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1 Introduction

In quantum mechanics, entanglement between bipartite system is known as quantum correlations which
do not arise in classical systems. With entanglement, we can consider useful tasks that can never be
accomplished by classical systems, such as quantum teleportation and quantum dense coding. For this
reason, entanglement has been regarded as a resource in quantum information theory.

If a state |)(¥| € S(H ® K) on a bipartite system H ® K is incomplete as an entanglement resource,
one may want to convert it into a more entangled form |¢)(¢| € S(H ® K). However, if two particles are
far apart from each other, it is difficult to apply full quantum operations that is allowed theoretically in
the composite system. Instead, as a practical class of quantum operations, local operations and classical
communications (LOCC) play an important role in this situation.

For the LOCC-convertibility states, Nielsen proved [11, 12] in 1999 that the following statements are
equivalent (the Nielsen’s theorem).

() The initial state |1)) can be converted to the target state |¢) by LOCC.
(i) The Schmidt coefficients of the initial state |¢) is majorized by those of the target state |§).
Mathematically, the Nielsen’s theorem can be written as follows.

Theorem 1.1. (Nielsen[11, 12]) Let H and K be finite dimensional Hilbert spaces, and let z/;v, peHRK
be unit vectors. Then, the following are equivalent.

e One can convert |y) to |¢) by the following LOCC: there exist a POVM {M;}; on H and a set of
unitary operators {U;}; on K such that

|6)(8] = Y (M ® U)[) (bl(M; ®U}), @)

2
where the sum is finite sum.

o The following majorization relation holds:
Trx ) (W] < Trc [8)(9]-

Namely, the majorization condition (ii) fully characterizes the LOCC-convertibility of pure states in
finite dimensional systems.

Subsequently, in 2006, Owari et al. [13] extended the Nielsen’s theorem to infinite dimensional systems.
They proved that the implication (i) = (ii) (necessary condition for the LOCC-convertibility) holds in
the same form as finite dimensional systems. Moreover, Owari et al. [13] introduced a notion of -
convertibility by LOCC in infinite dimensional systems and proved that e-convertibility for LOCC gives
a characterization of the sufficient condition.

However, it has been open whether the implication (ii) = (i) (the sufficient condition for LOCC-
convertibility) holds or not in infinite dimensional systems.

To solve this problem, in [1], we develop an infinite dimensional analogue of Birkhoff’s theorem
[Theorem 2.2] and use this to prove the following theorem.



Theorem 1.2. (Asakura [1]) Let H and K be infinite dimensional separable Hilbert spaces, and let 1,
¢ € HQ K be full rank unit vectors. Then, the following are equivalent.

o There exist a Borel set I of a certain of metric space, a probability mesure p on I, a set of densely
defined (not necessarily bounded) operators {M;}icr on H, a dense subspace Ho C H, and a set of
unitary operators {Us;}ier on K such that

l¥) € D(M; @ U;), for i €1, ®)

(Triclb) (Y)Y Ho € Ho, i.e., {(Trx ) () n) : m € Ho} C Ho, (3
D(M;) D Ho, foranyie I (4)

[, 113434160 i) = (0l €), for n,€ €, (%)
I3im (M; @ Uyl (|(M @ UT) € €1(H) is integrable, and (6)

) = /I(Mi QUi W) (¥|(M @ UT)du(s), in €1(H). (M

o Trc|¢)(¥| < Trx|¢) (4| holds.

Remark 1.3. Note that (7) becomes (1) and (5) becomes an equality for a POVM with finite cardinality
in the case I is finite set and M; are all bounded.

In this paper, we introduce a new characterization for majorization relation between two density ma-
trices, which is the characterization derived from our infinite dimensional analogue of Birkhoff’s theorem
[Theorem 2.2].

This paper is organized as follows. In Section 2, we introduce an infinite dimensional analogue of
Birkhoff’s theorem. In Section 3, we give a sketch of the proof of the sufficient condition of Theorem 1.1.
In Section 4, we give a new characterization for majorization relation between two density matrices.

2 Infinite dimensional Birkhoff’s theorem with WOT

Let H be a separable Hilbert space and (]¢))$2, be a CONS in H. We use the following notation.

p(»;.l(li'))) ;={ i ai;11)(j| € B(H)

oo oo
a;; =0orl, Za,-,- =1, Zaij =1 (for any i,j)},

iyj=1 i=1 i=1
DHIM) ::{ > ai;li) (G| € B(H) | as; € [0,1], Za,, =1, Za,] =1 (for any z,])}
i,5=1 i=1 i=1

Remark 2.1. When H = C™ and (|i)); is a standard basis (&;); in C*, P(HID) is equal to the set of
all n x n permutation matrices and D(H(M) is equal to the set of all n x n doubly stochastic matrices.
In the sequel, we abbreviate D(C™(1¢)) a5 D(C™).

Using the notations in the previous section, Birkhoff’s theorem [5] can be written as follows:
(1) exD(C") =P(C"),
(2) Let {P}™, := P(C™). Then for any D € D(C™), there exists a probability mass function {p;}™,

such that
n!
D= Zpil’iy
i=1

(3) D(C™) = coP(C™).

Note that it is known that the three assertions are equivalent to each other, by Carathéodry theorem;
see [4, Section IL.2].
For the property (2), we proved the following theorem.

143



Theorem 2.2. (Asakura [1]) For any D € D(H(M), there exists a probability measure pp on P(HIM)
such that

D=uw- / Xdup(X). ®)
PHAD)

where w- means the convergence of the weak operator topology (WOT) and P(H) is a Borel set of a
metric space (B(H)1, WOT).

Remark 2.3. An infinite dimensional analogue of Birkhoff’s theorem is known as Birkhoff’s Problem111.
For Birkhoff’s Problem111, see [8, Section20] and [9, Section14.8].
We remark that no one treated in any study (ii) in infinite dimensional space with operator topologies.

This theorem immediately implies the following theorem, which is the key tool to prove the sufficient
condition of Theorem 1.2.

Theorem 2.4. (Asakura [1]) Let p and o be density matrices on H having same eigenbasis (|3))2,. If
p < o, there exist a D € D(H(M) and a probability measure pp on P(HIN) corresponding to D such
that

p=[ . XoX*dup(X), ine:(t), (9)
PHIN)

where in €1 (H) means the convergence of the trace norm || - |-

Proof. From [16, Theorem 3], we only have to show that the integral in (9) converges to p in WOT. By
assumption, there exist a = (an)32;, b = (bn)32; € {(a:)2; € £la; 20, Y2, ai =1, a; > a;41 ( €N)}
such that a < b and

o0 o0
pi= Zanh’n)(inl, o= an|i,,)(in|,
n=1

n=1
where the infinite sums converge in the trace norm. _
By [7, Theorem 4.7, Corolloary 6.1], there exists an infinite matrix D = (d;;) € D(¢?) such that
la) = D |b) in £2. From Theorem 2.4, there exists a probability measure sz on P(I2) such that

Gn =/ (en] X [B) dup(X), for any n €N, (10)
P)

where (|e,))S, is a standard basis in [2. Let D € D(H(?)) be D = > i, %i311)(j|- Then, from Theorem
2.4, there exists a probability measure up on P(#{?)) such that (8) holds. Thus, we have (n|p|n) =

ap = f,,,(ﬂ(l,.») (n| XoX* |n) dup(X). This implies that the integral in (9) converges to p in WOT. 0O
3 Sketch of the proof of the sufficient condition of Theorem 1.2.

We assume that Trx|th)(¥| < Trx|g)(4|. Then, there exist unitaries Uz and Ux such that 1 and
¢ := (Up ® Ux)¢ have a same Schmidt basis, i.e.,

b= Valilylide, 6= Vbili)y li)x
i=1

=1

with some a = (a;) < b= (b;) € £} and some CONSs (19)3)821 and (8)x )32, Moreover, from Theorem
2.4, there exist a D € D(H()) and a probability measure pp on ’P(’H(I‘ﬁ) corresponding to D such that

, = /  XppX*dup(X), in & (H), (11)
P(HUN)
For any X € P(H)), let define a densely defined operator Mx on H by

Mx :=Uy* P5X*(py™ %),
D(Mx) := D(py~%),
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and let Uy := Ux*X*. Then, we have (Mx®Ux) |4} = |¢) for any X, and then the function P(H) 3 X —
(Mx ® Ux)|9)(9|(Mx" ® Ux") is constant function. In particular, [5qa)(Mx ® Ux)[Y)(¥|(Mx"™ ®

Ux™) = |#){¢| holds.
Let Ho := lin{[i)}$2,, then the dense subspace Ho C satisfies the conditions (3) and (4). Moreover,

for any X, we have
Mx*Mx = py =3 (XpsX*)py ™% on D(Mx) D Ho.

Thus, {Mx}x satisfies the condition (5).
Putting it all together, the conditions (2), (3), (4), (5), (6) and (7) for a Borel set I = P(H) of a
metric space (B(H)1, WOT) are satisfied. O

Remark 3.1. The densely defined operator Mx in the above proof is equal to Uy A, ,,(X*), where
A,y .0y 18 a kind of relative modular operator (2, 3.

4 Majorization relation between two density matrices

For majorization relation between two density matrices, it has been known that the following theorems
hold.

Theorem 4.1. ([14, Section 4.3]) Let H be an finite dimensional Hilbert space. For p, o € S(H), the
following are equivalent.

(a) p<o.

(B) There ezists a mized unitary map ® such that ®(c) = p, i.e, p € coU(c). Here, U(o) :=
{UcU*|U is unitary} is the unitary orbit of 0.

(C) There exists a unital and completely positive-trace preserving (CP-TP) map ® such that ®(c) = p.

Remark 4.2. A linear map ® on €1(H) is called mized unitary channel, if ®(X) = > piU;* XU,
where n < 0o, the U; are all unitary operators and p; > 0, ZZ;I pi=1.
By definition, any mived unitary channel is unital and CP-TP.

Theorem 4.3. ({10, Theorem 3.3], [6, Theorem 2.5(1)]) Let H be an infinite dimensional Hilbert space.
For p, o € S(H), the following are equivalent.

(a) p=<o.

(b) peU(0).

(c) There exists an unital CP-TP map ® such that ®(o) = p.

(d) There ezist a sequence of mized unitary channels {®,}°2, and an unital CP-TP map & such that

[@n(X) — ®(X)]l1 = 0 for all X € €1(H), ®(c)=p.

Using Theorem 2.4, we add a new characterization to Theorem 4.3 as follows.
Theorem 4.4. (Asakura) For density matrices p, o € S(H), the conditions (a)~(e) are equivalent.
(e) There exist a Borel set I of a certain of metric space, a probability measure u on I and a set of
partial isometry operators {Vx}xer such that

p= / VoV du(X), in €1 (H). (12)
I

Proof. (a) = (e). There exist two partial isometry V, W such that V*pV and WoW* have same
eigenbasis (|i))22,. Thus, by Theorem 2.4, letting I := P(H(D) and Vx := VXW, the equality (12)
holds.

(e) = (a). From Weyl’s eigenvalue theorem [15], we only have to show that TrpP > TroP for any
nonnegative operator P; see also [10, page 8]. Since Tt pPo > Tr pPVxoVx™ for any X € I, we have

TrpP > ]I Te[Vio V™ Pldu(X) = T[( /, VxoVx*du(X))P] = TroP,

where several "interchanges” in the equalities are all legitimate from [17, V.5.]. O
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Remark 4.5. From this proof, for full-rank density matrices p, o € S(H), p < o if and only if there
exist (I, 1) as above and a set of unitary operators {Ux}xer such that

p=/UxaUx*dp,(X), in € (H).
I

Note that this characterization is a natural generalization of (@) <= (C) in Theorem 4.1.
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