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Abstract

We study the quantum dynamics of a charged particle in the plane in the presence of a periodically
pulsed magnetic field perpendicular to the plane. We show that by controlling the cycle when the
magnetic field is switched on and off appropriately, the result of the asymptotic completeness of wave
operators can be obtained under the assumption that the potential V satisfies the decaying condition
[V(z)| < C(1 + |z|)~* for some p > 0. The purpose of this article is to explain the reason why we
can admit such a very weak decaying condition.

1 Introduction

In this article, we would like to mention the results of our paper Adachi-Kawamoto [1].

We consider a quantum system of a charged particle moving in the plane R? in the presence of a
periodically pulsed magnetic field B(¢) which is perpendicular to the plane. We suppose that positive
constants B and T are given, and that B(t) = (0,0, B(t)) € R? is given by

B(t) — B, te U.,,Ez['n,T, nT + TB) =:Ip, (11)
0, ¢€Unez[nT +Tg,(n+1)T)=:1I,

for some T with T' > Tg. T is the period of B(t). We put
To:=T-Tg>0 (1.2)

for simplicity. Then the free Hamiltonian under consideration is defined by
1 2
Hy(t) = %(I’ - gA(t,z))

acting on J# = L%(R2), where m > 0, ¢ € R\{0}, = = (z1,22) and p = (p1,p2) = (=181, —i8,) are the
mass, the charge, the position, and the momentum of the charged particle, respectively, and

(-Bz2/2,Bx,/2) =: A(z), t€ g,

Alt,z) = @ (—z2,21) = {(0 0) tely

is the vector potential in the symmetric gauge. Then Hy(t) is represented as

HE I
Ho(t) = § o L€ (13)
HO? t € I,

where the free Landau Hamiltonian HE and the free Schrodinger operator HJ are given by

DZ

B 0 »*
HE = 5 HY = (1.4)

2m’
D is the momentum of the charged particle in the presence of the constant magnetib field B = (0,0, B),
which is given by ‘

B B
D = (D4, D) = (Pl + %—xz,pz - %xl) =p - qA(z). (1.5)
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Let Up(t,s) be the propagator generated by Hp(t) (in the sense of Theorem 2 of Huang [2]). By (1.3)
and the selfadjointness of HZ and H, Up(t,0) is represented as

Un(t,0) = e~it-nDHS [7,(T, 0)", t € [nT,nT + Ts),
O et T+ TSN HS —iTo HY o (T, 0)", ¢ € [nT + Tg, (n+ 1)T),

with n € Z, where
U(T,0) = e—iToHg o —iTs HY

is the monodromy operator associated with Hy(t), Up(T,0)° = 1d and Up(T,0)™ = (Up(T,0))~™ when
—n € N. Put

gqB
m 1

w o -
@=z, W=

| E

|w| is the Larmor frequency of the charged particle in the presence of the constant magnetic field B. As
is well known,

o(HE) = 0pp(HE) = {le (’n n %) ey {o}} (1.6)

holds, and each eigenvalue of H¥ is called a Landau level. (1.6) implies that
e—i2mHy W] — _1q
holds. Taking account of this fact, we always assume 0 < Tg < 2n/|w|, that is ,
0< |@|Tg <= (L.7)

for the sake of simplicity.
Now we will state the assumption on the time-independent potential V:
(V), V is a real-valued continuous function on R? satisfying the decaying condition

V() < Clx)™* (1.8)
with p > 0, where (z) = v1+ 22 .
Here we introduce the time-periodic Hamiltonian H(t) given by
H(t) = Ho(t) +V,
and the propagator U(t, s) generated by H(t). The main result of this paper is as follows:
Theorem 1.1. Suppose (1.7), and that Ty satisfies

cos(|w|Tg)

To > T = ——. 1.9
0 0,Cr |w' S]n(lwlTB) ( )
When 7/2 < |[@|Ts < &, assume that Ty satisfies
sin(|@|Ts) cos(|&|T
TO # To,res = (I I B) (I I B) (1.10)

&l (2sin®(|&]T5) - 1)
additionally. Assume that V satisfies the condition (V), for some p > 0. Then the wave operators
Wt =s— Jim U(t,0)*Us(t, 0)
exist, and are asymptotically complete:
Ran(W¥) = #.(U(T,0)).
Here #;.(U(T,0)) is the absolutely continuous spectral subspace associated with U(T,0).

Remark 1.2. The assumption (1.9) is the same as D > 0, where D is defined in (2.12). Moreover, the
assumption (1.10) is the same as L13 # 0, where Ly, is defined in (2.11).
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2 Classical orbit of the particle

If we suppose that B = 0 and T = 0 in (1.1) and (1.2), respectively, hence a constant magnetic field
is always absent, then it is well known that the p in (1.8) must be taken p > 1 in order to prove the
existence of wave operators Wi = s— lim;_,.+o, ¢/#o+Y)e=#H  On the other hand, if we suppose B # 0
and Tp = 0 in (1.1) and (1.2), respectively, hence the charged particle is always influenced by a constant
magnetic field. Then, even for large p, the existence of wave operators can not be proven. However,
by switching a constant magnetic fields on and off periodically with suitable period, the existence of
wave operators are proven even if p < 1. The mathematical reason of this phenomenon can be seen by
analyzing the classical orbit of the charged particle governed by this system. Hence the purpose of this
article is to calculate the classical orbit

(x(t)p, d)r2me), ¢ € L*(R?), =(t) = Uo(t,0)*zUy(t,0),

concretely. In the following, for simplicity, we calculate Up(nT,0)*2Up(nT,0), n € Z only. In Adachi-
Kawamoto [1], in addition to the classical orbit z(t), the integral kernel of Up(t,0) can be obtained
concretely. In particular, in [1], z(t) and integral kernel of Up(t,0) can be obtained for every ¢ € R not
only for ¢t = nT case.

In this section we will use the following notation

zg(t) — eitnge-itHg’ .’D(‘)B(t) — ¢itHg pe—itHy ,
08 = eiznge-qu, p(f)s (t) = gitHs pe'“”:f

for simplicity.

2.1 Free motion

At first, we consider the case where B = 0 and T = 0 in (1.1) and (1.2), respectively. Then we notice
that, for this case, Up(t,0) can be rewritten as e itHS Straightforward calculation shows

d ) )
P (1) = e B[ HY, ple=¢H5 = 0, (2.1)
% 9(t) = e[ HY, cle™*HE = 5 (p/m)e~HHY, (2.2)

and we notice that (2.1) yields pJ(t) = p and we also notice that p§(t) = p and (2.2) yield
z3(t) = tp/m + z. (2.3)
Above equation yields that, for the case B = 0 and Tz = 0,

()¢, B) 22y = (), D) L2(mey = t((D/ M), D) L2(ma) + (26, D) Laws)-

As is well known that, in the sense of quantum dynamics, ((p/m)¢, $)L2r2) stands for the initial ve-
locity of a quantum particle and (x¢, $)2(r2) stands for the initial position of the quantum particle.
Thus one can understand that the particle behaves in uniformly liner motion with the average velocity

((p/m)d, )12 mz2)-

2.2 Classical orbit associated with Landau level

Next, we consider the case where B # 0 and Tp = 0 in (1.1) and (1.2), respectively. In this case Up(t,0)
can be rewritten as e =45’ and the classical orbit (z(t)¢, ¢) L2(R?) can be rewritten as (zf ()¢, ¢) L2(x2).
Saying from conclusion, the charged particle behaves in circular motion with center ||z.¢||r2®re), Tc =
(®c,1, Te,2), Te,y = Dofmw + 1, 202 = —D1/mw + x5 and radius r = [lD@lL22)/|mw]|. Moreover, the
period of circular motion is 2r/|w|. By this we notice that the charged particle can not move out to
the some compact region because of the influence of the constant magnetic field. This fact and (1.6) are
closely related.
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We first define
D(t) = (Dl(t),Dg(t)) = e'-tH(';JDe—itHg’
E(t) = (kv (2), ka(t)) i= €HS ke itHS

where k is called pseudomomentum of the charged particle, and it is defined as

k= (k1,kz) = (Ih - %xz,m + q—2li$1) = p+ qA(2). (29
Then, D(t) and k(t) satisfy
%D(t) = &Hi[HE, D]etH?
2 k(1) = T {HE, Kle™ A
Here, noting the commutation relations
i[Dy, Do) = —¢B, i[D;,k;]=0, 4,5 € {1,2},
we have

i[HE,D1) = wD,, i[HE, Dy) = —wDy, i[HE ki) =i[HE ky]=0 (2.5)

and (2.5) yields, for D(t) = (Dy(t), Da(t)) = (etHS Dye~itHE  eitHs Dye=itHS) and k(t),

D(t) - wDa(t) =0, N
{ ;(t)+wD1(t)=0, k(t) =k, Dj(t) = 5 D;(®)-

Thus we have
Di(t) \ _ [ cos{wt) sin(wt) D, (2.6)
Do(t) /]~ \ —sin(wt) cos(wt) D, J’ '
k(t) = k. (2.7)
Noting (2.6) and (2.7) and that = can be rewritten as
gBzy \ _ ( k2— D>
gBz: | "\ Di—-k )’

we can deduce that, for z& (t) = (z8,(t), 28, (t)),

sin{wt 1 — cos(wt
o5, (t) = ¢ )Dl + ( )Dz + 1, (2.8)
mw mw
B cos(wt) — 1 sin(wt)
t) = D 2.
z5,2(t) oo 1t D; + (2.9)
hold. Here we subtract the term
D2 Dl
Ze = (xc,lyxc,Z)y Teg = — + 21, Te2 = ——— + T2,
mw mw

from z£(t), then we obtain

2§ (8¢ — 2Bl 2 may: = | DBl 72@ays /(mw)?.

This equation implies that the constant magnetic field makes the orbit of the particle circular.



2.3  Calculation of z(T') and z(nT)

At last, we consider the case where B # 0 and Tp # 0 in (1.1) and (1.2), respectively. By the
virtue of (2.3) (2.8) and (2.9), we can calculate z(T) concretely since z(T) is denoted by z(T) =
e Te HE iToHG pe—iToHG o~iT5 HY  Noting (2.6), (2.7) and that

p=(D+k)/2,

B _ itHE —aHP _ 1 k1 cos (wt) sin (wt) Dy
pg (t) = €70 pe™™ 0 —2{( k2 >+( —sin(wt) cos(wt) D, ’
Here, by noting (2.8), (2.9), (1.5) and (2.4), z§(Ts) and pf(Ts) can be decomposed into
B _ iren®, —iTsup _ 1 [ 1+cos(wTlg)  sin(wTB) z
2o (Tp) = P70 oe™ 20 = 2 ( —sin(wTB) 1+ cos(wTB) x2

1 in (wT) 1- T,
T B ( Ty amitn) ) ( » ) ’

one has

and

B _ iTgHE, —iTzHE _ 4B sin (wT'B) 1 — cos (wTB) z3
P (Tp) = €270 pe™ 250 = =T { (1 cos(WTs))  sin (wTB) 22

1( 14cos(wTg) sin(wTp)
3 (Mol b V(%)

2
Hence, by the straightforward calculation, one can also obtain
w(T) = T HP eiTngze—iTnge—iTn HE _ eiTBH‘;J (.’E + Top/m)e—iTBHé’ — mg(TB) + (Topg (TB)/m)

1 ( 1+cos(wTg)  sin(wTB) gBT, sin (wT'g) 1 —cos (wTB) x1
2 —sin{wTg) 1+ cos(wIB) ) T Tam ( —(1 —cos(wTg))  sin(wTB) ) ( Z2 )

i( sin (wTg) 1 — cos (wTB) >+ To ( 1+ cos(wTB)  sin(wTg) )] (Pl )

+ gB \ —(1 —cos(wTB)) sin(wTp) 2m \ —sin(wTB) 1+ cos(wTs) P2

Consequently, one has

(T) = 1 ( 1+ cos(wTB) — wTpsin(wTg)/2  sin(wTs) — wTp(l — cos (wTB))/2 z;
=3\ —sin (wTB) + wTp(l — cos(wTB))/2 1+ cos(wTg) — wlpsin (wTp)/2 ) ( z2 )
+ 1 ( sin (wTB) + wlo(1 + cos.(wTB))/2 1 - cos (wTB) + wTp sin (wTB)/2 )
gB \ —(1 —cos (wTB)) — wTpsin (wTg)/2 sin(wTs)+ wTp(l + cos(wls))/2 D2

Moreover, by noting e‘Tor”/(2m)pe—iTor’/(2m) — 4, one also has

1 1+ T si T
o1) = (7p) = 5 (1ol ) ()

-5 (o ey i ) (2):

Then we notice that by taking

_ 1 ( 1+4cos(wTp) in (wTB) 1 — sin (w7} —(1— wT)
A= 2 ( - S?I(l)s(w(;’gl; 1 j— co:(wBTB) ) ’ Az = 2 ( 1 —S(l:?)s (uﬂlz;) (-—sizo(i)(fl"'B)B)) ) !

the vector *(z(T"), p(T)) can be written as

( ;gg ) _ ( A ;Bu;;l;o/f;zﬂ 2/(qB)(_AZI+ wTyA1/2) ) ( ; )

113
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By the simple calculation, A; and Ay can be rewritten as
A= ( cos (wTs/2)* sin (wTg/2) cos (wTs/2) )
! — sin (wT/2) cos (wT/2) cos (wTs)?
(wTs/2) sin(wTs/2)
= cos(wTa/2) ( QTE) om TN ),
PR ( — sin (wTB/2) cos (wT/2) —sin (wTs/2)° )
2T sin (wTz/2)* — sin (wT'g/2) cos (wTB/2)
. (wTs/2 in (wT5/2)
= —sin(wT5/2) ( —C(s)isn?w;; /;) :osng‘; 72) ) :
Here recall the notation w = ¢B/m and @ = w/2, and put R(&Tp)
o) = ( 2w
Then one can obtain
(35
»(T)
_ ( (cos (@Tg) — @Tysin (@T))R(@Ts) (2/(¢B))(sin(@Tp) + &Ty cos (@Tp))R(@TE) ) ( x )

—(qB/2)sin (@Ts)R(&@Tp) cos (@T)R(@Tg) P
_ ( cos (@Tg) — @Tosin (@Tg) (2/(¢B))(sin (@Tg) + &Tp cos (¥ Tg)) ) ( R(@Tg)x )
- —(gB/2)sin (@TB) cos (@T'B) R(@Tg)p
_ R(@Tg)x
=L ( R(EJT‘;)p ) , (2.10)
where L can be written as
L Ly
v= (1 12)
- ( cos (|@|Tp) — |@|Tosin (|©|Ts)  (1/(m|@]))(sin (|@|T5) + |&|To cos (|©|Ts)) ) (2.11)
~(Ima|) sin (|&|T’s) cos (||Ts) ' '

By (2.10) we have t(z(nT), p(nT)) = L™ x*(R(n&Tg)z, R(n&Tg)p), n € N. Thus the asymptotic behavior
of (NT) as n — oo can be seen by analyzing L™. Here we calculate L. Take A+ as the eigenvalues of
L. Then, we have

A =XdoE+/DJ4, M=Tr(L)/2, D/a=X-1. (2.12)
In the case of D # 0, it can be calculated that

1 ( Lypn — pn— Loz >
L* = — , =T - A",
7 ( Laipin, Lazptn — pn—1 =24
Moreover, in the case of D = 0, it can be calculated that
- nLyAp~t = (n - 1)A3 2 nLigAp
anlx\g_l nLypAs ™' — (n— 1HAg 2

In particular, in the case of D > 0, |A_| > 1 holds and which implies || = @(e’™) holds for some § > 0.
Here, in addition to D > 0, we assume L, # 0. Then, for all ¢ € C§°(R?), we can prove the following
equation

|IZ2UD('"’T’ O)QSIle(Rz) = ||((x(nT))2¢|IL2(Rn) = o(ezdn)_ (2.18)
By using (2.13), for large n, Up(nT,0) can be decomposed into
Uo(nT, 006 = Xjg15.inUo(nT, 0)¢ +O(e™™), 0<§ <5

holds, where x is a cut-off function be such that xs>, = 0 for s < 7 and xs>- = 1 for s > 7. Thus, for
the case of D > 0 and L, # 0, we can prove the existence and completeness of wave operators under the
condition (V), with some p > 0 since (1 + |2]) "X}y 5ein € 1*(R,,) holds for every T > 0.



115

References

[1] Adachi, T., Kawamoto, M.: Quantum scattering in a periodically pulsed magnetic field. Annales
Henri Poincré, (to apper)

[2] Huang, M. J.: On stability for time-periodic perturbations of harmonic oscillators. Ann. Inst. H.
Poincaré Phys. Théor. 50, 229-238 (1989).



