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On a conjugation and a linear operator
by

Muneo Cho, Eungil Ko, Ji Eun Lee, Kétard Tanahashi

1 Abstract

In this note, we introduce the study of some classes of operators concerning with con-
jugations on a complex Hilbert space.

2 Definition

Let H be a complex Hilbert space and £(#) be the set of all bounded linear operators
on H. For T € L(H), let o(T), 0p(T), 04(T), 05(T), 0¢(T), 0.(T) be the spectrum, the
point spectrum, the approximate point spectrum, the surjective spectrum, the essential
spectrum and the Weyl spectrum, respectively.

Definition 1. For T € L(H), we define o, (T') and B, (T) as follows;
1) am(T) =) (-1Y ( TJn ) =T,

N NgE

(2) Bn(T) =) (-1) ( " ) I,
=0 J
(1) T is said to be m-symmetric if a,, (T) = 0. Then (—i)™ 'am_1(T) > 0 and o(T) C R.

(2) T is said to be m-isometric if Bm(T) = 0. Then Bp—1(T) > 0and 0,(T) CT={z €
C:lz| =1}.

It holds that
(1) T*am(T) = am(T) T = omsa(T),  (2) T*Bm(T) T = Bin(T) = Bmar(T).

Proposition 1 (Proposition 1.23, [1]) Let T' be m-isometric. If m is even and T is
invertible, then T is (m — 1)-isometric.
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When m is odd, we have the following:

Proposition 2 (Theorem 1, [7]) If m is any odd number, then there ezists an invertible
m-isometric which is not (m — 1)-isometric.

Proposition 3 (Theorem 3.4, [13]) If T is m-symmetric and m is even, then T is (m—1)-
symmetric.

(1) Let T be 1-symmetric. Then T* — T = 0. So T is Hermitian clearly.

(2) Let T be 2-symmetric. By Proposition 3, T is 1-symmetric. Hence T is Hermitian.

(3) Let T be m-symmetric. For sequences of unit vectors {z,}, {yn}, if (T —a)z, — 0
and (T — b)y, — 0 (a #b), then (z,, y») — 0. Hence if Tz = az, Ty = by (a #b),
then (z, y) = 0.

o If ) is 2-nilpotent, then @ is 3-symmetric.

In [11], J. W. Helton introduced m-symmetric for the study of Jordan operators.

e If T is 1-isometric, then 7*T — I = 0 and T is an isometry.

In [1], J. Agler and M. Stankus studied m-isometric for the research of Dirichlet Differential
operators.

We have many results of m-isometric operators. Researchers are Agler, Stankus, Gu,
Bermides, Martinén and etc.

3 Conjugation

Definition 2 C : H — H is said to be antilinear if
Claz +by) =aCz +bCy, foralla,be C,z,y € H.
An antilinear operator C is said to be a conjugation if
C?=1, (Cz,Cy) = (y,z) forallz,yecH.

o If C is a conjugation, then ||Cz| = ||z|| for all z € H.
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4 Example
Example 1

Typical Example of Conjugation: Let H = C™.
(1) J(Zl, 22y +ee zn) = (2_1, 2_2) L] Z)’ (2) C(Zla 22y ++0 Zn) = (Z,m, "')-ZT)'

Then J, C are conjugations.
Example 2

T is said to be complex symmetric if there exists a conjugation C such that CTC = T*.
Typical Example of a complex symmetric operator T: Let H = C" and T be

Gy G-1 - O—(n-1)
a ag O (n-
T= ! 0 (? 2 (Toeplitz matrix).
Qp—1 Qp-2 *"°* ag

Then CTC =T*. Hence every Toeplitz matrix is complex symmetric (C-symmetric).

T. Takagi first showed this. He studied antilinear eigen-value problem. There is the
following result.

Takagi Factorization Theorem. Let T be a symmetric and C-symmetric matriz. Then
there exist a unitary U and normal and symmetric N such that T = UN'U.

5 Symmetric operators

In [12] S. Jung, E. Ko and J. E. Lee showed several results about complex symmetric
operators. We only set the following theorem.

Theorem 1. Let C be a conjugation and T € L(H). Then
o(CTC) =a(T), 0p(CTC)=0y(T), 0a(CTC)=0.(T),

05(CTC) = 04(T), 0.(CTC) = 0.(T), 0w(CTC)=0,(T).
e It is not need CTC = T*. It is the relation between spectra of T and CTC.
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6 (m,C)-symmetric operator

Definition 3. Let C be a conjugation and T' € £L(#). Then

An(T;C) = Zm:(—l)j ( ’J” ) T¥CT™IC.

=0

T is said to be (m,C)-symmetric if A, (T;C) = 0. (In [2] and [3], it is said to be
m-complex symmetric.)

We have T*: Ap(T;C) — Ap(T;C) - (CTC) = A1 (T; C).
Hence if T' is (m, C)-symmetric, then T is (n, C)-symmetric for every n (> m).

At the last year RIMS Conference, in [5] we already had a talk of this class. (m,C)-
symmetric means m-complez symmetric. Please see [5].

7 [m,C]-symmetric operator
Definition 3. Let C be a conjugation and T € £(H). Then

Z( 1)/ ( )CT’”"O)T’

T is said to be [m, C]-symmetric if ay(T;C) = 0.
We have CTC - am(T;C) — an(T;C) - T = apm41(T; 0).
Hence if T is [m, C]-symmetric, then T is [n, C]-symmetric for every n (> m).

Theorem 2. Let C be a conjugation and T € L(H).

(a) T is [m, C]-symmetric if and only if so is T*.

(b) IfT is [m, C]-symmetric, then so is T™ for everyn € N.

(c) IfT is [m,C)-symmetric and invertible, then T~ is [m, C]-symmetric.

Theorem 3. Let T be [m, C]-symmetric. Then

U(T) = U(T)a UP(T) = m’ Ja(T) = mv as(T> = m'
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e A pair (T, 9) is said to be C-doubly commuting if TS = ST and CSC-T =T - CSC.

Lemma 1. Let (T, S) be C-doubly commuting. Then it holds

an(T+ 5;C) = i ( T;L ) a;(T;C) - am-;j(S; C).

=0

Theorem 4. Let T be [m, C]-symmetric and S be [n, C}-symmetric. If (T, S) is C-doubly
commuting, then T + S is [m + n — 1, C]-symmetric.

Theorem 4. Let Q be n-nilpotent. Then Q is [2n— 1, C]-symmetric for every conjugation
C.

Theorem 5. Let T be [m,C]-symmetric and Q be n-nilpotent. If (T,Q) is C-doubly
commuting, then T + Q is [m + 2n — 2, C]-symmetric.

Lemma 2. Let (T, S) be C-doubly commuting. Then it holds

an(TS;0) =Y ( ’;‘ ) a;(T;C) - T™ - CSIC - apm_(S; C).

=0

Theorem 6. Let T be [m, C|-symmetric and S be [n, C|-symmetric. If (T, S) is C-doubly
commuting, then TS is [m +n — 1, C]-symmetric.

Theorem 7. Let T be [m,C]-symmetric and S be [n, D|-symmetric. Then T ® S is
[m+n—1,C ® D]-symmetric.

Proof. Tt is clear that C ® D is a conjugation on H ® H. And it is easy to see that
T® I is [m,C ® D}-symmetric and I ® S is [n,C ® D]-symmetric. Also it is clear that

(T®I,I®S)is C® D-doubly commuting. Since T® S = (T'®I)(I® S), by the previous
theorem we have T ® S is [m + n — 1,C ® D]-symmetric. Q.E.D.

8 (m,C)-isometric operator

Definition 4. Let C be a conjugation and T € L(#). Then

An(T;C) = i(—m ( ’j” ) T*m=i(CT™1C).
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T is said to be (m, C)-isometric if Ap,,(T;C) = 0.
We have T* - Ay, (T;C) - (CTC) — An(T; C) = Apia(T;; C).
Hence if T' is (m, C)-isometric, then T is (n, C)-isometric for every n (> m).

Theorem 8. Let T' be (m, C)-isometric. Then;
(a) T is bounded below,

(b) 0¢&aa(T),
(¢) T 1s injective and R(T) is closed,

(d) if 2 € 0a(T), then % € 0u(T"),
(e) if there exists T, then T is (m, C)-isometric.

Theorem 9. Let T be (m, C)-isometric. If T* has SVEP, then
0(T) = 0,(T) = o5(T).

Theorem 10. Let T be (m,C)-isometric. If T is power bounded and T*CTC — I is
normaloid, then T is (1,C)-isometric, i.e., T*CTC = I.

o Of course, if T' is m-isometric and power bounded, then T is isometric.
® A pair (T, S) is said to be C-xdoubly commuting if TS = ST and S*-CTC = CTC - §*.

Lemma 3. Let (T, S) be C-+xdoubly commuting. Then it holds

An(T + 8;0) = Z (ml'”n:;m:i)

m1+ma+ma=m

(T* + 8*)™§*™m2 A, (T C) - (CT™C) - (CS™C).

It follows from the following equation:

((a+b)(c+d)—1)" = ((ac— 1) + (a+ b)d + bc)™

= Z ( mn ) (@4 b)™b™(ac — 1)™ ™ d™.

mytmatme=m \ "1 2,13
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Hence we have the following result.

Theorem 11. Let T be (m,C)-isometric, Q be n-nilpotent and (T, Q) be a commuting
pair. Then T + Q is (m + 2n — 2, C)-isometric.

Lemma 4. Let (T, S) be C-xdoubly commuting. Then it holds

An(TS;C) = i ( ’; ) T . Ap_(T; C)(CTIC) - Aj(S; C).

=0
It follows from the following equation:

(abed ~ 1)™ = ((ab — 1) + a(cd — 1)b)™

= z ( m ) -a¥(ab— 1) b (cd — 1.
=0 \ 7
Hence we have the following result.

Theorem 12. Let T be (m, C)-isometric and S be (n, C)-isometric. If (T, S) is C-xdoubly
commuting, then TS is (m + n — 1, C)-isometric.

Theorem 13. Let T be (m,C)-isometric and S be (n, D)-isometric. Then T ® S is
(m+mn—1,C ® D)-isometric.

Proof. 1t is easy to see that T® is (m, C® D)-isometric and I ® S is (n, C' ® D)-isometric.
Also it is clear that (T®1, IQS) is C® D-+doubly commuting. Since T®S = (TQI)(I®S),
by the previous theorem we have T'® S is (m + n — 1,C ® D)-isometric. Q.E.D.
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