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Abstract.

New identities of the Picone type for a class of cyclic systems of ordinary differential

equations are established and the Sturm‐Picone comparison theory for such systems is

developed with the help of these formulas.
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1 Introduction

The purpose of this paper is to provide an overview of recent comparison results of the

present authors concerning the existence and the distribution of zeros of components of

solutions for differential systems of the form

(1) x'-p(t)$\varphi$_{1/ $\alpha$}(y)=0, y'+q(t)$\varphi$_{ $\alpha$}(x)=0,

where a is a positive constant, p and q are continuous functions on an interval J and $\varphi$_{ $\gamma$}(u)
denotes the odd function in u\in \mathbb{R} defined by $\varphi$_{ $\gamma$}(u)=|u|^{ $\gamma$}\mathrm{s}\mathrm{g}\mathrm{n}u,  $\gamma$>0.

In establishing our results we employed new identities of the Picone type and the so

called duality principle which is based on an elementary but very useful observation that if

(x, y) is a solution of (1), then (x, -y) and (-x, y) solve the differential system

(2) x'+p(t)$\varphi$_{1/ $\sigma$}(y)=0, y'-q(t)$\varphi$_{ $\alpha$}(x)=0,

which is of the same form as (1) with the only difference that the roles of \{x, y\}, \{p, q\} and

\{ $\alpha$, 1/ $\alpha$\} are interchaJiged.

We classify zeros of components of solutions as follows:
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Let (x, y) be a solution of system (1) which satisfies x(a) = 0 and y(a) \neq  0 for some

a \in  J . A value t = b >a from J is called a conjugate (resp. pseudoconjugate) point to

t=a if x(b)=0 (resp. y(b)=0).
If (x, y) is a solution of (1) which satisfies y(a) =0 and x(a) \neq 0 for some a\in J , then

a value t= b>a from J is called a focal (resp. deconjugate ) point to t =a if x(b) =0

(resp. y(b)=0) (see [16]).

Along with (1) consider cmother differential system of thc same form

(3) X'-P(t)$\varphi$_{1/ $\alpha$}(Y)=0, Y'+Q(t)$\varphi$_{ $\alpha$}(X)=0,
where P and Q are continuous functions on J.

It is known (see Elbert [3] and Mirzov [13]) that if

0\leq p(t)\leq P(t) and q(t)\leq Q(t) (or 0\geq p(t) \geq P(t) and q(t)\geq Q(t) )

for all t\in J and there exists a solution (x, y) of (1) such that

x(a)=x(b)=0 and x(t)\neq 0 for t\in(a, b)

for some a, b \in  J, a < b , then for any solution (X, Y) of system (3) the first component

X(t) must have at least one zero in [a, b] . Similarly, if

0\leq q(t)\leq Q(t) and p(t)\leq P(t) (or 0\geq q(t) \geq Q(t) and p(t)\geq P(t) )

for all t\in J and system (1) has a solution (x, y) such that

y(a)=y(b)=0 and y(t)\neq 0 for t\in(a, b)

for some a,  b\in  J, a<b , then for any solution (X, Y) of system (3) the second component

Y(t) must vanish at some point t=c in [a, b].

We generalize and extend Mirzov�s result in several directions. First, we show that a ver‐

sion of Picone�s formula can be established for the pair of systems (1) and (3) which makes

the proof of the Sturm‐Picone comparison theorem straightforward and easy. Secondly,
zeros of the component X(t) (resp. Y(t) ) are guaranteed to exist in the open interval (a, b)
(stronger Sturmiari conclusion) rather than in [a, b] (weaker Sturmian conclusion). Finally,
we establish another kind of Picone�s identity for (1) and (3) which enables to generalize the

point‐wise comparison criterion to an integral comparison theorem of the Leighton type.

For related results concerning the existence of zeros of the components of solutions of

system (1) see [2], [4] and [14]. The special case with  $\alpha$= 1 was studied in [1], [10] arid

[11]. Comparison results for scalar half‐linear ordinary differential equations of the second

order can be found in [5], [6] and [12].

2 Main results

To formulate oiir results wc \mathrm{u}_{\mathrm{k}^{\backslash }}^{$\iota$_{)}}\mathrm{c}^{\backslash }, $\Phi$_{ $\gamma$} (U, V) to denote the form defined for U, V\in \mathbb{R} and  $\gamma$>0
by

$\Phi$_{ $\gamma$}(U, V)=|U|^{ $\gamma$+1}+ $\gamma$|V|^{ $\gamma$+1}-( $\gamma$+1)U$\varphi$_{ $\gamma$}(V) .
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From the Young inequality it follows that $\Phi$_{ $\gamma$}(U, V) \geq 0 for all U, V\in \mathbb{R} and the equality
holds if and only if U=V.

Our fir,st result is the point,wise comparison crit,erion of the Sturm‐Picone fype. It, \mathrm{s}

proof makes use of the following two lemmas. The first one contains identities which play a

crucial role in our considerat,ions. Formulas can be verified easily by a direct, computation.

Lemma 2.1 (Picone�s identity of the first kind) Let (x, y) and (X, Y) be solutions

on J of systems (1) and (3) respectively.
(i) If X(t)\neq 0 in J, then

(4) \displaystyle \frac{d}{dt}\{\frac{x}{$\varphi$_{ $\alpha$}(X)}[$\varphi$_{ $\alpha$}(X)y-$\varphi$_{ $\alpha$}(x)Y]\} = [Q(t)-q(t)]|x|^{ $\alpha$+1}
+ $\alpha$[P(t)-p(t)]\displaystyle \frac{|x|^{ $\alpha$+1}}{|X|^{(\mathrm{A}+1}}|Y|^{\frac{1}{ $\alpha$}+1}+p(t)$\Phi$_{ $\alpha$}($\varphi$_{1/ $\alpha$}(y), x$\varphi$_{1/ $\alpha$}(Y)/X) .

(ii) If Y(t)\neq 0 in J , then

\displaystyle \frac{d}{dt}\{\frac{y}{$\varphi$_{1/ $\alpha$}(Y)}[$\varphi$_{1/\mathrm{r}y}(y)X-$\varphi$_{1/ $\alpha$}(Y)x]\} = [P(t)-p(t)]|y|^{\frac{1}{ $\alpha$}+1}
(5)

+\displaystyle \frac{1}{ $\alpha$}[Q(t)-q(t)]\frac{|y|^{\frac{1}{ $\alpha$}+1}}{|Y|^{\frac{1}{ $\alpha$}+1}}|X|^{ $\alpha$+1}+q(t)$\Phi$_{1/r\ell}($\varphi$_{ $\alpha$}(x), y$\varphi$_{ $\alpha$}(X)/Y) .

The next result shows that if certain Wronskian‐like function is identically zero for a

pair of vector solutions of the two‐dimensional system of the form (1), then one of these

solutions is a constant multiple of another in the sense specified below.

Lemma 2.2 Let (x, y) and (X, Y) be solutions on J of the same system (1).
(i) Ifp(l) >0_{f}x(t)\neq 0 in J and x(t)$\varphi$_{1/ $\alpha$}(Y(t)) -X(t)$\varphi$_{1/ $\alpha$}(y(t)) \equiv 0 in J ,

then there

exists a constant c such that (X(t), Y(t)) = (cx(t), $\varphi$_{ $\alpha$}(c)y(t)) for all t\in J.

(ii) If q(t) > 0, y(t) \neq  0 in J and y(t)$\varphi$_{ $\alpha$}(X(t)) -Y(t)$\varphi$_{ $\alpha$}(x(t)) \equiv  0 in J_{f} then there

exists a constant c such that (X(t), Y(t)) =(cx(t), $\varphi$_{1/ $\alpha$}(c)y(t)) for all t\in J.

Thc first, of our main results now follows. For its proof see [8].

Theorem 2.1 (Pointwise comparison) (i) Suppose that (x, y) and (X, Y) are solu‐

tions of (1) and (3), respectively, satisfying x(b) = 0, x(t) \neq  0 for t \in (a, b) and either

x(a)=0 or x(a)\neq 0, X(a)\neq 0 and

\displaystyle \frac{y(a)}{$\varphi$_{ $\alpha$}(x(a))} \geq\frac{Y(a)}{$\varphi$_{ $\alpha$}(X(a))}.
Let

(6) 0<p(t)\leq P(t) , q(t) \leq Q(t) , t\in[a, b].

If moreover, X(t)^{2}+Y(t)^{2}>0 in [a, b] and either the strict inequality holds in at least one

of inequalities (6) throughout some subinterval of (a, b) or

(7) x(t)$\varphi$_{1/ $\alpha$}(Y(t)) -X(t)$\varphi$_{1/ $\alpha$}(y(t)) \not\equiv 0 in (a, b) ,
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then X(t) has at least one zero in the open interval (a, b) .

(ii) Suppose that (x, y) and (X, Y) are solutions of (1) and (3), respectively, satisfying
y(b) =0, y(t)\neq 0 for  t\in (a, b) and either y(a)=0 or y(a)\neq 0, Y(a)\neq 0 and

\displaystyle \frac{x(a)}{$\varphi$_{1/rx}(y(a))}\geq\frac{X(a)}{$\varphi$_{1/ $\iota$ x}(Y(a))}.
Let

(8) p(t)\leq P(t) , 0<q(t)\leq Q(t) , t\in J.

If, moreover, X(t)^{2}+Y(t)^{2}>0 in [a, b] and either the strict inequality holds in at least one

of inequalities (8) throughout some subinterval of (a, b) or

(9) y(t)$\varphi$_{ $\alpha$}(X(t))-Y(t)$\varphi$_{ $\alpha$}(x(t)) \not\equiv 0 in (a, b) ,

then Y(t) has at least one zero in the open interval (a, b) .

Example 2.1. Consider the systems

(10) x'-k^{ $\alpha$+1}$\varphi$_{1/ $\alpha$}(y)=0, y'+m^{ $\alpha$+1}$\varphi$_{ $\alpha$}(x)=0,

and

(11) X'-K^{ $\alpha$+1}$\varphi$_{1/c $\iota$}(Y)=0, Y'+M^{ $\alpha$+1}$\varphi$_{ $\alpha$}(X)=0,

where 0 < k < K and 0 < m < M are constants. Let \mathrm{s}\mathrm{i}\mathrm{n}. (resp. \cos_{ $\alpha$} ) dcnotc the first

(resp. the second) component of the solution of the system

(12) u'-$\varphi$_{1/(X}(v)=0, v'+$\varphi$_{ $\alpha$}(u)=0,

satisfying the initial condition

(13) u(0)=0, v(0)= (\displaystyle \frac{2}{ $\alpha$+1})^{\frac{ $\alpha$}{ $\alpha$+1}}
It is known that \sin_{y}t and \cos_{ty}t are periodic oscillatory functions with the period

$\pi$_{ $\alpha$}:=\displaystyle \frac{2$\alpha$^{\frac{1}{ $\alpha$+\mathrm{l}}} $\pi$}{( $\alpha$+1)\sin\frac{ $\pi$}{ $\alpha$+1}}
(see [7]). Notice that $\pi$_{ $\alpha$}=$\pi$_{1/\mathrm{r}x}.

Systems (10) and (11) have the particular oscillatory solutions

(x_{1}, y_{1})= (ksin  $\alpha$(k^{ $\alpha$}mt) , m^{ $\alpha$}\cos_{ $\alpha$}(k^{(y}mt

(x_{2}, y_{2})= ( k^{ $\alpha$}\cos_{1/ $\alpha$}(km^{1/\mathrm{r}y}t) , msin1/ $\alpha$(km^{1/(y}t) ),
and

(X_{1}, Y_{1})= (K\sin_{\mathrm{r}y}(K^{ $\alpha$}Mt), M^{ $\alpha$}\cos_{cy}(K^{ $\alpha$}Mt)) ,
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respectively.

(X_{2}, Y_{2})= ( K^{ $\alpha$}\cos_{1/ $\alpha$}(KM^{1/ $\alpha$}t) , Msin1/ $\alpha$(KM^{1/ $\alpha$}t) ),

Theorem 2.1 guarantees that for any solution (X, Y) of system (11) the first component

X(t) has at least one zero between each pair of consecutive zeros of x_{1}(t) which are spaced
regularly at the distance $\pi$_{ $\alpha$}/(k^{ $\alpha$}m) . If, in particular, (X, Y) is such that X(0) = 0 , then

X(t) vanishes again before x_{1}(t) does, that is, it must have a zero in the open interval

(0, $\pi$_{ $\alpha$}/(k^{ $\alpha$}m)) . The function (X_{1}, Y_{1}) is an example of such solution of (11).
Similarly, the second component Y(t) of any solution (X, Y) of (11) must vanish at least

once between any consecutive zeros of y_{2}(t) . The function (X_{2}, Y_{2}) provides an example of

the solution of (11) with Y_{2}(0) = 0 for which the first positive zero $\pi$_{1/ $\alpha$}/(KM^{1/ $\alpha$}) of the

component Y_{2}(t) precedes the first positive zero of y_{2}(t) .

Example 2.2. Compare (1) with

(B) X'-p^{*}$\varphi$_{1/ $\alpha$}(Y)=0, Y'+q^{*}$\varphi$_{ $\alpha$}(X)=0,

where p^{*} = \displaystyle \max_{t\in[a,b]}p(t) and q^{*} = \displaystyle \max_{t\in[a,b]}q(t) . From Theorem 2.1 it follows that the

first (resp. the second) component x of the solution (x, y) of system (1) does not have more

zeros in (a, b) than the first (resp. the second) component of the solutions of (B).
System (B) has the oscillatory solution

(14) (p^{*\frac{1}{ $\alpha$+1}}\sin_{ $\alpha$}(p^{*\frac{ $\alpha$}{ $\alpha$+1}}q^{*\frac{1}{ $\alpha$+1}}t), q^{*\frac{ $\alpha$}{ $\alpha$+1}}\cos_{ $\alpha$}(p^{*^{\frac{ $\alpha$}{ $\alpha$+1}}}q^{*\frac{1}{ $\alpha$+1}}t)) ,

where \sin_{ $\alpha$} (resp. \cos_{ $\alpha$} ) denotes the generalized sine function (resp. generalized cosine

function) defined in Example 2.1.

The interval between consecutive zeros of the first (second) component of solution (14)
of (B) is

\displaystyle \frac{$\pi$_{ $\alpha$}}{p^{*^{\frac{ $\alpha$}{ $\alpha$+1}}}q^{*^{\frac{1}{ $\alpha$+1}}}}.
If, therefore,

(15) p^{*\frac{ $\alpha$}{ $\alpha$+1}}q^{*\frac{1}{ $\alpha$+1}} <\underline{$\pi$_{ $\alpha$}}
b-a

�

then for no solution of the given system (1) the first component can have more than one

zero in the interval (a, b) .

Now, as a second comparison system consider

(C) X'-p_{*}$\varphi$_{1/ $\alpha$}(Y)=0, Y'+q_{*}$\varphi$_{ $\alpha$}(X)=0,

where p_{*}=\displaystyle \min_{t\in[a,b]}p(t) and q_{*}=\displaystyle \min_{t\in[a,b]}q(t) .

The first components of the solutions of (1) oscillate at least as rapidly as those of (C).
System (C) has the oscillatory solution

(16) (p_{*}^{\frac{1}{0+1}}\sin_{ $\alpha$}(p_{*}^{\frac{ $\alpha$}{ $\alpha$+1}}q_{*}^{\frac{1}{ $\alpha$+1}}t) , q_{*}^{\frac{ $\alpha$}{ $\alpha$+1}}\cos_{ $\alpha$}(p_{*}^{\frac{ $\alpha$}{n+1}}q_{*}^{\frac{1}{ $\alpha$+1}}t)) ,

5



so that the interval between consecutive zeros of the first (second) component of (16) is

\displaystyle \frac{$\pi$_{ $\alpha$}}{p_{*}^{\frac{ $\alpha$}{ $\alpha$+1}}q_{*}^{\frac{1}{ $\alpha$+1}}}.
It follows that a sufficient condition that the first (second) components of the solutions of

the given system (1) should have at least m zeros in (a, b) is that

(17) p_{*}^{\frac{ $\alpha$}{ $\alpha$+1}}q_{*}^{\frac{1}{ $\alpha$+1}} \displaystyle \geq \frac{m$\pi$_{ $\alpha$}}{b-a}.

In particular, a sufficient condition that system (1) should possess a solution the first

(second) component of which has a zero in (a, b) is that

(18) p_{*}^{\frac{ $\alpha$}{ $\alpha$+1}}q_{*}^{\frac{1}{ $\alpha$+1}} \displaystyle \geq\frac{$\pi$_{ $\alpha$}}{b-a}.
Example 2.3. Compare (1) with the Euler‐type system

(19) x'-p(t)$\varphi$_{1/ $\alpha$}(y)=0, y'+ (\displaystyle \frac{ $\alpha$}{ $\alpha$+1})^{(\}+1}\frac{p(t)}{P(t)^{ $\alpha$+1}}$\varphi$_{ $\alpha$}(x)=0,
where \displaystyle \int_{0}^{\infty}p(t)dt=\infty and  P(t)=\displaystyle \int_{0}^{t}p(s)ds . System (19) has the nonoscillatory solution

x(t)=P(t)\displaystyle \overline{ $\alpha$}\ovalbox{\tt\small REJECT}+1 , y(t)= (\frac{ $\alpha$}{ $\alpha$+1})^{ $\alpha$}P(t)^{-\frac{ $\alpha$}{ $\alpha$+1}} , t>0.
Thus, all nontrivial solutions of (1) are nonoscillatory if

(20) q(t)\displaystyle \leq (\frac{ $\alpha$}{ $\alpha$+1})^{ $\alpha$+1}\frac{p(t)}{P(t)^{ $\alpha$+1}}
for all sufficiently large t.

Criterion (20) is sharp in the sense that if for some  $\epsilon$>0

(21) q(t)\displaystyle \geq(1+ $\epsilon$)(\frac{ $\alpha$}{ $\alpha$+}1 )  $\alpha$+lp (t )P ( t)‐ơ‐1

for all large t
, then all nontrivial solutions of (1) are oscillatory (see Mirzov [13]).

We now apply Theorem 2.1 to get information about the arrangement of zeros of com‐

ponents of oscillatory solutions of system (1).

Theorem 2.2. Assume that the functions p(t) and q(t) are increasing (or decreasing)
on [0, \infty) . Let (x, y) be an oscillatory solution of system (1) and let \{$\sigma$_{k}\}_{k=1}^{\infty} and \{ $\tau$\}_{k=1}^{\infty}
denote the respective sequences of zeros of x(t) and y(t) . Then, the sequences \{$\sigma$_{k+1}-$\sigma$_{k}\}
and \{$\tau$_{k+1}-$\tau$_{k}\} are decreasing (or increasing).

The proof of the above theorem can be found in [8].
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Remark 2.1 (Critique of Picone�s identities of the first kind) Formulas (4) and (5)
are relatively simple and their use makes the proof of the pointwise comparison theorem

straightforward and easy, but because of the presence of the components X and Y of the

solution of system (3) in the second terms on the right‐hand sides of (4) and (5), they
are not suitable for establishing integral comparison theorems of the Leighton‐type. This

observation motivated our attempts to establish another Picone‐type identity that would

not have this handicap. The following lemma contains formulas of this kind.

Lemma 2.3 (Picone�s identity of the second kind) Let (x, y) and (X, Y) be solu‐

tiores on J of systems (1) and (3), respectively.

(i) If X(t)\neq 0, p(t) \geq 0 and P(t)>0 in J, then

(22) \displaystyle \frac{d}{dt}\{\frac{x}{$\varphi$_{ $\alpha$}(X)}[$\varphi$_{ $\alpha$}(X)y-$\varphi$_{ $\alpha$}(x)Y]\}
= [Q(t)-q(t)]|x|^{ $\alpha$+1}+p(t)[1-(p(t)/P(t))^{ $\alpha$}]|y|^{\frac{1}{ $\alpha$}+1}+P(t)^{- $\alpha$}$\Phi$_{ $\alpha$}(p(t)$\varphi$_{1/ $\alpha$}(y), P(t)\displaystyle \frac{x}{X}$\varphi$_{1/ $\alpha$}(Y)) .

(ii) If Y(t)\neq 0, q(t) \geq 0 and Q(t)>0 in J_{f} then

(23) \displaystyle \frac{d}{dt}\{\frac{y}{$\varphi$_{1/ $\alpha$}(Y)}[$\varphi$_{1/ $\alpha$}(y)X-$\varphi$_{1/ $\alpha$}(Y)x]\}
= [P(t)-p(t)]|y|^{\frac{1}{ $\alpha$}+1}+q(t)[1-(q(t)/Q(t))^{1/ $\alpha$}]|x|^{ $\alpha$+1}+Q(t)^{-1/ $\alpha$}$\Phi$_{1/ $\alpha$}(q(t)$\varphi$_{(y}(x), Q(t)\displaystyle \frac{y}{Y}$\varphi$_{( $\chi$}(X)) .

Now, assuming that system (3) has a solution (X, Y) such that its component X(t)
(resp. Y(t) ) does not vanish in (a, b) where a and b arc consecutivc zcros of thc first (resp.
the second) component of solution (x, y) of comparison system (1) satisfying conditions

(24) (resp. (25)) below, and integrating (22) (resp. (23)) from a to b , we are led to a

contradiction which establishes the truth of following integral comparison theorem. (For
details of the proof see [9].)

Theorem 2.3 (On conjugate and deconjugate points)

(i) Suppose that p(t) \geq 0, P(t) >0 in J , and system (1) possesses a solution (x, y) such

that x(t) has consecutive zeros a and b, a<b ,
in J and

(24) \displaystyle \int_{a}^{b}\{[Q(t)-q(t)]|x|^{ $\alpha$+1}+p(t)[1- (p(t)/F(t))^{ $\alpha$}]|y|^{\frac{1}{ $\alpha$}+1}\}dt\geq 0.
Then, for any solution (X, Y) of system (3) the component X(t) has a zero in (a, b) , or

else (X(t), Y(t)) is a constant multiple of (x(t), y(t)) which is possible only if p(t) \equiv P(t)
and q(t) \equiv Q(t) in (a, b) .

(ii) Suppose that q(t) \geq  0 and Q(t) > 0 in J and there exists a solution (x, y) of (1)
such that y(t) has consecutive zeros a and b, a<b , in J and

(25) \displaystyle \int_{a}^{b}\{q(t)[1- (q(t)/Q(t))^{(y}]|x|^{ $\alpha$+1}+ [P(t)-p(t)]|y|^{\frac{1}{ $\alpha$}+1}\}dt\geq 0.
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Then, for any solution (X, Y) of system (3) the component Y(t) has a zero in (a, b) , or else

(X(t), Y(t)) is a constant multiple of (x(t), y(t)) which is possible only if p(t) \equiv P(t) and

q(t)\equiv Q(t) in (a, b) .

Remark 2.2. If the pointwise inequalities

(26) 0<p(t) \leq P(t) , q(t)\leq Q(t) , t\in J,

hold for all t\in J ,
then the integral condition (24) is clearly satisfied and the conclusion (i)

of Theorem 2.3 is true. Similarly, if

(27) p(t)\leq P(t) , 0<q(t)\leq Q(t)

for all t\in J ,
then (25) holds and the conclusion (ii) of Theorem 2.3 follows.

Remark 2.3. In the special case where p(t) \equiv P(t) and q(t) \equiv Q(t) (i.e. systems (1)
and (3) coincide), from Theorem 2.3 we obtain the generalization of the classical Sturm

separation theorem.

The following result generalizes and extends to systems (1) and (2) the comparison
theorem for the scalar second‐order half‐linear differential equations given in [17]. For the

proof see [9].

Theorem 2.4. (On pseudoconjugate and focal points) Let (x, y) and (X, Y) be

solutions on J of systems (1) and (3), respectively.
(i) Suppose that p(t) \geq 0, P(t) >0 in J, x(a)=y(b)=0, a<b , with y(t)\neq 0 on [a , b)

and

(28) V_{ $\alpha$}[x, y] :=\displaystyle \int^{b}\{[Q(t)-q(t)]|x|^{ $\alpha$+1}+p(t)[1-(p(t)/P(t))^{ $\alpha$}]|y|^{\frac{1}{ $\alpha$}+1}\}dt\geq 0.
Then, for any solution (X, Y)_{f} with X \not\equiv 0 , of system (3) satisfying X(a) =0 there is a

value  c\in (a, b] such that Y(c) =0 . Moreover, c=b only if (X, Y) is a constant multiple
of (x, y) .

(ii) Suppose that q(t) \geq  0, Q(t) > 0 in J, y(a) = x(b) = 0, a < b
, with x(t) \neq  0 on

[a, b) , and

(29) \displaystyle \int_{a}^{b}\{q(t)[1-(q(t)/Q(t))^{ $\alpha$}]|x|^{\mathrm{r}y+1}+ [P(t)-p(t)]|y|^{\frac{1}{ $\alpha$}+1}\}dt\geq 0.
Then, for any solution (X, Y) , with Y \not\equiv  0 , of system (3) satisfying Y(a) = 0 there is a

value  c\in (a, b] such that X(c) =0 . Moreover, \mathrm{c}=b only if (X, Y) is a constant multiple
of (x, y) .

Remark 2.4. If the pointwise inequalities (26) hold on [a, b] ,
then (24) is satisfied and

the conclusion (i) of Theorem 2.4 follows. Similarly, the satisfaction of the inequalities (27)
on [a, b] implies that the assertion of Theorem 2.4 (ii) holds true.
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