬁ [po] =0 in Q for
a nontrivial ¢, € H~1/2(8Q), see [14].

To overcome this difficulty, we define a variant of the single layer potential

s Sealel, if (p,1 =0,
SBQ[SO] — { [ ] . ( >L2(aﬂ)
_la if ¥ = Po,
where @y € H™/? is an eigenfunction of K} corresponding to the eigenvalue 1/2 which
is normalized as
(o, 1>L2(6Q) =1 (7
Here we note that K}, is compact on H~1/2(692) and its spectrum o(K3q) C (—1/2,1/2);
moreover, 1/2 is simple, since a(lC§Q|Ho-1/z(am) C (=1/2,1/2) and dim HY2(6Q)\ H, /2(60) =
1 (see [3, 8, 10]). Then we have an extention of (4):

Sp0lCha = KoaSsas

and extend
(0, ¥)ue = — (0, Soalt]) 200 )
for ¢,y € HY/2(8Q). Note that (6) is also extended to H~1/2(8Q). Then (8) is an inner
product on H~1/2(992). We define the Hilbert space H* = H~'/2(8Q) equipped with the
inner product (-, )3, on which K}, is symmetrized.
Let us symmetrize Kan. Spa is a bijection from H~1/2 (09) to H/?(9Q2), so an analogue
of the Plemelj’s symmetrization holds:

Ssaken = KoaSx- (9)
Define
(f, 90 = —{f, Ssald]) z2(00) (10)



for f,g € HY?(8Q). Then (10) is an inner product on H'/2(8{2) which induces the
equivalence || - [l = || - [|1/2- Put H = HY2(8Q) equipped with the inner product (-,-)3.
Then Kpq is symmetrized on # by (9). We note that Spq is unitaty and {gan['c/)j]};??__l U
{-1} is an orthonormal bases of H, where {1;} is an orthonormal basis of H§. In
particular, we can choose {1;}22; as the normalized eigenvectors of Kjq on Hj.

For the details of the symmetrization of the NP operator, see [5].

3 Representation of the solution

If 89 is smooth, at least C** for some o > 0, then it is known that K}, is com-
pact on H* (see [9], also [10]). Since K3, is self-adjoint on Hg, its eigenvalues {A;}32,
accumulate to 0. We remark that |[A;| < 1/2 (see [6, 14]). Let 9; be the normalized
eigenfunction corresponding to the eigenvalue A; in Hg. Then we have an orthonormal

basis Soal{1)220 U {wo}] = (Soalts])2 U {~1) in A
Fix z € R?\ Q. Then I'(- — z) belongs to H?(01), and so admits the following

expansion:

I(z — 2) ZCJ 2)Ssal;](z) + co(2), z €09, (11)

for some constants c;(z) (depending on z) which satisfy

Z le;(2)?

Since —(Ssa[th], ¥;) 2(a0) = 8ij, where 6;; is the Kronecker’s delta, we see that

o) = — / (e — 2);(@)do(z) = —Soalts](2), 7 =1,2,3,....
80

We also see from (7) that
co(2) = Saalpo] (2)-

So, we obtain the following formula:

D(z - 2) = = Y Soalts](2)Soaltj](z) + Sealwol(z), = € dQ. (12)

i=1

Observe that )

= ISsalts](2)[* < oo. (13)
wo =1
Since || -l = || - |li/2, we find from the trace theorem that E;‘;l Ssalth;](2)Ssnt;]
converges in H'(£2) and harmonic in Q.- So, we obtain the following expansion formula of
the fundamental solution to the Laplacian.

D _ Soaltts)(2)Soalt]




Theorem 3.1. It holds that

F(:I: - Z) = — i839[¢]](z)339[¢]](’6) + SaQ[(,Do](Z), z € ﬁ, zZ € R¢ \ Q. (14)

We now derive a representation of the solution to (1). By the jump relation (3), the
equation (1) is equivalent to

Au=0 in Q,
Au=a-V§, in R?\ Q,
. Ou du (15)
ul_ = ul,, (6°+w)51;‘__6m5;+ on 89,
u(zx) = O(|z|*9) as |z| — oo.
We seek the solution of (15) in the following form:
us(z) = F,(x) + Ssalps](z), = €R% (16)
where the potential @5 € Hg and
F,(z):=a-V,I(z—2), z#z (17)

Note that AF,(z) = a-Vé,(z). The solution us(z) satisfies the equation of (15) on 2 and
R?\ ; moreover, us(z) decays as O(|z|'~%), since @y € H§. Then, from the transmission
condision in (15), we should solve the following integral equation

(AsI — Kjo)lws] = 8,F, on 8Q (18)

(0, F, denotes the outward normal derivative of F, on 0f2). Here

€+ €m + 16 €.+ €
A = (4 m (4 m X
5 (e —em) + 28 2eo—6) a8 =0
From the spectral resolution of K}g on #;
o0
Ksa =Y At ® v, (19)

i=1

the solution s to the integral equation (18) can be representad as

s = )\(:JEZ_))V ¥j, (20)

7=1
where
aj(z) = (aqu;"pj)H“-



We can see from (17) that

(2) = —a-V | = -T(z = 2)Sealy;l(z)do(z).
a0
From (3) and (14), we have
a oo
L r-)= zsmm asmlt)0) = 3 (3 -4 ) Sl
It then follows that )
oj(z) = <§ - /\j> a - VSaal;](2). (21)

4 Anomalous localized resonance

The resonance occurs if and only if —eﬂi'fm- € o(K5q); if ﬁm—) is a non-zero eigen-
value of the NP operator resonance occurs 1n the sense of (2) and have asymptotics
[Vusl| 2y ~ & as & — 0; however, it is not localized, see [5]. 4

Let us consider the resonance at the accumulation point of o(Kjq), i.e., € + €, = 0.
We assume that 0 is not an eigenvalue of KCjq. Since 0Q is smooth, K}, is compact, hence
0 is an essential spectrum. It is worth mentioning that we are not aware of any domain
other than disks on which the NP operator has 0 as an eigenvalue. If  is a disk, then
K3q =0 on H.

When ¢, + ¢,, = 0, we have

/\5 =~ 4.

We first show that
“San[w]”iﬂ(n) ~ ”‘P“gm (22)
for all ¢ € H}. In fact, we see from (3) and (19) that

2 8
ISnlell sy = | Sonlel -S| o

- <¢, (-3 +%%) m)w

Z (%) e tsnel

Since |A;| < 1/2 and accumulates to 0, we have (22). Then we see from (20)

(s 73¥1
I9us = F)llzaoy = sl = }: =




4.1 Anomalous localized resonance on ellipse and cloaking on ellipses

Assume that Q is an ellipse in R?. We use the elliptic coordinates
& = (21,22) = (21(p, 0), 22(p, 0)) € R,
where
z1(p,0) = Rcosfcoshp, z2(p,0) = Rsinfsinhp, p>0,0<6 <2

For py > 0, let
00 = {(z1(po,w), T2(po,w)) € R%; 0 < w < 2r}. (23)
Then 052 is an ellipse whose foci are (+R,0). The length element do and the outward

normal derivative a% are given in terms of the elliptic coordinates by

do = Edw, 9 _gad

v op’
E = E(po,w) := Ry/sinh’ py + sin’ w.

#%(w) == E(po,w) cosnw, ¢ (w) := E(po,w) Fsinnw, n=1,2,---.

where

Let us define

Then we have
Ksalpnlw) = andp(w),  Kialdnl(w) = —andy(w),

where
1

= et
{cos nw, sinnw; n = 1,2,-- - } is complete in LZ(892), hence in H (see [10]), which means
that KC3q has the following eigenfunction expansion in Hg:

ay, n=12---.

Ko=) onthS ®YL— > onthl @95,

n=1 n=1

C nenpo C S . __ nenpo S
Vn: V wcoshnpy ™ Vn = V 1rsinhnpo¢"' (24)

Note that {4, 935; n=1,2,---} is an orthonormal basis in Hg. We also have

where

Saaldnl(z) = g% o (25)




—————sinnd, p < po,
Soaldnl(@) = Ffinpo (26)
————sinnd, p > po,
where Spa[y] is the single layer potential of ¢. See [4, 7].
Furthermore, by the change of variables,
0 1 7] 0
— = #sinh p— —sinfcosh p— |, 27
dz1  R(sinh?®p + sin? §) (COS s pap st bcos p60) (27)
0 1 0 0
— = in 6 cosh p— fsinh p— | . 28
Oz  R(sinh’®p + sin®f) (sm 08 p@p +cosfsin p89> (28)
Theorem 4.1. Suppose that 2 is an ellipse given by (23). Then we have
6=3+rzlm|log 8| if po < ps < 3po,
IVusll3zgy ~ { |log |2 if. p. = 3po, (29)

1 if p= > 3po,
as 6 — 0.

Therefore, the quantity Es = § ”uéll%z(ﬂ) blows up if py < p, < 2p, while it tends to 0
as § = 0 if p, > 2p,.

Proof. We only have to study the asymptotics of the following summation:
f: |a - VSeals](2)|*

; 62+ A2
=

p%g

7 |a VSealysl(2)|* +Z 52 |a VSsal3)(2)I°

1

S
I

a -V (e7™ cosnf) |2

puqs

+
1 e coshnpy ]
—+ o

n=1 & nw
S 1 €™ sinh npg o 2
+ : a-V (e ™sinnd)|". (30)
; 02+ a? nw | ( )l
Since cosh npy & sinhnpy =~ e,
VS o 214
Z lo: 528_2[% G ~ Z 52 i 22 il “a -V, (€7 cos nw;,) |2 +]a-V, (e sinnwz)|2] .
=1 n

(31)
Let U(w) be the rotation by the angle w, namely,

cosw —sinw
Uw)=1]". .
sinw cosw



Using the change of variable formula (27) and (28), we have

—ne™f
. —np 0) = U(n)b(p, 8), 32
a V(e cos ) R(sinh2p+sin29)a (n6)b(p,6) (32)
a-V(e™sinnb) = —ne’ ™ a-U(nd —m/2)b(p,0), (33)
R (sinh? p + sin’ §)

where
b(p, 8) = (cos §sinh p, sin § cosh p) € R?,

which implies
n?e” |al* |b(p, 6)*

-n, 2 —np 2
la-V (e cosnb)|" + |a- V(e sinnf)|" = 2 (sinh2p+sin20)2. (34)
From (31) and (34), we have
o0
la - VSsq[;](z ne2nrog—2ne
Zl 6%+ ,\; Z N (35)
=

Let )
N=|-——1log2|,
[2/)0 € ]

which is the first integer such that § > le‘w fo_ Then one can easily see that

2np n e2npo e —2np

2np0 1 o
Z ;e+ :—-4np0 Z Z Z Tnpo =+ ﬁ Z ne 2n(pz Po).

n<N n>N n<N ' n>N

Observe that

2np0 ,—2np I]og§|5—3+pz/po if Po < pz < 3po,
ne e

> T D ne®oee) & L log o2 if p, = 3po,
n<N n<N .
1 if p, > 3po.

On the other hand, we have

% Z ne~2npz=p0) ] log5|6“3+l’z/ﬂol

n>N

So we infer that

S lo Smlu ) ogalomn o <. <o
T TonirIINIL

2 H —
52 + /\? | log 4 if p, = 3po,

=1 1 if p, > 3po.

Since "VFz”iz(n) is bounded, we obtain (29) O



To show ALR, we prove the following theorem.

Theorem 4.2. Let ) be an ellipse given by (23). It holds for all x satisfying p,+p,—4po >
0 that -
lug(z) — Fu(z)] S D eTnleetpseo), (36)
n=1
In particular, let > 0 be such that p > 4py — p., then there exists some C = C5 > 0 such
that
sup |us(z) — F,(z)| < C. (37)
pz2p
Proof. One can see from (16), (20) and (21) that

w@) - Fia) = Y (g - An) {(@- V. Soalt2](2)) Sonly£](2)

n=1

+ (@ V.Soalt);](2))Soalt7] (2)}-
It then follows from (24), (25) and (26) that

us(z) — Fy(z) =i ié —1 An (é - )\n)

n=1

npeo h
, {w (a- V(e cosmuw,)) €= cos nw,

niw
€™ sinh npg (

a- V(e " sinnw,)) e~ sin nwz},
nw

where (p,,w,) is the elliptic coordinates of z. Therefore, we have
e 64"4’0
lus(z) — Fy(z)| < Z — {la- V. (e7™ cosnw,)| + |a - V(e ™ sinmuw,)|} e .
n=1

We then see from (34) that

4Anpo ad
€ ne-npze—npz — E e—n(Pz+Pz“4P0),
n

n=1

lus(z) - Fu@)| S Y

which proves (36). (37) is an immediate consequence of (36). ]

Therefore, Theorems 4.1 and 4.2 imply that ALR occurs on ellipses in two dimensions.

4.2 Anomalous localized reaonance on balls

Assume that Q is a ball in R3. We use the spherical coordinates

T = (xh Ta, z3) = (IL'I(T‘, 0, 50)7 xz(’f', 0, 50)) $3(T1 01 ‘P)) € RS

10



11

where

z1(r,0,p) =rcosfsing, zi(r,0,0) =rsinfsing, =z3(r,0,¢)=rcosp,
r>200<0<2r,0<p <.
Then we have 8Q = {z € R%; |z| = ry}. The surface element do and the outward normal

derivative 3 e given in terms of the spherical coordinates by
v

do = 3 sin pdfdp, aﬁy = 627"
The Cartesian partial derivatives in the spherical coordinates are given by
0 .0 sinf @ cosfcosyp O
B_am:COSBsm(p—c';;_rsimp% - %,
0 c . O cos@ O sinfcosp O
a—zzzsm(}sm<,05+rsin¢@ = 6—90,
8 sinf 9

8_1173 = COSQOE - —r 890
Let Y;*(%) be the orthonormal spherical harmonics of degree n, where £ = (6, ) =

z/le:

2n+1 (n—|m|) ;
Y™(0 =(-1 (m+|m|)/2 . pm 9)ei™.
Here, P,l.m'(a:) is the associated Legendre polynomial with indicesn = 0,1, - and |m| < n.

Then we have 1

’Ct Ym — Y’In b
BQ[ n ](Z) 2(2n+ 1) n (zl)’
|z| =r9,mn=0,1,-- ,m=-n,-n+1,--- ,n—1,n
{,M2);n=1,2,--- ;m=—-n,—n+1,--- ,n— 1,n} is complete in LZ({2), hence in H,
which means that K} has the following eigenfunction expansion:

. oo} 1 n m m
Kin =X ey 2o, U

3
V@) = | g Y @), Jel = 1o

Note that {¢'(2); |z| =r0,n=1,2,--- ,;m = —n—n+1,--- ,n—1,n} is an orthonormal
basis in H§. We also have

where

1 r®
————Y &), for|z|=7r<m
2 1 n—1-"n —_ )

SealY,"(2) = " 1+ :2'“

™#), for|z|=71>m,



forn=0,1,---,m=—-n,—n+1,--- ,n—1,n. See [2]

Theorem 4.3. Suppose that (2 is a three dimensional ball. Then there is a constant C > 0

such that
Vusl L2 < C. (38)

Proof. By the symmetry, we can assume that a = (0,0, a3). Therefore, we only have to
study the asymptotics of the following summation:

im‘_V‘i@M_i a Ty (2 (18
62+A§ 2 1 1 2 2n+1 3 2”—'—181'3 7‘”+1 n
n—l‘s +
2n+1
which turns out that
S a3rg 1 3 o\ o 9 Cmyan 2
;52 1/ 1 2.(2n+1 (7) m;nl‘(”“)cow—’msmﬂ 1Y."(2)]
4\2n+1
- a3ry 1 3 ro\nt2 n
< 30 . (L0 R 2 m(s)|2
_;52 1/ 1\ (2n+1) (r) 2n+1) m;nlYn ()| (39)
4\2n+1

By the Unsold’s theorem
> wr@e =2 oz,
m=-n
the right hand side of (39) equals

Sl 2,.3

3
asry ) 1 C(To\"% 2 2n+1
2 1( 1 )2 (Zn-l-l) () 20 =

__2a3r3i 1 (n+1)° (Q)n%
A 1( 1 )2 m+1) \7

n=1 52 5 )
n

2agr0 Z( +1) (To)”'*

n=1
2a37‘0 To+T
w (7’ - ?”0)3 ’
which proves the theorem. O

Theorem 4.3 implies that ALR does not occur on ball in three dimensions.
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