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1 Introduction

Derived from the theory of means of Pusz-Woronowicz [23, 24], Kubo and Ando [19]
established the theory of operator means for positive operators on a Hilbert space (see
also [3]):

AmB = Abf, ( -%BA-%) AT for fu(z)=1mz

where f,, is an operator monotone function and, by the monotonicity of each terms,
Am B = s-lim,_,o(A + €)m(B + ¢) defines an operator mean for all positive operators.
Based on this theory, in [14] we introduced the relative operator entropy S(A|B) putting
fm(z) = log z, which is a relative version of the operator entropy defined by Nakamura-
Umegaki [22]. From the viewpoint of Uhlmann, it also defined as the derivative at t = 0
of the path of geometric operator means [15] for fu,(z) = z* (¢t € [0,1)]);

A#B = s-lim(A + )} ((A +e) iB(A+ e)_%)t (A+e)t.

For invertible A and B, the relative operator entropy has the following variational
forms;

S(A|B) = A log (A—%BA—%) Ab = lim ﬁft—f;é.

If A and B are not invertible, it is defined under a certain condition like other relative
entropies. We also extended the Kubo-Ando theory as solidarities [13].

This view yielded the Finsler space consisting of positive invertible operators, which
is called the CPR geometry [5] and it was pointed that the metric, which is now called
the Thompson (part) metric, can be defined by S(A|B):

d(A, B) = ||log (A~4BA}) || = | A¥S(4|B) A"}



Moreover its Riemannian version was discussed by Bhatia-Holbrook [4] and the mul-
tivariate geometric mean for positive definite matrices was introduced. Successively
Lim and Pélfia [21] redefined it as the (weighted) matrix Karcher mean defined by
the Karcher equation and then Lawson and Lim [20] extended this to the mean for
positive invertible operators which is a nice extension of geometric operator means in
the Kubo-Ando theory. Here the Karcher equation for positive invertible operators A;
(j=1,2,...,n), X and a weight {w;} is

0= ;wj log (X 4,X7%).

But their theory depends on the Thompson metric and the power operator mean cor-
responding to the power function fy, ,(z) = (1 -t + tz")7. Thus it needs substantially
the invertibility of positive operators.

In this note, we extend it to a mean for (non-invertible) positive operators by virtue
of the relative operator entropy based on the properties with the existence conditions
which are closely related to the kernels and ranges for operators. To study properties
of the quantities for non-invertible operators defined by the limit in the strong operator
topology, we pay attention to futher approximations, e.g. continuities. To approach to
the relative operator entropy, we prepare two tools. One is a bounded double monotone
sequence lemma (Lemma 2.7) and another is Izumino’s construction (5), see also [8]
to express such quantities via commuting operators explained in the last part of this
section. Similarly to this section, we often use these tools in this paper. Finally we
introduce general operator mean in order to view the negative power means as the
adjoint of the positive power means. As a consequence, we can easily observe the
relations around Karcher maens and power means.

2 The relative operator entropy

First we review the relative operator entropy S(A|B) for positive (bounded linear)
operators A, B on a Hilbert space, see [14, 15, 16, 9, 10, 11, 17]. If B is invertible,
then it is defined by S(A|B) = Bip (B_%AB‘%) B?, where 7 is the entropy function:

n(z) = —zlogz ifz >0, n(0) = 0.
In addition, if A is invertible, then S(4|B) = A% log (A‘%BA‘%) Az. Since S(A|B)
has the right-term monotone decreasing property of S(A|B +¢) as € | 0, we define for

non-invertible A and B
S(A|B) = s—lii{)n S(A|B +¢) (1)
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if the limit (in the strong operator topology) exists as a bounded operator. But, in
general, S(A|B) does not always exist. On the other hand, based on the fact that

t -1
z N\ logt as t | 0, it follows that 4#@ is monotone-decreasing as t | 0, so
that another equivalent definition of Uhlmann’s type is the derivative one for the path
of geometric means A#,B:

S(A|B) = sllf{)n A#:B - A (2)

if the limit exists. If A and B are commuting and S(A|B) is defined, then
S(A|B) = Alog B — Alog A,

in particular, S(0|B) = 0 for all positive operators B > 0. Though we often use
unbounded expressions like log A from now on, these conventions are surely based on
the total boundedness of Alog A. Under the existence, we have the following properties
of S(A|B) for positive operators A and B by those for operator means:

Lemma 2.1. Under the existence, the following properties hold:
(1) If B< B', then S(A|B) < S(A|B’).
(2) T*S(A|B)T < S(T*AT|T*BT) for allT (the equality holds for invertible T').
(2') ®(S(A|B)) < S(®(A)|®(B)) for all normal positive linear maps ®.
(3) S(A1|B1) + S(A42|B2) < S(A1 + 42| By + By).
(3) (1—¢)S(A1|By1)+1S(A3|Bs) < S((1—t)A1+tAz|(1—t)B1+1tBy) forallt €[0,1].
(4) S(A|B) < B- A.
(5) ker S(A|B) D ker A.
(6) S (D Ax | Dy Br) = By S(Ak|Br)-
(7) S(A|A#:B) =t S(A|B) forallt € [0,1].

Here we recall the equality condition in the transformer inequality (2) of Lemma 2.1
[8, Theorem 3]: If ker7* C ker A N ker B for an operator T, then T*(Am B)T =
(T*AT)m(T™*BT) holds for all operator means m. Moreover this equality holds for in
S(A|B) since S(A|B) = s-lim¢| o éﬁiﬂ:
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Theorem 2.2. Let A and B be positive operators. If S(A|B) ezists and ker T* C
ker ANker B for an operator T, then

T*S(A|B)T = S(T*AT|T*BT).
Then we have one of the (sufficient) conditions that S(A|B) exists;

Lemma 2.3. If A is majorized by B, i.e., A < aB for some o > 0, then S(A|B)
ezists.

In fact, by Douglas’ majorization theorem [6], we have A% = DB? for some ‘deriva-
tive’ operator D with ker D = ker A D ker B and so ker B = ker A Nker B. Then , for
the support projection Pg for B, we have PgAPg = A and PgD*DPgy = D*D. Hence
it follows from Theorem 2.2 that

S(A|B) = S(B*D*DB2|B) = BS(D*D|Pg)B? = B (D*D) B?

and so S(A|B) exists.
It is also shown that the majorization A < aB is equivalent to the condition for the
range inclusion;
ran A% C ran B3.
But it is stronger than the existence condition. In fact, A is not majorized by A? if
o(A) = [0,1], while we easily see S(A|A4%) = Alog A.
Another candidate is the kernel inclusion

ker A D ker B,

which is weaker than the range inclusion. In fact, the kernel condition does not guar-
antee the existence: For B with o(B) = [0, 1] where 0 is not an eigenvalue, it follows
that S(I|B) = log B diverges while both kernels are trivial.
The third condition between the above ones is B-absolute continuity in the sense of
Ando’s Lebesgue decomposition [2]:
A=[BJA=slimA:nB

n—oo

where A : B defined by
(A:Bz,2) = inf [(Az,2)+ (By,y)] (t)

is the parallel addition [1], which is the half of the harmonic mean Ah B [3]. Kosaki
[18] showed that
[BJA = A2 Py A%
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for the projection Py, on the closed subspace

M = {y| A%y € ran B}.

This result implies A = [B]A = lim;| o A#:B and hence B-absolute continuity guaran-
tees the continuity of A#,B at t = 0 and it is a necessary condition for the existence
of S(A|B) as the above derivative [12]. In fact, this continuity is in the norm topology:

Lemma 2.4. If S(A|B) ezxists, then A#:B converges uniformly to A fort | 0.

Since ker A#:B D ker AV ker B for all t € (0,1) as in [10] (as we will see later,
these are equal indeed) and it is related to the ranges, it is a stronger condition than
the kernel inclusion. But it is weaker than the existence condition: If A is the range
projection Pg for B with o(B) = [0, 1], then S(Pg|B) = Pglog B is not bounded.

In fact we showed the existence condition expressed by the boundedness of tangent
lines in [13]. Let L,(A, B) = éB — A+ (loga)A for & > 0. Then we see Lo(A, B) >
S(A|B):

Lemma 2.5. The entropy S(A|B) ezists if and only if
L,(A,B) = [éB — A+ (log a)A] >c for some ¢ for all @ > 0. (3)

As we will see in the proof, we have S(A4|B) > c.
Summing up, we have the following relations around the existence condition:

Theorem 2.6. The implications (1) = (2) = (3) = (4) hold in the following condi-
tions for a pair of A, B > 0 and each converse does not always hold.

(1) majorization or range inclusion: 3Ja > 0; A < aB, i.e., ran A? C ran B3,

(2) existence condition: S(A|B) exists as a bounded operator, i.e.,

BB —A+ (loga)A:] > Je (Ya > 0).

(3) B-absolute continuity: A = [B]A (= A3 Py Az = %iln& A#tB>.

(4) kernel inclusion: ker A D ker B.

Remark 2.1. If both ranges of A and B are closed, in particular, for the case of
matrices, the above conditions in Theorem 2.6 are all equivalent since the relation
ran Az =ran A = (ker A)L holds.
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Here we recall the following well-known ‘monotone convergence lemma’ for monotone
double (or multiple) sequences which is our key lemma:

Lemma 2.7. Let {as,4,} be a bounded double sequence of real numbers for 6;,0, €
(0,1]. If {as, 5,} is monotone decreasing for 6;,0, | 0, then there exists the limit with

lim a = hm llma = hmhma
51,51, 61,02 — lo 01,62 — 05 10 51,52

Moreover, it also holds for multi-monotone sequences: If bounded numbers as, . 5, are
monotone decreasing for 6y, ...,6, | 0, then there ezists the limit lims, 5.0 as,,...5, and
each iterating limit is exchangeable.

Remark 2.2. In fact, under the existence, the equivalence of two definitions (1) and
(2) of S(A|B) is based on the above fact since 1‘%3:'51:/_1 is monotone decreasing for
t,e \, 0. See the similar argument in the following theorem and Theorems 3.2 and
4.1.

Here we give a property of an upper semi-continuity type:

Theorem 2.8. Let A and B be positive operators. If S(A|B) ezists and Y; \, 0 as
€ | 0 for a sequence of positive operators Y, then S(A+Y.|B+Y.) \,S(A|B) ase | 0.

Finally in this section, we add some new results for S(A|B). First we see, so to speak,
the interpolational property. For this, we recall Izumino’s construction of operator
means [8] which is considered as an operator version for the Pusz-Woronowicz means
[23, 24]: Let A and B be positive operators and put R = (A + B)2. Since A < A+ B
and B < A+ B, it follows from Douglas s majorization theorem that there exists
derlvatlves D, E with A = DR, B? = ER. Then

=A+ B=RD*DR+ RE*ER = R(D*D + E*E)R,

so that we may assume E*E = I — D*D in ran R. Thus it follows from ker R =
ker A Nker B C ker D*D Nker E*E that

Am B=R(D*Dm (I - D*D))R (4)
for operator means m and similarly

S(A|B) = R S(D*D|I - D*D) R = R(D*Dlog D*D — D*Dlog(I — D*D))R  (5)

if S(A|B) exists by s-lim;jo 2#t5=4  Here we note that the formula (2.5) makes sense
as a bounded operator even though S(D*D|I — D*D) is not bounded. Moreover, we
may use such inner calculations by suitable approximations.
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Now we recall that A#;B is an interpolational mean;

(A#pB)#r (A#qB) = A#(l—r)p+rqB

for r,p,q € [0, 1] under the conventions A#,B = A and A#,B = B, see [15, 16]. Then,
for ¢ € (0,1) and p € (0, 1], S(A#,B|A#,B) exists and the following properties hold:

Lemma 2.9. Let A and B be positive operators. Fort € (0,1) and p,q € [0,1], the
entropy S(A#.B|A#,B) exists and
S(A#:B|A#,B) + S(A#:BlA#,B) _
2

Theorem 2.10. Let A and B be positive operators where S(A|B) ezists. Ift € (0,1)
and p,q,r € [0,1], the following entropies exist and the interpolational property;

S(A#:.B|A# 214 B).

(1 - 1)S(A#.B|A#,B) + rS(A#.B|A#,B) = tS(A# BIAH# 1-rypirsB)
holds.

For invertible operators A and B, it is easy to see that the positivity (resp. negativity)
of S(A|B) is equivalent to B > A (resp. A > B) and hence S(A|B) = 0 if and only if
A = B. Second we discuss the non-invertble case:

Theorem 2.11. Suppose S(A|B) ezists for positive operators A and B. Then S(A|B) >
0 (resp. S(A|B) <0) if and only if A < B (resp. A > B). Consequently, S(A|B) =0
if and only if A= B.

3 Karcher mean for positive operators

Lawson and Lim [20] showed that the Karcher equation for positive invertible op-
erators 4; (j = 1,2,...,n), X and a weight {w;} (w; > 0 for j = 1,2,...,n and

E?:l wj=1)

(KE) 0= wlog (X~34,X%)
j=1

has a unique positive invertible solution

X = Gk(wj; A;) = Gk(w; A) for w = (wq, ...,w,) and A = (4, ..., 4,).

It is called the (weighted n-variable) Karcher mean. This definition depends on the
invertibility of operators. But, even for non-invertible positive operators A;, for each
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€ > 0 the Karcher mean X, = Gk(wj;; A; +¢€) > 0 exists and the monotonicity of Gk
guarantees the strong-operator limit:

- Xo =slim X, = s-lim Gy (wy; 4; + ¢)-

Naturally we write Xo = Gk (wj; A;) for non-invertible A; and call it the Karcher mean
again.

Here we extend the extremal means with a weight {w;} synchronously to Gk: The
arithmetic mean A and the harmonic one H for non-invertible A; are defined by

-1
Alws; 4;) = ijAj’ H(wj; 4;) = s:im H((w;; 4;+¢) = s lim (ij(Aj + 8)‘1) :
M 7

As for this construction of corresponding mean, we say ‘H is the adjoint of A’ as in
the Kubo-Ando theory [19]. Then we also have the following properties of the Karcher
mean for positive operators:

Theorem 3.1. Let A; and B; be positive operators for j = 1,2,...,n and {w;} a
weight. Then the following properties hold:

(1) If A;<Bj, then Gk(wj;4;) < Gk(ws; Bj).
(2) TGk (wyj; Aj)T < G (wy; T*A;T)  for all T (the equality holds for invertible T).

)

(2") ®(Gk(wj; 45)) < Gr(wj; ©(A4;)) for all normal positive linear maps .
(3) Gk(wj; Aj) + Gk(wj; B;) < Gk(wj; A + Bj).

(3" (1 -t)Gk(wj; A;) + tGk(wj; Bj) < Gr(wy; (1 — t)A; +tB;) for allt € [0,1].
(4) If all A; are commuting, then Gy(wj; 4;) = ﬁA;-’j with convention A° = 1.

j=1
(5) Gk(wj; 4)) = s-limejo Gr(wy; (45 +)™) 7"
(6) Gk(wj;ciAj) = InIC;’jGK(w]';Aj) forc; 20 (j=1,2,...,n).

J=1

(7) H(wj; 4j) < Gr(wy; 45) < Alwy; 4j)-

(8) GK <wj', @ Aj,m> = @ GK (UJJ'; Aj,m).

In fact, the equality in the ‘transformer inequality’ (2) for the case that all operators
are invertible is already shown in [20], so that the equality also holds for non-invertible
Aj;. In general, (2) follows from (2’).

We also have the upper semi-continuity for the Karcher mean:
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Theorem 3.2. Let A; be positive operators for j = 1,2,...,n and {w;} a weight. If
Y,, \. O ase; | O for sequences of positive operators Y,,, then Gg(wj; 4; + Yz;) ™\
Gk (wy; 45)-

Corollary 3.3. Let A; be positive operators for j = 1,2,...,n and {w;} a weight.
Then X = Gy(wj; A;) implies X = Gk(2; X#u,4;)).

The properties in Theorem 3.1 also holds for the arithmetic mean and the harmonic
one in non-invertible cases. Moreover, by the sub-additivity (3) in Theorem 3.1, a joint
concavity for m and that for its adjoint m*

A m*B =slim (A+e) 'm(B+¢e)™)™
e—l
for operator means m (see [19, Theorems 3.6, 4.8]) hold;

Lemma 3.4. For positive operators A; and B; (j =1,2,...,n), and a weight {w;},
A(w;; Aj) m A(wy; Bj) > A(wj; A;m B;) and H(wj; A;) m H(wj; B;) < H(w;; Ajm B;)
for any operator means m.

Note that if wy = 0 for some &, then n-mean Gg(w;; 4;) is nothing but (n — 1)-mean
without wy, Ag. So we call Gk(wj; A;) the proper Karcher mean if w; > 0 for all j.
Then we also call the weight {w;} proper. Like the 2-variable case Theorem 2.9 (see
also [7, 10]), we also have the following properties of ranges:

Lemma 3.5. For a proper weight {w;} and positive operators A; (j =1,2,...,n),
1
ranA(wj;Aj)2 \/ra,nA2 and ranH(w;; A; )2 = r]ramAJ2
We also extend the vector state expression for the parallel sum, which is obtained
inductively:

Lemma 3.6. For a proper weight {w;} and positive operators A; (j =1,2,...,n),

1
(H(wj; Aj)z,z) = inf E <—Ajzj, a:j> for every vector x.
T=3_, T; ; wj

Then, similarly to the 2-variable case (Theorem 2.9), we have the following kernel
condition for the Karcher mean:

Theorem 3.7. For a proper Karcher mean, ker Gk (w;; A;) = \/ker Aj.
J



The above theorem shows that if A; = 0 for some j with w; > 0, then Gk(wj; A;) =0
since the kernel is the entire space.

The following result is also an extension of 2-variable case:
Corollary 3.8. For a proper weight {w;}, Gk(wj; P;) = /\ P; for projections P; (j =

J
1,2,...,n).
Remark 3.1. In general, we easily obtain
ker Gy (wj; 4;) = v kerA; and  Gk(w;; Pj) = /\ P;.
w;>0 w; >0

The Karcher equation (KE) definitely requires the invertibility for A; and their the-
ory depends on the geometric properties for positive invertible operators. In this in-
vertible case, note that (KE) is equivalent to a simple equation by the relative operator
entoropy

(*%) 0= ijs (X|4;) = A(wy; S(X|4;)),

which also makes sense for non-invertible A;. But this equation always has a trivial
solution X = 0 since S(0|4;) = 0. For the case of Corollary 3.8, the entropy is
S(P|P;) = Plog P;—Plog P = 0, and hence P is indeed a solution of the equation (xx).
But this consideration shows that each projection @ with 0 < < P is a solution of
(#%). Thereby, a reasonable extension of (KE) is the following EKE(Extended Karcher
equation) with the kernel condition under the existence of each S(X|4;):

(EKE) 0= iwﬁ(xmj) = Aw;;S(X]4;)) with kerX = \/ kerA4;.

j=1 w;>0

Remark 3.2. If operators A; are commuting for all j = 1,2,...,n, then Xy, =
Gr(wj; 4;) = [I;A;” and X, is a solution of (EKE). But, if the kernel condition is
removed, the following example gives another solution X even if X commutes with all
Aj.
Example 1. For diagonal matrices A = diag (a,b,c,0) and B = diag (%, b,0,d), take
X; = diag (0,b,0,0). Then ker X; # ker AV ker B and all matrices are commuting and

S(X1|4) + S(X1|B)

= -2X1log X; + X 1log A+ X;log B

= diag (0, —2blog b, 0, 0) + diag (0, blog b, 0,0) + diag (0, blogb, 0,0) = 0.

So X; is a solution while X, = diag(1,5,0,0) is a solution similarly and X; # Xp.
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Remark 3.3. For the case of projections A; = P; for j = 1,2,...,n, the above P in
Corollary 3.8 is a unique solution of (EKE). In fact, suppose Y is another solution.
Then the kernel condition kerY = \/ ker P; > A ker P; = ker P shows PYP =Y and
hence we have YP; = P;Y =Y and Y log P; = Y P;log P; = 0. Therefore

0=> wS(Y|P) =) w;j(YlogP;—YlogY) = w;(~Ylog¥)=-Ylog,
J J J
which implies that Y must be a projection and consequently Y = P by the kernel
condition.

Moreover note that S(A|B) does not always exist as a bounded self-adjoint operator
as in the preceding section. But S(X,|A;) indeed exists for the Karcher mean X, =
Gr (wj; 47):

Lemma 3.9. Let A; be positive operators for j = 1,2,...,n and {w;} a weight. For
the Karcher mean Xo = Gk(wj; A;), each entropy S(Xo|A;) ezists for w; > 0. For
wy > 0, bounds are expressed by

_ M < S(Xo|Ax) < My
Wk

for My = max;z || A;] + 1.

So far, we have not showed that our Karcher mean X, = s-lim._,o X, satisfies (EKE)
for general positive operators. Here we can obtain only the inequality:

Lemma 3.10. Let A; be positive operators for j =1,2,...,n and {w;} a weight. Then

0 S ZWjS (Xo’AJ) with keI'X() = v kerAj.
j=1 w;>0
Theorem 3.11. For positive operators A and B and t € (0,1), the original geometric
mean A#:B satisfies (EKE).

Recall that a non-invertible positive operator A has the closed range if and only if
0 is an isolated point in o(A). Any positive semi-definite matrix has the closed range.
Finally in this section, we show that the Karcher mean for such operators is a unique
solution of (EKE). To see this, we verify the following fact:

Lemma 3.12. If A; (j = 1,2,...,n) are positive opereators whose ranges are closed,
then so is Xo = Gk (wj; A;).

So we have a unique solution of (EKE):
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Theorem 3.13. If A; (j =1,2,...,n) are positive opereators whose ranges are closed,
the Karcher mean Xy = Gk(wj; 4;) is a unique solution of (EKE).

Corollary 3.14. For positive semi-definite matrices A; forj =1,2,...,n and a weight
{w;}, the Karcher mean X = Gg(wj; A;) is the unique solution of (EKE):

0=> wS(X|4;) with kerX = \/ ker4;.

j=1 w;>0

4 Power means for non-invertible operators

In [20], Lawson and Lim established that the Karcher mean of positive invertible
operators on a Hilbert space is the strong-operator limit of power means of positive
invertible operators as t | 0. In this section, we show that the Karcher mean of positive
operators is the strong-operator limit of power means of positive operators as ¢ | 0.

Let A; be positive operators for j = 1,2,...,n and {w;} a weight. For each ¢ > 0,
similarly to the Karcher mean X, = Gk(wj; A; + €), the power means Py(w;; A+ ¢) for
t € (0,1] is the unique positive invertible solution of the power mean equation

X =3 wi(X#4(A;+e)).
=1
For the negative case, the power means P_;(w;; A; + ¢) for ¢ € (0,1] are defined by
P_i(wj; Aj + &) = Py(wy; (Aj +£)71)"L. In addition, we extended the range of the
definition of the power means to the open interval (—2,2) in [25].
Then the Karcher mean for invertible case is the strong-operator limit of the power

means:

s-lim Pi(wj; A; + €) = Xe.
For t € (0,1], the power means P;(w;; A; + €) are monotone decreasing for € | 0 by
[20, Proposition 3.6 (4)] and lower bounded by the zero operator. Hence Pi(w;; A;) =
inf.50 Pe(wj; Aj + €) exists and

Pe(wj; 4;) = s limPu(ws 4; + ¢)

in the strong operator topology and so Pi(w;; A;) is a solution of the power mean

equation

X = ij(X#tAj) (6)

for t € (0,1] by the upper semi-continuity of #;.
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Then we immediately obtain the similar properties: For A = (4,,...,A4,), put the
k-copy A® = (A,...,A) and the corresponding weight w® = l(w,...,w). Then,
Theorem 4.3 guarantees that power means preserve the following properties for non-
invertible case. In particular, a proof of (5’) is given by a similar way as in ones
of Theorem 3.1. The other proofs follows from the definition of P,(w;; A;) and [20,

Proposition 3.6]:
Lemma 4.1. Let A; be positive operators for j = 1,2,...,n and {w;} a weight. If
a; € (0,00)" and s,t € (0,1], then
1/t
(1) Pe(w;; 4j) = ( 1 ij§) if A;’s commute.

wja

(2) Pulws; ayd5) = (g af) VP, (52 4.

(3) Pi(wo); Ac(j)) = Pe(wj; A;)  for any permutation o.

(4) Pi(wj; A;) < Pyw;; Bj) if A; < B; forallj=1,2,...,n

(6) T*Py(wj; Aj)T < Py(w;; T*A;T) for all T (the equality holds for invertible T').
(57) ®(Ps(wj; 4j)) < Py(wj; B(A4;)) for all normal positive linear maps ®.
(6) Py(wj; Aj) + Py(wj; B;) < Py(wy; Aj + B;).

(6") (1 —u)Py(wj; Aj) + uPy(wj; B;) < Py(wj; (1 — u)A; +uB;)  for any u € [0, 1].
(7) H(wj; 4;) < Gr(wj; 4;) < Pelwj; 45) < A(wjs 4;)  fort € (0,1].

(8) Py(w®; A®) = Py(w;; A;) for any k € N.

Pt (LUJ'; @ Aj,m) = @ Pt (wj; Aj,m).

(10) Py(w;; Aj) < Ps(wj;4;) forO<t<s<l1.

Moreover, the power means P.(wj; A;) for ¢ € (0, 1] satisfy the following kernel con-
dition:
Theorem 4.2. Let A; be positive operators for j = 1,2,...,n. If a weight {w;} is
proper, then

ker Py(w; 4;) = ﬂkerAj fort € (0,1].
J

Remark 4.1. For non-proper case, it is easy to see ker P;(wj; 4;) = Mu, >0 ker A;.



Similarly to the Karcher equation for positive operators, the power mean equation
(6) always has a trivial solution X = 0. Thereby, we consider the following EPE
(Extended Power mean equation) with the kernel condition:

(EPE) X =) wX#A;  with kerX = [ ker 4;.

J w;>0
Theorem 4.3. Let A; be positive operators for j =1,2,...,n and {w;} a weight. Then
the power means Py(wj; A;) for t € (0,1] satisfy (EPE) and

Pi(wi; 45) v Gk(wj;4;)  ast 0.

To observe the relations between A(w;;S(X|A;)) and the solution of (EKE), we
reformulate Yamazaki’s inequality [28, Theorem 1] in our situation:

Theorem Y (Yamazaki). For positive operators A; (j = 1,2,...,n) and X, and
{w;} a weight, the inequality A(w;; S(X|A;)) > 0 implies Gx(wj; 4;) > X. Moreover,
for positive invertible operators A; and X, the inequality A(w;; S(X|4;)) < 0 implies
GK(wj; AJ) S X.

This theorem formally shows the uniqueness of the Karcher solution for invertible
case. But unfortunately, Yamazaki’s proof depends on this uniqueness itself.

To show this uniqueness, Lawson-Lim [20] used the implicit function theorem of
Banach spaces, but it was a little complicated. On the other hand, the uniqueness
of the power mean depends on the Banach fixed point theorem, which is simple and
natural. The following result follows from the uniqueness of the power mean and is
an extension of Theorem Y. Moreover it will be shown in the next section that the
Karcher solution for the invertible case is unique.

Theorem 4.4. For positive operators A; (j = 1,2,...,n) and X and a weight {w;},
the inequality X < Zj wj X#:1A; = Alwj; X#A;) implies X < Py(wj; A;). Moreover,
if Aj and X are invertible, then the inequality X > } . w;X#:A; = A(wj; X#:4;)
implies X > Py(wj; Aj).

Remark 4.2. This is an extension of Theorem Y. Indeed, suppose A(w;; S(X|A4;)) > 0.

Then
Zj quX#tAj -X
7 .

0 < A(w;; S(X]45)) <

Then, by the above theorem, X < P;(w;; 4;) for all 0 < ¢t £ 1. Taking limit as ¢ | 0,
we have X < Gk (wj; A;). Another part is obtained by this result.
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Remark 4.3. The invertibility in Theorem 4.4 cannot be removed. In fact, for a
nontrivial projection P, let X = A; = P, A, = P* and t = w; = wp = . Then we

h
ave X#A + X#4,  P+0O

1
2 2 2

1 2
[ A Pé"‘(P'L)5 (1)1 _
P%(§,§,P,P>_(—2—— = (51) =412P=x.

In the Kubo-Ando mean, the adjoint sub-additivity

while

(A:C)m (B:D)<(Am B): (Cm D)

holds for the parallel addition ‘:” defined by (), which is nothing but the sub-additivity
of the adjoint mean m*. Since G is selfadjoint, the Karcher mean satisfies the adjoint
sub-additivity:

Gr(wj; A : Bj) < Gk(wy; 45) = Gk(wy; B;).

To observe the adjoint of power mean in the next section, we confirm this property for
Ptl
Theorem 4.5. The power mean satisfies the adjoint sub-additivity:

Pe(wj; A : Bj) < Pylwj; 4;) : Po(wy; Bj)

for t € (0, 1], where : is the parallel addition defined by ().

5 General operator mean and its adjoint

Since it is somewhat hard to handle the negative power means P_; for ¢ € (0, 1], we
also use Lawson-Lim’s negative mean (say, P; later). In this section, we want to show
that it is a legal operator mean. For this purpose, we generalize the Kubo-Ando mean
and its adjoint. Here for positive operators A; (j = 1,2,...,n) and a weight {w;},
we define an (n-variable) general operator mean M(wj; A;) as an n-ary operation on
positive invertible operators on a Hilbert space H satisfying the following properties:

(M1) T*M(w;; A;))T = M(w;; T*A,;T)  for all invertible 7.

(MY) M(wj;tA;) = tM(wj;; 4;)  for t > 0.

(M2) M(wj; 4,...,A) = A.

(M3) Aj< Bjforallj=1,...,n implies M(w;;A4;) < M(wj;B;).
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(M4) M(wj; A; + Bj) > M(wj; 4;) + M(wy; Bj).
(M5) M(wj; 4; : B;) < M(wj; 4;) : M(wj; Bj).
(M6) M(ws; @, AT™) = B, M(wj; A™).
In addition, we define
M(wj; 4;) = s-lim M(w;; (4; + €))

for (non-invertible) positive operators A; and hence the above properties are preserved.
For t € [0, 1], note that

(M7) joint concavity: M(w;; (1—t)A;+tB;) < (1-t)M(wj; A;) +tM(w;; B;)

follows from the sub-additivity (M4) and homogeneity (M1’).
Similarly to the proof for upper semi-continuity in Theorem 3.2 based on Lemma
2.7, the sub-additivity and monotonicity imply the following:

Theorem 5.1. A general operator mean M is upper semi-continuous:
(M8) upper semi-continuity:
A;J) N\ 4; implies M(Wj;A§6)) N M(w;; A;) asé | 0.

Moreover in general, the transformer inequality holds. To show this, we see the case
of projections:

Lemma 5.2. Let A; be positive operators for j =1,2,...,n and {w;} a weight. Then
PM(wj; Aj)P < M(wj; PA;P) for all projections P.

Theorem 5.3. A general operator mean M satisfies
(M9) transformer inequality:
T*M(wj; A;)T < M(wj; T*A;T)  for all operators T.

The transformer inequality also implies the jdint concavity. Moreover its operator
version like the Kubo-Ando means is obtained:

Corollary 5.4. Let A; ., be positive operators for j =1,...,nandm=1,...,k, and

{w;} a weight. If 35 _ C*Cp =1, then

k k
> CrM(Wj; Ajm)Crm < M(wy; Y CiAjmCi)-
m=1

m=1
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This inequality also implies the sub-additivity.
Now we study the adjoint of general operator means:

Lemma 5.5. For a general operator mean M, the relation M*(wj; A;) = M(w;; A;1)™!
for invertible A; induces also a general operator mean for all positive operators A;.

The operator mean introduced above
M*(w;; 4;) = s—li{)n M*(wj; Aj +¢€) = s—lixgl M(w;; (4; +¢€)™)

is called the adjoint M* named after Kubo-Ando [19].

Now we observe the general operator mean P} (w;; A;) for ¢t € (0,1]. In the invertible
case, it coincides with the power mean P_;(w;; A;) with negative parameter in [20].
Since P; = Py(wj; A,) is a general operator mean, we have:

Theorem 5.6. For each t € (0,1], the adjoint power mean P} is a general operator
mean.

Remark 5.1. The joint concavity for P; also holds though it is not shown in [20]. Like
P;, all the properties in Lemma 4.1 except (5’) are hold for P_,.

We recall Gc* = Gk in Theorem 3.1 (5), A* = P} = H and H* = A. The following
properties are clear since M** = M:

Lemma 5.7. Let M, M’ and M,, be general operator means. Then M < M’ if and only
if M* > (M)*. M,, \\ M if and only if M}, /" M* as n — oo.

We have already shown that P; N\, Gk as t \ 0, so that P} / Gk* = Gk. Thus we
have s-limy_,g Py = s-lim;_o P; = Gk:

Theorem 5.8. For each t € (0,1], the adjoint power mean P; converges increasingly
toGk ast | 0.

Taking adjoint, we have the counter part of Theorem 4.4:

Theorem 5.9. For positive operators A; (j =1,2,...,n) and X, the inequality X <
H(w;; X#:A;) implies X < Pi(wj; Aj). Moreover, if X and A; are invertible and
X > H(w;; X#:A;), then X > P{{(wj; Aj).

For a solution X of the Karcher equation and ¢ € (0, 1], we have

X#:A — X Alwy X#:A4:) — X
Ozzw]S(.X|A])SZUJJ ttJ = ( J tt J) ,
J J
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so that X < A(w;; X#:A;). Also, for invertible case,

0= wlog (x}a;1x¥) > x} (Z wjxﬁl#‘Af: _ X_1> X3
J J

X 3H(wy; X A;) X3 — 1
- = ,

Thus

I < X3H(wj; X#:A;)")X?  thatis, X > H(wy; X#44;).
Therefore Theorems 4.4 and 5.9 say Pj(w;; 4;) < X < Py(wj; A;) for all ¢ € (0,1] for
invertible A; and X. By taking ¢ | 0, we have

Corollary 5.10. In positive invertible operators, the Karcher equation has a unique

solution Gg(wj; Aj).

As a final remark, we observe the corresponding equation for the power mean P_; =
P}(wj; 4;) for t € (0,1]. For the Lawson-Lim equation X' = =, wi(X#:A;)78, it
should be reformed into X = H(w;; X#:4,) to avoid invertibility of operators. Then .
we have

Lemma 5.11.  kerPj(wj; 4;) = \/ ker A;.

w;>0

Now the required equation for the adjoint power mean P} (w;; 4;) for ¢ € (0,1] is

(EPE¥*) X =H(wj; X#:4;) with kerX = \/ ker A;.

Wj>0
Then from the upper semicontinuity for H and #;, we have

Theorem 5.12. The adjoint power mean P}(wj; A;) is the solution of (EPE*) for
t e (0,1].

Though the properties for power means are given, the following general problems are

still not answered:

Conjecture. For non-invertible positive operators on a Hilbert space, the Karcher
mean satisfies (EKE) and it s a unique solution of (EKE).

Conjecture 2. For non-invertible positive operators on a Hilbert space, each power
mean Py(w;; Aj) (resp. Pi(wj; A;) ) fort € (0,1] is a unique solution of (EPE) (resp.
(EPE¥)).
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