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Pieri Rule and Pieri Algebras

Yi Wang
Department of Mathematical Sciences, XJTLU

1 Introduction

Let G be a complex classical group, and U, V be finite dimensional irreducible representations
of G. The tensor product U ® V is also a representation of G, but it is not irreducible in general.
It is an important problem to describe the decomposition of U ® V into a sum of irreducible
representations of G.

In the case of complex general linear groups, the finite dimensional irreducible rational represen-
tations of GLy, := GL,(C) are indexed by non-increasing sequences A = (A1,...,A,) of integers.
We denote the representation corresponding to A by p}). Specifically, the irreducible polynomial
representations are indexed by sequences of non-negative integers. These sequences are denoted
by capital characters D, E etc. There is a combinatorial description of how a tensor product of
the form p? ® pf decomposes. It is called the Littlewood-Richardson rule ([16], [8]).

In the case when F' = (@) is a sequence with only one nonzero entry a, the description of how
pP @ pi® decomposes is called the Pieri rule ([15], [4], [10]). Although the Pieri rule is a
very special case of tensor product, it is of particular interest because it is connected with the
branching rule from GL, to GLp-1 ([10], [17]). It is a natural question to consider a more
general version of the Pieri rule, that is, a description of how tensor products of the form

h l
ne (®psss>) ® (®p;m*), a0 B € T (1)
=1 t=1

decomposes. Here the representation pgs %) is dual to pgﬂ ),

Let k, p, h and ! be positive integers. Assume that there are at most k positive entries and p
negative entries of A. In [7], Roger Howe, Sangjib Kim and Soo Teck Lee construct an alge-
bra A kpny Which encodes information on the decomposition of (1.1). The algebra is called a
((k, p), h,1)-Pieri algebra for GL,,. Specifically, when p = = 0 and h = 1, the algebra encodes
the Pieri rule for p2 ® pSf‘). There are also analogues of Pieri algebras for O, = O,(C) and
Spgn = Spy,(C), which are discussed in [13].

In [7], the authors reveal the structure of two kinds of ((k,p), h,!)-Pieri algebras, p=1=10
and k+p+h+! < n. For the algebras discussed in {7], the structure is controlled by a semigroup,
called the Hibi cone ([11]). The Hibi cone is constructed from a finite poset I': it is the set
Zg’ot of all order preserving functions f : I' — Zxo with semigroup operations [12] given by the

addition of functions. The Hibi cone Zg’ot has a very nice and simple structure:

1. It has a finite set G of generators.



203

2. One can define a partial ordering > on G, such that, each nonzero element f of Zg’ot has a
unique standard expression asasum f =Y ;- ; gi* whereg; € Gand a; € Zyofor1<i<u
and g1 X g2 X -+ = gy with respect to the partial ordering in G.

In (7], the authors define an element vy in the algebra A, k5, for each g in G. Then the partial
ordering on G induces a partial ordering on S := {vy : g € G}. A monomial on S of the form
v"j‘l‘v‘g‘; vg:: is called standard if vy, < vy, < ... < vy, and a; € Zyg for 1 < i < u. The
authors prove that the set of standard monomials on S form a vector space basis for An kphil
([8]). Furthermore, Apkpn,; has a flat deformation to the semigroup algebra C[Z %] on the

Hibi cone. Similar results for Sp,, and Oy, are obtained in the paper [13].

We shall study another algebra, the structure of the anti-row iterated Pieri algebra 2, ;i =
Apn k00, But Hibi cone is not enough for this case. So first we need to define another semi-
group and call it sign Hibi cone. It retains many nice properties of Hibi cones. In fact, it
is generated by two subsemigroups which are both Hibi cones. Then we describe the structure
of 2y, with sign Hibi cones. The results on the anti-row iterated Pieri algebras also have
applications in the study of lowest weight modules appearing in Howe duality.

2 Preliminaries

In this section, we review several necessary definitions, notations and theorems.

2.1 Pieri Rule for GL,
Let A, be the subgroup of all the diagonal matrices and U, be the collection of upper triangular
matrices with 1’s on the diagonal. So A, is the maximal torus and U, is the unipotent
subgroup.
Let

e A ={A=(A1,..., ) EZ*: N1 > ... > M} and

o AT ={x=(1,...; M) €AY : Xy, >0}

For A = (\1,..., M) € A}, define || := Y7 _; An. For D € Af*, depth(D) is the number of
positive entries in D.

Let p) be the GL, irreducible rational representation with highest weight 17, where

¥n(a) = a}lay? - ap” 2.1
with a = Diag(ai,...,an) € Ap. An irreducible polynomial representation can be written
as pP with D € Af+.

The following are two important examples. For a positive integer «, (a,0,...,0) € Aft is

denoted by (). Then p(“) & §¢(C"). In particular, p(l) = C™ is the standard representation of
GL,,. For a positive integer § < n, let

8
P
lg=(1,1,...,1) € AFT.

Then pf & AP C™. Specifically, pl» & det, .



Definition 2.1.1. If A = (A1, ..., Ay) and p = (1, ..., un) € A} satisfy
L= AL Zpe 22X 2 2 e = A,

then we say u interlaces A and write A C 4.

Theorem 2.1.1 (Pieri Rule [4], [10]). Let D € Al and a € Zyp. Then

Red= @ o~ ()
FeArt,DCF
[D|+a=|F|

By iterating the Pieri rule, we obtain the following result.

Theorem 2.1.2 ([7]). Let D € A}, a=(as,...,on) € ZL;. We have

R
pr® <® Pﬁf‘s)) =P Kr/parr,
s=1
where the multiplicity Kr/p o equals to the number of sequences
D=DOCcpWcp@c..cpoW=F

satisfying |DE~V| + o, = |DE)| for 1 < s < h.

This iterated Pieri rule is called polynomial iterated Pieri rule. An algebra R is called a
polynomial iterated Pieri algebra if

1. R is graded, R = ®p o, FRD.o,F;

2. dim(mD’a’F) = KF/D,Q'
In {7], the authors described the structure of polynomial iterated Pieri algebra very carefully.
The multiplicity Kr/p o is the key part. We shall review a combinatorial way to describe it in
next subsection.
2.2 Gelfand-Tsetlin Patterns
The following array of integers

(0)

(1 # (1
K1 ) 12 )

N

is called a Gelfand-Tsetlin (GT) pattern if
P > ) > et (2.3)

for all applicable s and t. This is the original GT pattern. We may generalize this concept to
all patterns satisfying the condition that each entry is not greater than the one on the
left bottom and not less than the one on the right bottom. A sequence of A}™

D=D(0)§D(1)ED(Z)E...;D(")=F
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corresponds to a GT pattern of the form

(1) dgﬂ) @) d§°) (1) &
d d d.

o7 " (24)
4 : e 4

where D) = (dgs), dg"), . ,d%s)) for 1 < s < h. In fact, there is a bijection between the set of
sequences
D =DO ED(I) ED(Z) C... ED(h) =F

satisfying |[D®~V| 4+ o, = |[D®)| for 1 < s < h and the set of all the GT patterns of the form
(2.4) with nonnegative integer entries satisfying

1). D=@d®,d0,....d"), F=d",d?,...,d") and
2). ap =", d? -3 dfVfor1<s<h

Therefore, the number of these GT patterns equals to Kr/p -

2.3 Hibi Cones

We now review the definition and structure of Hibi cones. The results of this and the next part
are due to Howe ([11}).

Definition 2.3.1. Let (I', =) be a poset (partially ordered set) and B be a nonempty subset
of R. A map f:I' — B is called order preserving if f(z) > f(y) for z = y.

We denote the set of all order preserving maps from I' to B by B>, When B = Zxg, the
semigroup Zg’ot is called a Hibi cone. We are interested in the case of B = Zy>g because

GT-patterns with nonnegative integer entries can be identified with the elements of Zg’o: for a
suitable finite poset. Here the poset plays the role of a placeholder.

Definition 2.3.2. Define a poset (T 1, =) where the underlying set
Top={n":1<t<n,0<s<h} (2.5)
and the partial ordering on it is defined by the interlacing conditions
o = = Y (26)
for every s and t.

The poset (I'n », =) can be illustrated as

U
171) 77'.(>) ny(z)

NN » o)
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Then an element f € Z o »Z can be illustrated as

@™ F@) )
F) FV) £

fo) ) - Foi?).
This is a GT pattern of the form (2.4).

Let
£ = (F ), F ), F D))

Then f() € A}+. We define the weight of f € Zr" M= by

wt(f) := (|FO] = 1FOL IFP = 7Dy, . 1] = |£A4-Y)).

Define
(255" rDa = {f € 255" : /O = D, f® = Fwi(f) = a}.

Lemma 2.3.1. There is a bijection between the set of all the GT patterns of the form (2.4) with
nonnegative integer entries satisfying

1). D=(d®,dQ,...,d?), F=(d™,dP,...,d") and
2). ag=30 d -5 d* D for1<s<h
and the set (Z o ’“—)F,D,a.

Therefore, Kp/p , equals the cardinality of (Z;a'“") F,D,a, denoted by # ((Z;{,"") F, D,a>~

2.4 The Structure of Hibi Cones
To describe the structure of Hibi cones, we introduce several concepts of poset.
Definition 2.4.1. [19] Let I be a finite poset.

o A subset S of I' is called increasing if for any z € S and any y € T,
yrz=>yeESs.

The collection of all increasing subsets of I' is denoted by J*(T,>). Similarly, we can
define decreasing sets.

o For any subset S of T, the indicator function of S is the map xs : I' — {0,1} defined
by
1l z€8

xs@={y 253 (27)

e The dual of a poset I' is the poset ['* with the same underlying set I" such that z < y in
*ifand onlyify <z in I

One important property of Hibi cone is that each nonzero element of it has a unique “standard”
expression.



207

Theorem 2.4.1 ([11]). The semigroup Zgbt is generated by {xs : S € J*(T',=)}. More precisely,

T . )
every nonzero element f of Z.; has a unique expression

h
f=)ajxs;
i=1

where a; are positive integers for 1 < j < h and
PSS CSC--CSh

is a chain in the poset J*(T',>).

2.5 Semigroup Algebras on Hibi Cones
Definition 2.5.1 ([1]). For a semigroup S, let C[S] be the vector space with basis
B={Xx/:fes}
For f, g € S, define the multiplication
XFx9=x7+9.

Then the vector space C[S] together with the multiplication operation forms a complex algebra,
called the semigroup algebra on S.

When S = Zg’g—', (C[Zg'ot] is a Hibi algebra [6]. The Hibi cone is named after this property.

Definition 2.5.2 ([18]). Let R be a complex algebra and let G be a finite set of elements of R
with a partial ordering <.

(a). If g1 2 g2 < ... = g, is a multichain in G, then we call the product gi1gs - - - g5 a standard
monomial on G.

(b). Let B be the set of all standard monomials on G. If B forms a basis for R, then we call B
a standard monomial basis and say that R has a standard monomial theory for G.

The semigroup algebra C[ZE’E] has a standard monomial theory for {xs: S € J*(T', =)}

2.6 Flat Deformation

In this part, we briefly review the concepts of flat deformation and Sagbi basis.

Definition 2.6.1. Let R be a subalgebra of the polynomial algebra C[z1,...,Zn], with well-
defined monomial order.

(a). For f € R, denote LM(f) the leading monomial of f. Let LM(R) := {LM(f) : f € R}.

(b). The subalgebra of C[zy, ..., zm] generated by LM(R) is called the initial algebra of R.
It is denoted by C[LM(R)).

(c). A set S of nonzero polynomials in R is called a Sagbi basis for R if the set
LM(S) = {LM({) : f € S}
generates the initial algebra C[LM(R)] of R.



The initial algebra C[LM(R)] is the semigroup algebra on LM(R). If the initial algebra CILM(R)]
of R is finitely generated, then a general result says that C[LM(R)] is a good approximation to
R in the following sense.

Theorem 2.6.1 ([2]). Let C[z1,...,zm] be given a monomial ordering and let R be a subalgebra
of Clz1,...,%m|. If the initial algebra C[LM(R)] is finitely generated, then there exzists a flat
one-parameter family of C-algebras with general fibre R and special fibre CI[LM(R)].

3 Anti-row Iterated Pieri Rule for GL,

In this section, we discuss the specific Pieri rule studied in this paper.

3.1 Generalized Pieri Rules

There is a more general version of the Pieri rule. It can be considered as folklore.
Theorem 3.1.1 (Generalized Pieri Rules). Let A € A} and a: € Z>g. Then
@. o= P
ACu
[Al+e=nl

and
®). mek= P o
HEX
[Al—a=|p|

Here ps,a)* is contragrediant to p,(f).

3.2 Anti-row Iterated Pieri Rule for GL,,
Let De AT, a=(o,...,0) € leo- By iterating the formula in Theorem 3.1.1 (b), we have

!
2 (® ps;*n') D Kpat

s=1

where the multiplicity K/p o is equal to the number of sequences
D=XO )W ax® .. 20 =)
satisfying |JAE~D| — o, = |A®)| for 1 < s < 1.
Follow previous idea, each sequence
A0 g\ gX\@ g . ga®
corresponds to a GT pattern

/\go) N o A©
Agn /\51) o AD

AP AP o AP

208
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and vice versa. Therefore, the multiplicity K),/p _, equals the number of the GT patterns of

the form
/\go) )\go) . A©

AP NO) . AW

AP G
where
1). D=0, 2 A =00,..2Y) and
2). —as =" ANV A Vir1<s<i
Here the GT pattern cannot be identified with an element of Z Z for certain poset I' because

some )\g. )s can be negative. We shall generalize the concept of H1b1 cones to sign Hibi cones.

4 Sign Hibi Cones

All the entries of a Hibi cone Zg’ot are nonnegative. To obtain negative entries, it is natural to
consider ZF'=. Tt is still a semigroup. So we consider a specific subsemigroup of ZI'*=.
4.1 Sign Hibi Cones
Definition 4.1.1. Let A and B be two subsets of a poset I'. Define
Q4,8() = {f € Z"% : f(4) 2 0, f(B) < 0}. (4.1)

Here f(A) > 0 means that f(z) > 0 for all z € A. We call Q4 5(T') a sign Hibi Cone if
Q4,8(T) # {0}.

Clearly, it forms a subsemigroup of Z'=. If A = B = @, then Q4 5(I') = Z"'=, and if A =T,
B =0, then Q4 5(T) = Zl;’ot. Therefore, sign Hibi cone is a more general construction than
both Hibi cones and Z=. In the absence of ambiguity, we shall write 4 5 instead of Q4 g(T).

4.2 Structure of Sign Hibi Cones

First let us connect sign Hibi cones with Hibi cones.

For A, B C T, let P4 be the smallest increasing subset of I' containing A and Np the
smallest decreasing subset of I' containing B. Define

I‘XB =T\Np and Tjp:=T\Ps (4.2)
Then l"}’ p is an increasing subset of I and I' g is decreasing.
Theorem 4.2.1 ([21]). Let A, BCT.
i g
(o). Qrny, and Qp, ¢ are subsemigroups of Q4 p. Moreover, Qr Ny = ZZ’S'B = and Qp,r &
P-‘ L — .
47" HereTy% is the dual poset of I p.

(b). The semigroup Q4 p is generated by Qr N and Qp, r. That is, it is the smallest subsemi-
group of ZDE which contains Or Ng and Qp, T
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(c). Specifically,
r+ 3 ™ Y—
Qap 2T X L4™" (4.3)

fTipNTy5=0.
Remark. The cross product of two Hibi cones is still a Hibi cone.
For Hibi cones, each nonzero element has a unique “standard” expression (Theorem 2.4.1). The
second part is to establish a parallel result for sign Hibi cones.

Corollary 4.2.2. Let
Gip={xp:PeJ (T} )} (4.4)
and
Gap=1{xq:Qe J" ({5 )} (4.5)
Then the semigroup Qa,B s generated by g;& pand Gy g

Definition 4.2.1. Let
gA,B = gX,B u g;,B‘

Define the partial ordering on G4 p as follows: For P; and P, € J*(I‘X ), Q1 and @ €
J*(T 3% %),

(a). xp, X xp, if and only if P, C P»;

(b). —x0, =X —xo, if and only if Q1 2 Qq; and

(¢). xp, X —xo, ifand only if PLNQ; = 0.
Now we can state the main theorem.
Theorem 4.2.3 ([21]). Each nonzero element f of Q4B can be expressed uniguely as

s t
=3 axe+ Y bi(—xq,);
i=1 j=1

where

Xp 22X 2 XQL 2 3 X
is a chain in G4 p and a1, ..., as, b1, ..., by are positive integers.

4.3 Semigroup Algebras on Sign Hibi Cones
Finally, we shall study the semigroup algebra C[Q24 g]. Define

Bap={X:feQan} (4.6)
Then B4 p is a basis for C[Q24 g]. Let
Gap={X:fe€Gan} %))

and define a partial ordering on &4 p by
X <X ifandonly if f; < fo in Gap.
By Theorem 4.2.3, we have the following theorem.

Theorem 4.3.1. The set By p is a standard monomial basis for C[Q4,5] and C[Qa 5] has a
standard monomial theory for &4 5.
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4.4 Sign Hibi Cone €,

In this part, we look at a concrete example of sign Hibi cone, which is also necessary for the
next section. The first step is to define the poset.

Definition 4.4.1.
1. Define a poset (T'py, =)

2O . 2 N +9 .
R

U e A,

where the elements satisfy the interlacing conditions

=T e ) (48)
for every s and ¢.
2. Define Q1 = Q4,8 n) where
A=(0) wd B= { by k<o «9)

Remark. The poset I',,; is the same as the one in Definition 2.3.2 when we identify 'yt(s) with
(t~s)
o

By Theorem 4.2.1, to describe the structure of Q4 B, there are two important sets, I‘XB and
I} p- In this case, denote I'}, , ;=T p and T, ; :=T'; 5. Then we have

nk,l —

+ {’Yt(s)305551,15tSk} when k<n
Cn, when k=n.

and
Ty = {77 1<s <l maxfn—s+1,1} <t <n}.

Definition 4.4.2. Let ¢ be an integer such that 1 < ¢ < k. Let I and J be two subsets of
{1,2,...,1} such that #(I) < c and 1 < #(J) < n. Define

(a)
A(e,I) = {'yt(s) €lp;:1<t<a,, 0<s<l}

a;-1 if i¢l

Where“":c’“i:{ a1—1 if i€l
i :

(b).
B(J)={y" eln:0<s<l, b <t<n},

bi-v i j¢J

Whe’eb":"“’bf:{ by —1 if jeJ

It is easy to check that A(c,I) € J*(Tyt, ;,>) and B(J) € J*(T; 3, %)



Proposition 4.4.1. We have
T pn) ={Ale, D) :1<e<k, TC{1,2,...,1}, #(I) < ¢}

and
P Ches) = {BU): T C{1,2,...,1}, 1< #(J) <n}.

By Corollary 4.2.2, Qy, 4, is generated by g,tk,, = {xa(,n} and Gkt = {~xswn}-

Corollary 4.4.2. Let G, := g,,t ki Y g,; k- Then Qq k. is generated by G 1. More precisely,
each nonzero function f € Qp ;1 can be uniquely written as

P g
f= Z @sX Afcs, ) T Z be(—XB())»
s=1 t=1
where a; and b, are positive integers for 1 <s<p, 1<t <gq and
XA(es,[1) = " = XA(ep,dp) = —XB(1) < = ~XB(Jy)
is a chain in (Gni, ).

Now we show the relation between sign Hibi cone 0, f; and anti-row iterated Pieri rule. As in
subsection 2.3, for each f € ZF~uZ | define

£ = (FOE, FORD), - fE) 05 <)
and define the weight of f by
wt(f) = (|FO] = [FOL ] = 1f DL, ] = A0,
For D € Af* with depth(D) < k, A € A} and a € ZL,, let
pa={f€Z™=: O =D, jO =) wi(f) = ~a}.

Theorem 4.4.3. (a). We have

Qu iy = U O\ D,
MDD,

where the union is taken over all D € Af+ with depth(D) < k, A € A} and a € ZL,,.

(b). The number of elements in Qx p o s equal to Ky/p _q-

5 Anti-row Iterated Pieri Algebras

Let n, k and [ be positive integers such that & < n. In this section, we provide results about the
structure of an algebra A, ;; called the anti-row iterated Pieri algebra. It is named after
the property that it encodes the anti-row iterated Pieri rule.

212
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5.1 (GL,, GL;)-Duality

First, we state the key theorem for the realization of the representations.

Let My, be the space of all complex n X k matrices and P(Myx) be the algebra of polynomial
functions on M. Define

(7o k(9 B)()) (T) = f(¢*Th) (5.1)
and
(Tmk(9, R)()) (T) = (g7 Th), (5.2)

where (g, h) € GL, X GLg, f € P(Myuk) and T € M.
Theorem 5.1.1 ((GL,, GL;)-duality, [10]).

(a). Under the action T,;:’k, P(Mpk) is decomposed into a direct sum of irreducible GLy, X GLy
representations as

P(Mng) = Z p,’;’ ®pf.
depth(D)<min(n,k)

(b). Under the action 7,%, P(Mpnk) is decomposed as

P (M) & > ek
depth(D)<min(n,k)

5.2 Anti-row Iterated Pieri Algebras

For the algebra of polynomial functions P(Mp, x+;), we have
1 i
PMnpst) 2P | Map® [ DCH| | =PMap) © | QPECH) | -
j=1 j=1

Let GL, x GLg act on P(Mn) by 7,5 and GLn x GL; act on P(C}) for 1 < j < I by Tt
Then P(M,, k+i) becomes a representation of

(GL, x GLg) X (GLy X GLp)! & (GLy, x GLY) x GLg x(GLy)! 2 GLEF! x GLg x A;.

We denote it by (p, P(Mpk+1)). By the (GLy,, GLg)-duality, we have

i
D Lol ]lei@| P i~ e
depth(D)<k J=1 \e;€Z3o

IR

P(Mp k+1)

= P (Res e e )ef oMo 0.
depth(D)<k
(al,...,a;)ez'eo

By extracting the Uy invariants in P(My, x+1), we obtain

PMug)* = P (Pf ) @ ® pﬁ,"‘)*) ® (i0)” & ¥y
depth(D)<k
(as01)€ZL g
The ¢f x 9P eigenspace of Ag x A in P(M,, x+1)U* is the realization of the tensor product
D o (o) o (oa)*
Pp®pn @ Qpn ' .
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Now we restrict the representation p to GL,, x GLy, x 4; where GL,, & A(GLL?) is the diagonal
subgroup of GLEHL. Apply the anti-row iterated Pieri rule,

P (M o) % @ (@ KA/D,-W%) ® (PE)Uk ® Y

depth(D)<k  \XeAd
(a1,4..,al)EZ20

Define
Un i = P (M )7 ¥ 0% (5.3)

Then 2,4, is a module for A, x A x A;. Let Uy po be the 9 x ¥ x ¢ eigenspace of
An X Ap x Ap in Ay 11, then

® An ki = D), p,a %D and

L] dile,\,D,a = KA/D,—&'
Thus, we call ;, x; an anti-row iterated Pieri algebra. One of the main goals is to determine
the structure of this algebra.
5.3 Standard Monomial Basis of Anti-row Iterated Pieri Algebras

In this part, we only summarize the results about the structure of the anti-row iterated Pieri
algebra 21, ; without detail. First, we need to state several definitions and notations.

1. For f € Gn 11, define vy € P(My, k41) explicitly [21].

2. By Corollary 4.4.2, for each f € Q, x4, there is a unique standard expression f = S iasfs
such that a, are all positive and f; < fo < -+ < fp in Gp . Define

vp =TI (vg,)* (5.4)

and
Bk, = {vf : f € Oy} (5.5)

3. Let
Bkt = {v5 1 f € Gt} (5.6)

and define a partial ordering > on &, ;; as vy > vy if and only if f > g in Gp k-
4. With a graded lexicographic order, define leading monomial for each element of P(Mj, g+1)-
The following is the main structure theorem.
Theorem 5.3.1. Let n, k, | be positive integers such that k < n.

(a). Ay, has a standard monomial theory on &, 1, and Bp k) 8 o standard monomial basis

for Up k1.

(b). We have
LM (n ) = Qe

so that the initial algebra of Ap 1

CLM ()] = ClQp k,1)-



(c). CILM(2L,,1,;)] has a standard monomial theory on LM(®,, &) and LM(B,x,) is a standard
monomial basis for CILM (2 x1)].

(d). &npy is a finite Sagbi basis for Up k.

(e). There exists a flat one-parameter family of C-algebras with general fibre Un k1 and special
fibre C[Qn,k,l] .

Sketch of Proof.

(a). Let D € A+ with depth(D) < k, A € A} and o € ZL,. For each f € 0 p a, prove that
vf € Ay po. It can be proved that LM(vy) is uniquely determined by f. Then all the vf
have distinct leading monomials. Because the cardinality of B po 1= {vf : f € Q\ Do}
is correct for a basis of Ay p o. By equations 5.4 and 5.6, B, is a standard monomial
basis.

(b). It suffices to prove that LM(B, 1) & Qy ks as semigroups and LM(2, k1) = LM(Bn k,1)-
(c). For f and g € P(M,, j+1), LM(fg) = LM(f) LM(g). Then it is clear by (a).

(d)- By (c).
(). LM(Bn k1) & Gn i, is finite.

Remarks. To understand the structure of an algebra, the classical method is to figure out the
generators and relators. For 2, x 1, the relators among the generators &, 1; are very complicated.
It is meaningless for us to understand the structure. So I choose another way: determine a basis
of the algebra. And the basis has good properties. I borrowed the idea from [7], [13].

5.4 Applications to Howe Duality

For each positive integer m, let g, = gl,,,(C) be the general Lie algebra of all m x m complex
matrices. In this subsection, we consider the lowest weight modules of gl;,; which occur in
P(Mp jet1)-
Theorem 5.4.1 ([9],[3]). There is a multiplicity free decomposition of GLy, X gl -modules given
by

PMnjert) & Y 02 ® Ly, 7

reAd

where A has at most k positive entries and at most | negative entries and ‘CQJ 18 an irreducible
lowest weight module of gl with its lowest weight uniquely determined by A.
By previous discussion,

+

U kg = P(Mp )/ <Ve 22 (P;\x.) "o (ﬁi,z) .
X

S . . . L
where (ﬁ,w) is spanned by all gl highest weight vectors in Cﬁ,l. In particular, (L‘.k’,) can
be identified with the 1, eigenspace of A, in Ay k-

Corollary 5.4.2. For X € A} with at most k positive entries and at most | negative entries,
define
By = {vf € Brpy: fO =} (5.8)
+

Then B, forms a basis of (L%J)nk .
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6 Further Problems

In the last section, we describe two related problems.

6.1 Generalized Iterated Pieri Algebras for GL,

Let %, p, h, | be nonnegative integers. In Section 1, we introduced the ((k,p), h,)-Pieri rule
for GL,. The anti-row iterated Pieri rule is the case of p = h = 0. When k = p = 0, the
((0,0), h, 1)-Pieri rule describes how the tensor product

(é p%as)) % <® p;ﬁj)*)

s=1 j=1
decomposes. The algebra P(Mp, 1)U is a ((0,0), h,1)-Pieri algebra.

Since

PMppyt)P 22 Z (P,);) o ® L},
X

the ;) eigenspace of A, in 'P(Mn,h.H)U" is the realization of l:ﬁ,t' So we can figure out the
structure of the lowest weight module by studying ((0,0), k,l)-Pieri algebra.

6.2 Iterated Pieri Algebras for O, and Sps,

There are analogues of the Pieri rule for O, =0, (C) and Sp,,, = Sp,,(C). In [13], the authors
construct iterated Pieri algebras for O, and Spy,. They also determine the structure of these

algebras under a stable range condition. We plan to remove the restriction based on the result
of [20].
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