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Global solution of the coupled KPZ equations

Masato Hoshino

Abstract

This article concerns the multi-component coupled Kardar-Parisi-Zhang (KPZ) equa-
tion and its two types of approximations. By applying the paracontrolled calculus
introduced by Gubinelli et al. [7, 8], we show that two approximations have the com-
mon limit under the properly adjusted choice of renormalization factors. In particular,
if the coupling constants of the nonlinear term of the coupled KPZ equation satisfy the -

- so-called “trilinear” condition, then we show that the solution of the limit equation
exists globally in time when the initial value is sampled from the stationary measure.
This article is a short version of Funaki and Hoshino [5].

1 Introduction and main results

We consider the following R%valued coupled KPZ equation for h(t,z) = (h*(t,z))%_,
defined on the one dimensional torus T = R/Z = [0, 1): '

(1.1) - 8he = 102h + 1T 0,hPO.hT + £, z €T,

for 1 < a < d. Here summation symbols ) over 8 and <y are omitted by Einstein’s
convention. (I'g, )1<a,,y<d are given constants, and £(¢, ) = (§*(¢, z))4_, is an R%valued
space-time Gaussian white noise with the covariance structure

E[E*(t,2)€P (s,y)] = 6*P8(z — y)o(t - 9),

where 6% denotes Kronecker’s §. We always assume that the coupling constants Fg7
satisfy the bilinear condition: I'g, =13 for all o, 8, 7.

One .of the motivations to study the coupled KPZ equation (1.1) comes from the

nonlinear fluctuating hydrodynamics recently discussed by Spohn and others [3, 12, 13],
whose origin goes back to Landau. At least heuristically, from a microscopic system with |
a random evolution involves a weak asymmetry, then we can expect to obtain the coupled
KPZ equation in a proper space-time scaling limit by expanding the equation to the second
order. .
The equation (1.1) itself is ill-posed, so that we need to introduce its approximations.
Let 7 € C®(R) be an even function satisfying supp(n) C (—3,3) and fp n(z)dz =1. We
set n°(z) = e n(e~z) for ¢ > 0 and consider the approximating equation with a proper
renormalization:

(1.2) Ahe® = %Bzha’a + %Fg’y(azhe,ﬁazhe,v — £8P — Bs,ﬂ'y) + % %,

for 1 < o < d, where ¢ = %||n||ig(]k) and B®A7 is a renormalization factor, which diverges

as O(—loge) as € | 0 in general. For the precise value of B5%7, see [5].



Another approx1ma.t10n of (1.1) suitable for studying invariant measures is introduced
as follows. Let 75 = n°*n° and consider the equation with a proper renormalization:

W8) 8= R 4TS (ORSRT — o ) e 47,

for1 < a<d, where B&A7 is a renormalization factor, which diverges as O(—loge) as
€ | 0 in general. For the precise value of B5#7, see [5]. In [4], under the trilinear condition
on I

(1.4) =Tg=T%,,

for all o, 3,7, the infinitesimal invariance of the smeared Wiener measure for the tilt
process i = 9, h of the solution A¢ of (1.3) is shown (actually on R instead of T).

When d = 1 and I'g, =1, the solution of the equation (1.2) with B%P7 = 0 converges
as € | 0 to the Cole-Hopf solution hcu(t,z) of the KPZ equa,tlon [9], while the solution
of the equation (1.3) with B*#Y = 0 converges to hcn(t,z) + ot under the equilibrium
setting [6] and the non-equilibrium setting [11].

Our first goal is to study the limits of the solutions of two types of approximating
equations (1.2) and (1.3) based on the paracontrolled calculus. For k € R and r € N,
(CF) := B, o (T; R") denotes the R™-valued Besov space on T.

Theorem 1.1. (1) If hg € (CY/?7%)¢ for some § > 0, then a unique solution h® of the
approzimating equation (1.2) with initial value ho exists up to the survival time Tf,, €
(0,00] (ie. Tg = oo or limure, [°|lc(o,cr/z—6ys) = 00). There exists 0 < Tour <
liminf o TS, and h® converges to some h in C([0,T], (C/?=%)9) for every 0 < T < Tuyr
in probability as € | 0. This Tour can be chosen mazimal stmilarly to T,

(2) A similar result holds for the solution h® of the equation (1.3) with some limit h.
Moreover, under a well-adjusted choice of the renormalization factors BE8Y and BePv,

one can make h =

Our second goal is to show the global existence of the limit process h under the con-
dition (1.4). Let y be the distribution of (8, B*(z))1<a<d,zcT On the space (Cy Y 2'6)
{u € (€729, Jpu = 0} for 6 > 0, where (B%), are independent pinned Brownian
motions such that B%(0) = B*(1) = 0.

Theorem 1.2. We assume the trilinear condition (1.4). Then there exists a p-full sub-
set H C (C_l/ 2_‘s)d such that, if 0;h(0) € H, then the limit process h exists on whole
[0,00) almost surely. Precisely, both he and h¢ ezist on whole [0 00) and converge to h in
probability as € | 0 in C([0,T], (C/2=%)%) for every T > 0.

Remark 1.1. Proposition 5.4 of Hairer and Mattingly [10] combined with Theorem 1.2
shows that the limit process h -exists on [0,00) almost surely for all initial values h(0) €

(CY/2-8)2 since the measure p has a dense support in Cy 1/2- 6)d

2 Solution theory of the cbupled KPZ equation

In this section, we explain the local well-posedness theory of the coupled KPZ equation
(1.1) by applying the paracontrolled calculus [7, 8]. For details, see Section 2 of [5].
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2.1 Preliminary consideration due to formal expansion

In the equation (1.1), we think of the noise as the leading term and the nonlinear term
as its perturbation. Although we eventually take ¢ = 1, we put @ > 0 in front of the
nonlinear term:

Ao
9 By

(2.1) Lh® = B:hPaLhY + €2,

where L = 0; — %6,2; Then, at least formally, we can expand the solution h as h® =
S oafhg. By comparing the terms of order a’,a!,a? a® in both sides of (2.1), we
obtain the following identities:

Lhg = &%,

Lh$ = 1%, 0:h40,h],

LhS =T%,0:h5 0k,

Lhg = T3 8:h58,h] + T, 0hs d:hy.

(2.2)

The first equation determines h§. Even though the products in the right hand side are
ill-defined because hg € C/2~ := Ns5oCY2~% in z, we just assume that h$ € C'~ and -
hy € C3/2= | at this moment. When £2 is replaced by the smeared noise £5% := £% x 7%,
these products make sense after the renormalization (2.6). We denote h,h{,hg with
stationary initial values by Hy*, H%, H,‘?", respectively. Then the equation (2.1) (witha = 1)
for h* = Hy + Hg + Hﬁ?“ +hS; can be rewritten into an equation for the remainder hx3:

(2.3) LhS = 3 + LAY,
where &% = & (Hjy, Hy, Hy, h>3) is given by
% =T%,0,h8 0. H + rgv(azH{; + 0, hE5)0: HY + %1“37(3,1{!; + axhgzi)(azﬂg +85h1,).

To solve (2.3), we need to introduce four more objects as driving terms:

HEY = 10, HY 0, HY, HE' = 0. HY © 0. Hy,
HE = “stationary solution of LHE = 9, Hy”, H f:’ =9, H f ® axH? .

Here © and ® are Bony’s paraproducts; see [7, 8] for details. Now we divide hg3 into the
sum of two parts f* and g®: hS5 = f* + g%, which solve
Lf* = rgy(afo; + 0518 + 0,0°) © 0.,

(2'4) a a B B B ¥ .
Lg* = FBW(BzHg{, + 02 f” + 029" )(® + ©)0, Hy + other terms,

respectively. Here, the implicit term c¢ontain sufficiently regular functions, so that they
are well-defined if HZ > H.,{;’ € C°% are given. By the commutator estimate (Lemma 2.4

of [7]), the term 8, f © 8, Hy is defined if Hg’ = afo © 8, Hy € €% is given.
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2.2 Deterministic solution theory
Fix & € (},1). The driver of the coupled KPZ equation is the element H of the form

H = ((H), (H), (H), (HE)), (HE"), (HE), (HE)

€ (0,7}, (%)% x C([0,T), (€*)%) x {C((0,T), (C*+1)?) N CV/4([0, 7], (€~/2)%)}

x C([0,7], (€ )%) x 0([0,T], (¢**1)F) x € (0,7}, €™+ x C((0,T), (€*1)*),
which satisfies LHy = 0, Hy;. We denote by ||Hjjz the product norm of H on the above
space.

Fix )\ € (3,%) and p € (=A,A]. For an D'(T, R%)-valued f\mctlons f=( f)e_; and
= (g*)¢_, on [0, T}, we write (f,g) € DKPZ([O,T]) if

(£ Dlipre oy =

— t)— f(s
sup ¢°7 (D) ervage + sup Ilf(t)ll(Cu+1)d+ aup 57 11O~ gy
t€[0,T] tefo,1 s<t€[0,T] |t~ s

llg(t) — 9(3)”(02A+1/2)a
+ sup £*7lg(t)l| ez o+ Jup |9(t)llamtrya + sup s HIL
t€[0,T] Ollewry te[0,1 ot )”(C T €o,7] [t — s|t/4

is finite.
The following theorem is due to the paracontrolled calculus and fixed point theorem.

Theorem 2.1 (Theorem 2.1 of [5]). (1) Let T > 0 and H € Hipg- Then for every
initial value (£(0),g(0)) € (C*1)4 x (C2*+1) the system (2.4) admits a unique solution
in Dl’\(’l’,‘z([O,T*]) up to the time

_2
T = C(L+ [ £(0)llcurya + l19(0)llcansrya + JEIF) =X AT,
where C is a universal constant depending only on k, A\, u and T. The solution satisfies

159l oz < O+ 1FO)licurags + 19(0)eamsaya + IHED),

with a universal constant C'.

(2) Let Tour < T be the mazimal time such that the unique solution of the system (2.4)
exists on [0,Tsur). The map (£(0); g(0),H) — Ty, is lower semi-continuous. If Toy < T,
then

Jim, 12llc (o, crawrvacusnysy =
where h = Skpz(£(0),9(0), H) := Hy + Hy + H«q. + f + g. The map Skpz is continuous.
We do similar arguments for the equation with *n5 for the honlinear term:
@25 Bhe = 102H* + 1T, (0,hP0LRT) % 15 + £°

and construct a solution map h = Sgpz(f(0),9(0), H) corresponding to the equation (2.5),
though the driver H satisfies LH, = 0,Hy * 5. Furthermore, we have the following
convergence result.

Theorem 2.2 (Theorem 2.2 of [5]). If (£5(0), g°(0)) — (£(0), g(0)) in (CH*+1)4 x (C2++1)d
and H* — H in Hipy, then we have Sgpy(f€(0), ¢°(0), H®) — Skpz(f(0), g(0), H).
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2.3 Renormalization

From now we consider the R-valued space-time white noise £. By replacing £ by £5¢ = 7
€*x7° in (1.1) and introducing the renormalization factors —c*, C=#7 and D*#7, we obtain
the renormalized driver H® corresponding to £°, which is defined by the solutions of

LHp™ = ¢, LHG®™ = 45, (8, Hy P8, HY . — £6°7),

(2.6)
LHY® =T3,0,Hy 0, H",  LHE™ = 8, Hy*

with stationary initial values, and products

HY = (0. Hy 8, Hy" — C=F), | HY = azH;ﬁ @ 8,Hy" — D,
€8y _ €,8 €, ‘
HQ = 0,H,"” © 0, H, 7.
We see that h® := Skpz(f(0), g(0), H) solves. (1.2) with B=AY = C&87 4 2D5"3'Y. )

By replacing £* by £ in (2.5) and introducing the renormalization factors CePY, DB,
we again obtain the renormalized driver H* corresponding to the approximating equation
(1.3), which is defined by the similar way to ]I-’]Iiwith C*¢ and D¢ replz«!ced by C~'E and Df, re-
spectively. We see that h° := Sgp,(f(0), g(0), Hf) solves (1.3) with BS#Y = C&F7 2D,

Theorems 2.1 and 2.2 combined with the following result prove Theorem 1.1. '

Theorem 2.3 (Theorem 3.2 of [5]). There exists an Hipy-valued random variable H such
that, for everyT >0 andp > 1,

EIHP < oo, lim EJE — HJj. = lim EJF* — HJj. = 0.
€l0 £l0 .

In particular, both h* = Skpz(f(0),9(0),H?) and h* = Sgpy(£(0),9(0),HF) converge to
h = Skpz(f(0), g(0),H) in probability as e | 0.

3 Global existence

When d = 1, the global -existence of the solution of the KPZ equation was obtained by
Gubinelli and Perkowski [8], using the Cole-Hopf transform. In the multi-component case,
however, such transform does not work in general, so that the global existence is non-
trivial. In this section, by similar arguments to Da Prato and Debussche [1], we show the
global existence for initial values sampled from the invariant measure of (1.1), under the
trilinear condition (1.4). "

3.1 Solution theory of the coupled Burgers equation

Preéisely, the process which has the invariant measure is the derivative u = 9,h, which
solves the coupled stochastic Burgers equation

(3.1) u® = 192u” + %I‘g,yax(uﬂu“’) + 0%,
We can apply the paracontrolled calculus to (3.1) and construct a well-posed solution map

Sesn : (€)% x (C3)* x Utisp 3 (v(0),w(0), 1) = u € C([0, Tewr), (€5~ V"))
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similarly to the coupled KPZ equation. From now we set y = 251, so that (k—1)AuA2u =
& — 1. Indeed, these two solution maps Skpz and Scsp are eqmva,lent If h solves (1.1),
~ then u = 8,h solves (3.1). Conversely, the solution A of

8 h* = %6§iza + %I‘g,yuﬁu"’ + aﬁ’ﬁﬁ

coincides with the original h. Hence the global existence of u is equivalent to that of h.

3.2 Invariant measure of the coupled Burgers equation

We can constructed a Ufgg-valued random variable U such that v = Scgg(v(0), w(0),U)
solves the equation (3.1) with space-time white noise £. Note that renormalization factors
vanish because we take the derivative 8.

Let 4 be the distribution of (8, B*(z))1<a<dzeT, Where (B%), are independent pinned
Brownian motions such that B*(0) = B*(1) = 0. p is an invariant measure of the
Ornstein-Uhlenbeck process u determined by

(3.2) Lu® = §,£%.

- Under the trilinear condition (1.4), p is invariant under the equation (3.1). To prove this
fact, we consider the approximation ’

(33 ulN = 192uN* 4+ FR(ul) + 8,€,

for N € N, where

R(™) = 3,0 PN(PNuN B PyulN),
and Py = ¥(N~'D) is the Fourier multiplier defined by an even cut-off functlon P €
C§°(R) taking values in [0, 1] and supported in the interval [—1,1]. Since Fi depends on
finitely many Fourier components of u™N, the equation (3.3) is well-posed.

Proposition 3.1 (Proposition 5.5 and Theorem 5.6 of [5]). (1) If the trilinear condition
(1.4) holds, the solution u™ of (3.3) exists globally in time, and admits u as an invariant
measure. .

(2) Let u™ and u be the solution of (3.3) and (3.1) respectively, with common initial value -
ug € (C§~1)4. Then un converges to u in probability as N — oo in C([0, Taur), (C571)%).

Proof. In (1), the identity
(3.4) (FR(u), u®) p2(r) = —%1"%‘7 (PyuP Pyu, 8, Pyu®) () = 0.

has an essential role. The invariance of y under (u) follows by Echeverrfa’s criterion [2]
by using (3.4). (2) is an application of the paracontrolled calculus. O

3.3 Global existence for a.e.-initial values

We can prove the following result in a similar way to Theorem 5.1 of [1]. Our main result
of this section is formulated as follows.

Theorem 3.2. We assume the trilinear condition (1.4). Then, for every T > 0 and p-a.e.
ug € (Cg 12, there exists a unique solution u of the equation (3.1). This solution satisfies
for every p > 1,

D
Ellulig oz cs-1ye) <

In particular, Tgyy = 00 a.s.
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Proof. We denote by u(-,u(0)) the solution of (3.3) with initial value u(0). With the
help of local well-posedness (like Theorem 2. 1) for the stochastic Burgers equation, we
have the estimate

S Bl 1Y w0 g ra () 55 1
(g™ teloT]

The strong convergence of 4V to u combined with this estimate shows Theorem 3.2. o

Remark 3.1. Theorem 3.2 combined with Proposition 5.4 of [10] implies the global exis-
tence of the solution h of the coupled KPZ equation (1.1), as mentioned in Theorem 1.2
and Remark 1.1. Global ezistence of the solution h® of (1.3) can be obtained by a similar
argument, since @€ = O, admits i as an invariant measure, where uE is the distribution

of (0:B* ¥ 1°())1<a<d,zeT-
Under the trilinear condition (1.4), global exzistence of the solution h® of (1.2), or
equivalently that of the solution u® of

(35) Qs = J02uS + 1T, B, (uPus) + 8,659,

is obtained as follows. First, we can show that if the initial value uf satisfies E [lugl|? T2(TRY) <.
oo then the solution uf exists globally and satisfies

Elllu®lZ 0,77, 27 zay) < %

forevery T > 0. This is obtained by applying the Itd’s formula and using the idenﬁty (3.4)
again. Second, we consider the case that ug € (C_l/ 2 J)d. We fix T > 0. By Theorem
2.1, for every K > 0 there exists (deterministic) t = t(ug, K) € (0,T] such that

ue,K = u;:v |||H€|||t < K’
bt 0, - otherwise

satisfies |us® lz2rmey S 1+ ||uo||(c_1/z 54 + K3, so that E||ug’ ||iz(T’Rd) < 00. Since the

solution of (3.5) with initial value us'® exists globally, we have
P(uf € C([0,7), (G5 *°)%) > P(IH|l; < K) > P(JH°|r < K).
By letting K — oo, we have that u® exists up to the time T almost surely. Since T > 0 is
arbitrary, we have the global existence of u®.
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