On a conjugation and a linear operator

by

Muneo Chō, Eungil Ko, Ji Eun Lee, Kôtarô Tanahashi

1 Abstract

In this note, we introduce the study of some classes of operators concerning with conjugations on a complex Hilbert space.

2 Definition

Let \mathcal{H} be a complex Hilbert space and $\mathcal{L}(\mathcal{H})$ be the set of all bounded linear operators on \mathcal{H} . For $T \in \mathcal{L}(H)$, let $\sigma(T)$, $\sigma_p(T)$, $\sigma_a(T)$, $\sigma_s(T)$, $\sigma_e(T)$, $\sigma_w(T)$ be the spectrum, the point spectrum, the approximate point spectrum, the surjective spectrum, the essential spectrum and the Weyl spectrum, respectively.

Definition 1. For $T \in \mathcal{L}(\mathcal{H})$, we define $\alpha_m(T)$ and $\beta_m(T)$ as follows;

(1)
$$\alpha_m(T) = \sum_{j=0}^m (-1)^j \binom{m}{j} T^{*m-j} T^j,$$

(2)
$$\beta_m(T) = \sum_{j=0}^m (-1)^j \binom{m}{j} T^{*m-j} T^{m-j}$$
.

- (1) T is said to be m-symmetric if $\alpha_m(T) = 0$. Then $(-i)^{m-1}\alpha_{m-1}(T) \ge 0$ and $\sigma(T) \subset \mathbb{R}$.
- (2) T is said to be m-isometric if $\beta_m(T) = 0$. Then $\beta_{m-1}(T) \geq 0$ and $\sigma_a(T) \subset \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$.

It holds that

(1)
$$T^* \alpha_m(T) - \alpha_m(T) T = \alpha_{m+1}(T)$$
, (2) $T^* \beta_m(T) T - \beta_m(T) = \beta_{m+1}(T)$.

Proposition 1 (Proposition 1.23, [1]) Let T be m-isometric. If m is even and T is invertible, then T is (m-1)-isometric.

When m is odd, we have the following:

Proposition 2 (Theorem 1, [7]) If m is any odd number, then there exists an invertible m-isometric which is not (m-1)-isometric.

Proposition 3 (Theorem 3.4, [13]) If T is m-symmetric and m is even, then T is (m-1)-symmetric.

- (1) Let T be 1-symmetric. Then $T^* T = 0$. So T is Hermitian clearly.
- (2) Let T be 2-symmetric. By Proposition 3, T is 1-symmetric. Hence T is Hermitian.
- (3) Let T be m-symmetric. For sequences of unit vectors $\{x_n\}$, $\{y_n\}$, if $(T-a)x_n \to 0$ and $(T-b)y_n \to 0$ $(a \neq b)$, then $\langle x_n, y_n \rangle \to 0$. Hence if Tx = ax, Ty = by $(a \neq b)$, then $\langle x, y \rangle = 0$.
- If Q is 2-nilpotent, then Q is 3-symmetric.

In [11], J. W. Helton introduced m-symmetric for the study of Jordan operators.

• If T is 1-isometric, then $T^*T - I = 0$ and T is an isometry.

In [1], J. Agler and M. Stankus studied *m*-isometric for the research of Dirichlet Differential operators.

We have many results of *m*-isometric operators. Researchers are Agler, Stankus, Gu, Bermúdes, Martinón and etc.

3 Conjugation

Definition 2 $C: \mathcal{H} \longrightarrow \mathcal{H}$ is said to be antilinear if

$$C(ax + by) = \bar{a} Cx + \bar{b} Cy$$
, for all $a, b \in \mathbb{C}, x, y \in \mathcal{H}$.

An antilinear operator C is said to be a *conjugation* if

$$C^2 = I$$
, $\langle Cx, Cy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$.

• If C is a conjugation, then ||Cx|| = ||x|| for all $x \in \mathcal{H}$.

4 Example

Example 1

Typical Example of Conjugation: Let $\mathcal{H} = \mathbb{C}^n$.

(1)
$$J(z_1, z_2, ..., z_n) = (\overline{z_1}, \overline{z_2}, ..., \overline{z_n}),$$
 (2) $C(z_1, z_2, ..., z_n) = (\overline{z_n}, \overline{z_{n-1}}, ..., \overline{z_1}).$

Then J, C are conjugations.

Example 2

T is said to be *complex symmetric* if there exists a conjugation C such that $CTC = T^*$. Typical Example of a complex symmetric operator T: Let $\mathcal{H} = \mathbb{C}^n$ and T be

$$T = \begin{pmatrix} a_0 & a_{-1} & \cdots & a_{-(n-1)} \\ a_1 & a_0 & \cdots & a_{-(n-2)} \\ \vdots & \ddots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$
 (Toeplitz matrix).

Then $CTC = T^*$. Hence every Toeplitz matrix is complex symmetric (C-symmetric).

T. Takagi first showed this. He studied antilinear eigen-value problem. There is the following result.

Takagi Factorization Theorem. Let T be a symmetric and C-symmetric matrix. Then there exist a unitary U and normal and symmetric N such that $T = UN^tU$.

5 Symmetric operators

In [12] S. Jung, E. Ko and J. E. Lee showed several results about complex symmetric operators. We only set the following theorem.

Theorem 1. Let C be a conjugation and $T \in \mathcal{L}(\mathcal{H})$. Then

$$\begin{split} &\sigma(CTC) = \overline{\sigma(T)}, \quad \sigma_p(CTC) = \overline{\sigma_p(T)}, \quad \sigma_a(CTC) = \overline{\sigma_a(T)}, \\ &\sigma_s(CTC) = \overline{\sigma_s(T)}, \quad \sigma_e(CTC) = \overline{\sigma_e(T)}, \quad \sigma_w(CTC) = \overline{\sigma_w(T)}. \end{split}$$

• It is not need $CTC = T^*$. It is the relation between spectra of T and CTC.

6 (m, C)-symmetric operator

Definition 3. Let C be a conjugation and $T \in \mathcal{L}(\mathcal{H})$. Then

$$\Delta_m(T;C) = \sum_{j=0}^m (-1)^j \binom{m}{j} T^{*j} C T^{m-j} C.$$

T is said to be (m, C)-symmetric if $\Delta_m(T; C) = 0$. (In [2] and [3], it is said to be m-complex symmetric.)

We have
$$T^* \cdot \Delta_m(T; C) - \Delta_m(T; C) \cdot (CTC) = \Delta_{m+1}(T; C)$$
.

Hence if T is (m, C)-symmetric, then T is (n, C)-symmetric for every $n \geq m$.

At the last year RIMS Conference, in [5] we already had a talk of this class. (m, C)-symmetric means m-complex symmetric. Please see [5].

7 [m, C]-symmetric operator

Definition 3. Let C be a conjugation and $T \in \mathcal{L}(\mathcal{H})$. Then

$$\alpha_m(T;C) = \sum_{j=0}^m (-1)^j \binom{m}{j} (CT^{m-j}C) T^j.$$

T is said to be [m, C]-symmetric if $\alpha_m(T; C) = 0$.

We have $CTC \cdot \alpha_m(T; C) - \alpha_m(T; C) \cdot T = \alpha_{m+1}(T; C)$.

Hence if T is [m, C]-symmetric, then T is [n, C]-symmetric for every $n (\geq m)$.

Theorem 2. Let C be a conjugation and $T \in \mathcal{L}(\mathcal{H})$.

- (a) T is [m, C]-symmetric if and only if so is T^* .
- (b) If T is [m, C]-symmetric, then so is T^n for every $n \in \mathbb{N}$.
- (c) If T is [m, C]-symmetric and invertible, then T^{-1} is [m, C]-symmetric.

Theorem 3. Let T be [m, C]-symmetric. Then

$$\sigma(T) = \overline{\sigma(T)}, \quad \sigma_p(T) = \overline{\sigma_p(T)}, \quad \sigma_a(T) = \overline{\sigma_a(T)}, \sigma_s(T) = \overline{\sigma_s(T)}.$$

• A pair (T, S) is said to be C-doubly commuting if TS = ST and $CSC \cdot T = T \cdot CSC$.

Lemma 1. Let (T, S) be C-doubly commuting. Then it holds

$$\alpha_m(T+S;C) = \sum_{j=0}^m \binom{m}{j} \alpha_j(T;C) \cdot \alpha_{m-j}(S;C).$$

Theorem 4. Let T be [m, C]-symmetric and S be [n, C]-symmetric. If (T, S) is C-doubly commuting, then T + S is [m + n - 1, C]-symmetric.

Theorem 4. Let Q be n-nilpotent. Then Q is [2n-1, C]-symmetric for every conjugation C.

Theorem 5. Let T be [m, C]-symmetric and Q be n-nilpotent. If (T, Q) is C-doubly commuting, then T + Q is [m + 2n - 2, C]-symmetric.

Lemma 2. Let (T, S) be C-doubly commuting. Then it holds

$$\alpha_m(TS;C) = \sum_{j=0}^m \binom{m}{j} \alpha_j(T;C) \cdot T^{m-j} \cdot CS^jC \cdot \alpha_{m-j}(S;C).$$

Theorem 6. Let T be [m, C]-symmetric and S be [n, C]-symmetric. If (T, S) is C-doubly commuting, then TS is [m + n - 1, C]-symmetric.

Theorem 7. Let T be [m,C]-symmetric and S be [n,D]-symmetric. Then $T \otimes S$ is $[m+n-1,C \otimes D]$ -symmetric.

Proof. It is clear that $C \otimes D$ is a conjugation on $\mathcal{H} \otimes \mathcal{H}$. And it is easy to see that $T \otimes I$ is $[m, C \otimes D]$ -symmetric and $I \otimes S$ is $[n, C \otimes D]$ -symmetric. Also it is clear that $(T \otimes I, I \otimes S)$ is $C \otimes D$ -doubly commuting. Since $T \otimes S = (T \otimes I)(I \otimes S)$, by the previous theorem we have $T \otimes S$ is $[m+n-1, C \otimes D]$ -symmetric. Q.E.D.

8 (m, C)-isometric operator

Definition 4. Let C be a conjugation and $T \in \mathcal{L}(\mathcal{H})$. Then

$$\Lambda_m(T;C) = \sum_{j=0}^m (-1)^j \begin{pmatrix} m \\ j \end{pmatrix} T^{*m-j}(CT^{m-j}C).$$

T is said to be (m, C)-isometric if $\Lambda_m(T; C) = 0$.

We have $T^* \cdot \Lambda_m(T; C) \cdot (CTC) - \Lambda_m(T; C) = \Lambda_{m+1}(T; C)$.

Hence if T is (m, C)-isometric, then T is (n, C)-isometric for every $n (\geq m)$.

Theorem 8. Let T be (m, C)-isometric. Then;

- (a) T is bounded below,
- (b) $0 \notin \sigma_a(T)$,
- (c) T is injective and R(T) is closed,
- (d) if $z \in \sigma_a(T)$, then $\frac{1}{\overline{z}} \in \sigma_a(T^*)$, (e) if there exists T^{-1} , then T^{-1} is (m, C)-isometric.

Theorem 9. Let T be (m, C)-isometric. If T^* has SVEP, then

$$\sigma(T) = \sigma_a(T) = \sigma_s(T).$$

Theorem 10. Let T be (m,C)-isometric. If T is power bounded and $T^*CTC - I$ is normaloid, then T is (1, C)-isometric, i.e., $T^*CTC = I$.

- Of course, if T is m-isometric and power bounded, then T is isometric.
- A pair (T, S) is said to be C-*doubly commuting if TS = ST and $S^* \cdot CTC = CTC \cdot S^*$.

Lemma 3. Let (T, S) be C-*doubly commuting. Then it holds

$$\begin{split} & \Lambda_m(T+S;C) = \sum_{m_1+m_2+m_3=m} \left(\begin{array}{c} m \\ m_1,m_2,m_3 \end{array} \right) \\ & \cdot (T^*+S^*)^{m_1} S^{*m_2} \Lambda_{m_3}(T;C) \cdot (CT^{m_2}C) \cdot (CS^{m_1}C). \end{split}$$

It follows from the following equation:

$$((a+b)(c+d)-1)^m = ((ac-1)+(a+b)d+bc)^m$$

$$= \sum_{m_1+m_2+m_3=m} {m \choose m_1, m_2, m_3} \cdot (a+b)^{m_1} b^{m_2} (ac-1)^{m_3} c^{m_2} d^{m_1}.$$

Hence we have the following result.

Theorem 11. Let T be (m, C)-isometric, Q be n-nilpotent and (T, Q) be a commuting pair. Then T + Q is (m + 2n - 2, C)-isometric.

Lemma 4. Let (T,S) be C-*doubly commuting. Then it holds

$$\Lambda_m(TS;C) = \sum_{j=0}^m \binom{m}{j} T^{*j} \cdot \Lambda_{m-j}(T;C)(CT^jC) \cdot \Lambda_j(S;C).$$

It follows from the following equation:

$$(abcd - 1)^m = ((ab - 1) + a(cd - 1)b)^m$$

$$=\sum_{j=0}^{m} {m \choose j} \cdot a^{j} (ab-1)^{m-j} b^{j} (cd-1)^{j}.$$

Hence we have the following result.

Theorem 12. Let T be (m, C)-isometric and S be (n, C)-isometric. If (T, S) is C-*doubly commuting, then TS is (m + n - 1, C)-isometric.

Theorem 13. Let T be (m, C)-isometric and S be (n, D)-isometric. Then $T \otimes S$ is $(m + n - 1, C \otimes D)$ -isometric.

Proof. It is easy to see that $T \otimes I$ is $(m, C \otimes D)$ -isometric and $I \otimes S$ is $(n, C \otimes D)$ -isometric. Also it is clear that $(T \otimes I, I \otimes S)$ is $C \otimes D$ -*doubly commuting. Since $T \otimes S = (T \otimes I)(I \otimes S)$, by the previous theorem we have $T \otimes S$ is $(m+n-1, C \otimes D)$ -isometric. Q.E.D.

References

- [1] J. Agler and M. Stankus, *m*-Isometric transformations of Hilbert space I, Integr. Equat. Oper. Theory, **21**(1995) 383-429.
- [2] M. Chō, E. Ko and J. E. Lee, On m-complex symmetric operators, Mediterr. J. Math. $13(2016)\ 2025-2038$.
- [3] M. Chō, E. Ko and J. E. Lee, On m-complex symmetric operators II, Mediterr. J. Math. 13(2016) 3255-3264.
- [4] M. Chō, E. Ko and J. E. Lee, On (m, C)-isometric operators, Complex Anal. Oper. Theory, 4(2016) 1679-1694.
- [5] M. Chō, E. Ko and J. E. Lee, On $m\text{-}\mathrm{complex}$ symmetric operators, RIMS Kôkyûroku

1996 (2016) April, 23-33.

- [6] M. Chō, J. E. Lee and K. Tanahashi, On [m, C]-symmetric operators, preprint.
- [7] M. Chō, S. Öta and K. Tanahashi, Invertible weighted shift operators which are *m*-isometries, Proc. Amer. Math. Soc. **141**(2013) 11701-6.
- [8] C. Gu and M. Stankus, Some results on higher order isometries and symmetries: Products and sums with a nilpotent operators, Linear Algebra Appl., **469**(2015) 500-509.
- [9] S. R. Garcia and M. Putinar, Complex symmetric operators, Trans. Amer. Math. Soc. **358**(2005) 1285-1315.
- [10] S. R. Garcia and M. Putinar, Complex symmetric operators II, Trans. Amer. Math. Soc. 359(2007) 3913-3931.
- [11] J. W. Helton, Infinite dimensional Jordan operators and Strum-Liouville conjugate point theory, Trans. Amer. Math. Soc. **170**(1972) 305-331.
- [12] S. Jung, E. Ko and J. E. Lee, On complex symmetric operators, J. Math. Anal. Appl. 406 (2013) 373-385.
- [13] S. McCullough and L. Rodman, Hereditary classes of operators and matrices, Amer. Math. Monthly, 104(1997) 415-430.

Muneo Chō

Department of Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan e-mail: chiyom01@kanagawa-u.ac.jp

Eungil Ko

Department of Mathematics, Ewha Womans University, Seoul 120-750, Korea e-mail: eiko@ewha.ac.kr

Ji Eun Lee

Department of Mathematics-Applied Statistics, Sejong University, Seoul 143-747, Korea e-mail: jieun7@ewhain.net; jieunlee7@sejong.ac.kr

Kôtarô Tanahashi

Department of Mathematics, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan

e-mail: tanahasi@tohoku-mpu.ac.jp