
REGULARIZED PETERSSON INNER PRODUCTS FOR

MEROMORPHIC MODULAR FORMS

BEN KANE

ABSTRACT. We minvestigate the history of inner products within the theory of mod‐

ular forms. We first give the history of the applications of Petersson�s original def‐

inition for the inner product of S_{2k} and then recall Zagier�s extension to a non‐

degenerate (but not necessarily positivedefinite) inner product on all holomorphic
modular forms. We then recall the history of the so‐called ��regularization� of the

inner product to extend it to weakly holomorphic modular forms originally by Pe‐

tersson and then later independently rediscovered by Harvey‐Moore and Borcherds,
as well as its applications to theta lifts by Borcherds, Bruinier‐Funke, and many
more recent authors. This has been recently extended to a well‐defined inner prod‐
uct on all weakly holomorphic modular forms by Bringmann, Diamantis, and Ehlen.

Finally, we consider inner products on meromorphic modular forms which have poles
in the upper half‐plane. Petersson also defined a regularization in this case by cut‐

ting out small neighborhoods around each pole occurring in the fundamental domain;
Bringmann, von Pippich, and the author have recently constructed an extension of

this regularization, which, when combined with the regularization of Bringmann,
Diamantis, and Ehlen, yields an inner product that is well‐defined and finite on all

meromorphic modular forms.

1. INTRODUCTION

The Petersson inner product has a long history within the theory of automorphic
forms. This expository paper serves as a brief sojourn through that history. Petersson

[14] provided a well‐defined and finite (see Section 2) Hermitian inner product on

the space S_{2k} of weight 2k \in  2\mathrm{N} cusp forms on \mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) (Petersson considered his

inner product on modular forms for much more general Fuchsian groups, but for

simplicity of the exposition, we restrict ourselves to \mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) ). Roughly speaking, the

idea of Petersson�s inner product is to construct a function which is invariant under

the action of \mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) and then integrate over an arbitrary fundamental domain for

\mathrm{S}\mathrm{L}_{2}(\mathbb{Z})\backslash \mathbb{H} , where \mathbb{H} is the complex upper half‐plane.
For f, g \in  S_{2k} , we denote Petersson�s inner product by \langle f,  g\rangle . The inner product

has a number of applications. Firstly, the inner product is non‐degenerate (and even

positive‐definite) on  S_{2k} , yielding an orthogonal splitting; this splitting may be ex‐

plicitly realized by decomposing into the (onedimensional) simultaneous eigenspaces
under the Hecke operators. Secondly, Petersson used his inner product to establish the
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well‐known Petersson coefficient formula (see Section 2.3 and particularly Theo‐

rem 2.1). The coefficient formula gives a way to relate the coefficients of cusp forms

with the inner product of the the cusp forms against certain distinguished elements

called the Poincaré series. Poincaré series are generalizations of the well‐known Eisen‐

stein senes

E_{2k}(z) :=M=(^{ab})\displaystyle \in$\Gamma$_{\infty}\backslash \mathrm{S}\mathrm{L}_{2}(\mathrm{Z})\sum_{cd}(cz+d)^{-2k} , (1.1)

where $\Gamma$_{\infty} := \{\pm T^{n} : n\in \mathbb{Z}\} with T:= (_{01}^{11} ). Petersson�s coefficient formula uses a

techmique called �unfolding�, where the sum in (1.1) is used to extend the integral
over \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})\backslash \mathbb{H} to an integral over $\Gamma$_{\infty}\backslash \mathbb{H} . The fundamental domain for $\Gamma$_{\infty}\backslash \mathbb{H} is very

simple, allowing one to explicitly compute integral by plugging in Fourier expansions.
In doing so, Petersson obtains the Fourier coefficients of the modular forms by replacing
the summand (cz+d)^{-2k} with another appropriate function.

It is natural to ask whether one can extend the inner product to include inner

products with the Eisenstein series E_{2k} defined in (1.1). Petersson�s original definition

suffices when one takes the inner product of E_{2k} with a cusp form, and reveals that

E_{2k} is orthogonal to all cusp forms. However, the inner product diverges when trying
to compute the Petersson norm

\Vert f\Vert^{2}:=(f,f\} (1.2)
for f=E_{2k} . Zagier [21] later managed to extend the inner product to this case and

proved that the Petersson inner product on holomorphic modular forms is indeed non‐

degenerate, but in general it is not positive‐definite (in particular, the norm of E_{2k} is

either positive or negative, depending on the parity of k).
We next consider the inner product on forms in the space M_{2k}^{1} of weight 2k weakly

holomorphic modular forms (i.e., meromorphic modular forms all of whose poles are

contained at cusps). Unfortunately, the naive definition usually diverges, even be‐

tween a cusp form and a weakly holomorphic modular form. There is however a trick

which allows one to consider inner products on this space, which appears to have

been first realized by Petersson [15] and then later rediscovered by Harvey‐Moore [11]
and Borcherds [2]. One �regularizes� the integral over \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})\backslash \mathbb{H} (see Section 3). Pe‐

tersson�s original attempt to do so involved taking the Cauchy principal vaìue of the

integral by integrating over a part \overline{J_{T}\prime} (T\in \mathbb{R}) of the fundamental domain bounded

away from the cusp of \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})\backslash \mathbb{H} such that the limit of \overline{J^{-}}_{T} as  T\rightarrow \infty becomes an

entire fundamental domain for \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})\backslash \mathbb{H} . Essentially, this is the same as choosing an

ordering on the integral over the fundamental domain. Borcherds [2], Bruinier‐  $\Gamma$ur&e

[6], and numerous other authors have used this regularized inner product to compute
theta lifts between modular forms on orthogonal groups.

Finally, we study the inner product on meromorphic modular forms with poles
in the upper half‐plane. The naive inner product again diverges, and one requires
a regularization. Petersson [15] defined the Cauchy principal value in this case by
cutting out small neighborhoods around each pole and shrinking the volume of these

neighborhoods to zero in the limit. His definition extended the inner product to many

cases, but it still diverges in many cases; in particular, the Petersson inner product
for non‐cusp forms always diverges with Petersson�s regularization. In Section 4, we

discuss in detail a recent extension of Petersson�s regularization by Bringmann, von
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Pippich, and the author [5] which may be combined with Bringmann, Diamantis, and

Ehlen�s [3] regularization to yield a well‐defined and finite inmer product on the space

&k of all meromorphic modular forms. One application of the new regularization is a

formula relating the higher Green�s functions evaluated at CM‐points with the inner

product between certain distingu shed weight  2k meromorphic modular forms f_{Q}(Q\mathrm{a}
positive‐definite integral binary quadratic form) which generalize the cusp forms f_{k,D}
(D>0 a discriminant) which first occurred in Zagier�s paper [20] and were later used

by Kohnen and Zagier [12] to construct a kernel function for the Shimura [18] and

Shintani [19] lifts between integral and half‐integral weight modular forms.

2. PETERSSON INNER PRODUCTS

2.1. Holomorphic modular forms and their generalizations. Define the weight
2k slash action |_{2k} with a matrix M=(_{\mathrm{c}d}^{ab} ) \in \mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) by

f|_{2k}M(z) :=(cz+d)^{-2k}f (Mz),
where M acts on \mathbb{H} via fractional linear transformations. A weight 2k (holomorphic)
modular form (on \mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) ) is a function f : \mathbb{H}\rightarrow \mathbb{C} for which the following hold.

(1) For all M\in \mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) , we have

f|_{2k}M=f . (2.1)

(2) The function f is holomorphic on \mathbb{H}.

(3) The function f has a Fourier expansion of the type

f(z)=\displaystyle \sum_{n\geq 0}a_{f}(n)e^{2 $\pi$ inz} . (2.2)

If a_{f}(0)=0 , then we call f a cusp form.
More generally, if we replace condition (2) with meromorphicity (resp. holomor‐

phicity) and condition (3) with Fourier expansions (2.2) with the weaker restriction

 n\gg-\infty , then we obtain the definition for meromorphic modular forms (resp. weakly
holomorphic modular forms). Later in the paper, we will even replace condition (2)
with the property that  f is real analytic and annihilated by a certain differential op‐
erator \triangle_{2k} called the weight 2k hyperbolic Laplacian (see (3.4)); in this case, the

coefficients a_{f}(n) in (2.2) are replaced with coefficients a_{f}(y;n) which may depend
on the imaginary part y of z and there is not restriction on n (i.e., n \in \mathbb{Z}). Doing
so (replacing (2) with annihilation by $\Delta$_{2k} ) \mathrm{y}.elds the definition of a special class of

non‐holomorphic modular forms known as harmonic Maass forms. Analogously to the

change in condition (2) from holomorphic modular forms to meromorphic modular

forms, for non‐holomorphic modular forms we may also allow (not necessarily mero‐

morphic) singularities in the upper half‐plane or at cusps. This final class of forms are

called polar harmonic Maass forms.
In all of the above generalizations, the one property which has remained unchanged

is (2.1). This is the main essence of the definition. Of course, there are generalizations
where the condition M\in \mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) is restricted to  M\in $\Gamma$ for some subgroup  $\Gamma$\subseteq \mathrm{S}\mathrm{L}_{2}(\mathrm{Z})
and one can slightly augment the definition of the slash operator |_{2k} (for example,
allowing a character) or allow k\in \mathbb{Q}, k\in \mathbb{R} or even k\in \mathbb{C} , but essentially these changes
do not modify (2.1). The condition (2.1) is thus aptly called weight 2k modularity.
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2.2. Definition of the inner product. Considering the variables z and 7 as inde‐

pendent variables, note that for a weight 2k modular form f(z) , the function \overline{f(z)}
satisfies weight 2k modularity as a function of 7. Furthermore, writing z=x+iy\in \mathbb{H},
the function y^{2k} satisfies simultaneous weight -2k modularity in both z and 2 because

{\rm Im}(Mz)={\rm Im}(\displaystyle \frac{az+b}{cz+d}) =\frac{{\rm Im}((az+b)(c\overline{z}+d))}{|cz+d|^{2}}=\frac{y}{|\mathrm{c}z+d|^{2}},
where we used the fact that ad‐bc =1.

Petersson [14] then realized that, for functions f and g satisfying (2.1) (i.e., satisfying
modularity) for \mathfrak{N}M\in \mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) , the function

f(z)\overline{g(z)}y^{2k}
is \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})‐invariant. Moreover, the metric

\displaystyle \frac{dxdy}{y^{2}}
is also \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})‐invariant. Hence the integral

\displaystyle \{f, g\rangle :=\int_{\mathrm{S}\mathrm{L}_{2}(\mathrm{Z})\backslash \mathbb{H}}f(z)\overline{g(z)}y^{2k}\frac{dxdy}{y^{2}} (2.3)

is well‐defined whenever it converges absolutely. Using bounds for cusp forms (in
particular, they exponentially decay as  y\rightarrow\infty), one can show that the integral (2.3)
converges absolutely for  f,g \in  S_{2k} . This exponential decay also suffices to show

convergence when taking the inner product between f\in S_{2K} and the Eisenstein series

E_{2k} defined in (1.1).

2.3. Petersson coefficient formula. The Petersson coefficient formula uses an ex‐

plicit evaluation of the inner product to compute the Fourier coefficients (in the expan‐
sion (2.2)) of modular forms. To describe this result, we require the classical Poincaré

series (see [16, 17])

P_{2k,m}(z):=\displaystyle \sum_{M\in$\Gamma$_{\infty}\backslash \mathrm{S}\mathrm{L}_{2}(\mathrm{Z})}$\varphi$_{m}|_{2k}M(z) , (2.4)

where k\in \mathrm{N}_{\geq 2} and for m\in \mathbb{Z}

$\varphi$_{m}(z):=e^{2 $\pi$ irnz}.
These converge locally and absolutely uniformly. For m =0 , the Poincaré series is

precisely the Eisenstein series (1.1), while for m > 0 we have P_{2k,m} \in  S_{2k} and for

m<0 we have P_{2k,m}\in M_{2k}^{!}.
Theorem 2.1 (Petersson coefficient formula). If f\in S_{2k} and m\in \mathrm{N}, then

\displaystyle \{f, P_{2k,rn}\rangle=\frac{(2k-2)!}{(4 $\pi$ m)^{2k-1}}a_{f}(m) .

Sketch of proof. Plugging in the definition (2.4) of the Poincaré series P_{2k,m} and choos‐

ing a fundamental domain \mathcal{F} for \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})\backslash \mathbb{H}(\mathrm{a} �nice� connected set of representatives
z\in \mathbb{H} of the orbits of \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})\backslash \mathbb{H} under fractional linear transformations), we unfold
the integral on the left‐hand side by rewriting (formally, but this is valid because of

the exponential decay of cusp forms towards the cusps)
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\displaystyle \int_{\mathrm{S}\mathrm{L}_{2}(\mathrm{Z})\backslash \mathbb{H}}f(z)\sum_{M\in$\Gamma$_{\infty}\backslash \mathrm{S}\mathrm{L}_{2}(\mathrm{Z})}(c^{\frac{r}{z}}+d)^{2k}y^{2k}\frac{dxdy}{y^{2}}\overline{$\varphi$_{n}(Mz)}
=\displaystyle \sum_{M\in$\Gamma$_{\infty}\backslash \mathrm{S}\mathrm{L}_{2}(\mathrm{Z})}\int_{F}f(Mz)$\varphi$_{n\mathrm{z}}(Mz){\rm Im}(Mz)^{2k}\frac{dxdy}{y^{2}}
=\displaystyle \sum_{M\in$\Gamma$_{\infty}\backslash \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})}\int_{MF}f(z)$\varphi$_{m}(z)y^{2k}\frac{dxdy}{y^{2}}=\int_{$\Gamma$_{\infty}\backslash \mathbb{H}}f(z)\overline{$\varphi$_{m}(z)}y^{2k}\frac{dxdy}{y^{2}} . (2.5)

Since the fundamental domain for $\Gamma$_{\infty}\backslash \mathbb{H} is very simple, this unfolding argument results

in the double integral

\displaystyle \int_{0}^{\infty}\int_{0}^{1}f(z)\overline{$\varphi$_{m}(z)}y^{2k}\frac{dxdy}{y^{2}}.
The integral over x essentially picks off the mth coefficient and then explicitly com‐

puting the integral over y yields the claim. \square 

2.4. Orthogonal splitting. The inner product on S_{2k} is positive‐definite. Hence,
by the Gram‐Schmidt process, one can construct an orthonormal basis. A particular
choice of the basis elements turns out to be very natural.

There are certain operators T_{n} known as the Hecke operators and defined for each

n\in \mathrm{N} by (these are normalized differently in different books and papers for various

purposes, but the normalization is not important for the discussion at hand)

f|{}_{2k}T_{n}:=\displaystyle \sum_{M\in \mathrm{S}\mathrm{L}_{2}(\mathrm{Z})\backslash \mathcal{M}_{n}}f|_{2k}M,
where  $\Lambda$ t_{n} denotes the set of 2\times 2 integral matrices with determinant n . The Hecke

operators commute and are Hermitian with respect to the Petersson inner product. By
the Spectral Theorem, one may therefore diagonalize to obtain simultaneous eigenfunc‐
tions under \mathrm{a}\mathrm{U}T_{n} . These simultaneous eigenfunctions are known as Hecke eigenforms.
The Hecke eigenforms f \in  S_{2k} are often normalized to have a_{f}(1) = 1 , but another

natural normalization to take is \Vert f\Vert^{2}=1 ,
where the Petersson norm \Vert\cdot\Vert^{2} was defined

in (1.2). The Hecke operators satisfy what is known as multiplicity one, which means

that the eigenspaces of simultaneous eigenfunctions under all Hecke operators are all

one‐dimensional (indeed, they satisfy a much stronger condition known as strong mul‐

tiplicity one). Hence, for two distinct Hecke eigenforms f,g\in S_{2k} , there exists n\in \mathrm{N}

for which the eigenvalues $\lambda$_{f}(n) and $\lambda$_{g}(n) differ. However, since the Hecke operators
are Hermitian, we have

$\lambda$_{f}(n)\langle f,g\rangle=\langle$\lambda$_{f}(n)f,g\rangle=\{f|_{2k}T_{n},g\rangle=(f,g|_{2k}T_{n}\rangle=\{f, $\lambda$_{g}(n)g\rangle=$\lambda$_{g}(n)\langle f,g\rangle.
Since $\lambda$_{f}(n) \neq $\lambda$_{g}(n) , this leads to a contradiction if \langle f,g } \neq  0 . We thus conclude

that f and g are orthogonal to each other. Hence the splitting of S_{2k} into eigenspaces
precisely yields the orthogonal splitting, with the orthonormal basis given by the Hecke

eigenforms normalized such that \Vert f\Vert^{2}=1.
We note that the other normalization a_{f}(1)=1 is also natural. Under this normal‐

ization (and appropriately normalizing the Hecke operators), the coefficients a_{f}(n) and

the eigenvalues $\lambda$_{f}(n) coincide. This realization �de‐mystifies� the coefficients of the

Hecke eigenforms and plays an important role in understanding Fourier expansions.
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3. INNER PRODUCTS FOR WEAKLY HOLOMORPHIC MODULAR FORMS

3.1. The regularization of Petersson, Harvey‐Moore, and Borcherds and its

extension. For f, g\in M_{2k}^{!} , the integral (2.3) generally diverges. Petersson established

a Cauchy principal value for the integral as a partial solution to this problem. Firstly,
one chooses a specific fundamental domain for \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})\backslash \mathbb{H} . We choose the standard

fundamental domain (for simplicity, we take the closed fundamental domain; this is

easier to write down, but technically there are points on the boundary which are

\mathrm{S}\mathrm{L}_{2}(\mathbb{Z})‐equivalent; however, since we will ultimately integrate over it and the boundary
is a measure zero set, this is irrelevant for our consideration)

\displaystyle \mathcal{F}:=\{z\in \mathbb{H}:|z|\geq 1, -\frac{1}{2}\leq x\leq\frac{1}{2}\}.
Instead of integrating over \overline{Jr} in (2.3), we integrate over a cut‐off fundamental domain

whose closure does not include the cusp on the boundary of the chosen fundamental

domain. In our case, the cusp is  i\infty and the cut‐off fundamental domain is given by

\displaystyle \mathcal{F}_{T}:=\{z\in \mathbb{H}:|z|\geq 1, y\leq T, -\frac{1}{2}\leq x\leq\frac{1}{2}\}.
For f,g\in M_{2k}^{!} , Petersson then defined the regularized inner product (see [15])

\displaystyle \{f,g\rangle := $\tau$\rightarrow\infty \mathrm{h}\mathrm{m}\'{I}_{\mathcal{F}_{T}}f(z)\overline{g(z)}y^{2k}\frac{dxdy}{y^{2}} . (3.1)

The key to the above regularization is that it essentially gives an ordering to the

integrals over x and y.
This construction was further independently rediscovered and extended by Harvey‐

Moore [11] and Borcherds [2] by multiplying the integrand by y^{S} for some s \in \mathbb{C}

with {\rm Re}(s) \gg 0 and then taking the constant term of the Laurent expansion of the

meromorphic continuation (in s) at s=0.

One can use the regularized inner product to show that for m<0 the Poincaré series

P_{2k,m} , defined in (2.4), is orthogonal to cusp forms. This was shown by Petersson in a

much more general setting in [15, Satz 4].
The regularization of Petersson /\mathrm{H}\mathrm{a}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{y}‐Moore/Borcherds does not always converge,

however. In particular, Petersson found a necessary and sufficient condition for his

regularization (3.1)\mathrm{t}\mathrm{o} converge (see [15, Satz 1]) and Petersson norms once again pose a

problem, as they did for the Eisenstein series. This problem has been recently resolved

by Bringmann, Diamantis, and Ehlen [3], who were able to extend the regularization
in a way so that the inner product \langle f,  g\rangle is well‐defined and finite for all  f, g\in M_{2k}^{!}.
We do not give any of the technical details here, but the reader is encouraged to look

at [3, Section 3, and in particular Theorem 3.2].

3.2. Theta lifts. The inner product has been used by many authors (for example, in

[2] and [6]) to obtain theta lifts from modular forms of one type to modular forms of

another type. To give a rough idea, one defines a two‐variable theta function  $\Theta$(z, $\tau$)
which is modular in both variables (one calls this function the theta kernel), but which

satisfies a different kind of modularity in each variable (for example, suppose that it

satisfies weight 2k modularity as a function of z and weight k+1/2 modularity as \mathrm{a}

25



function of  $\tau$). Taking the inner product in one variable against another function  f
satisfying the same type of modularity then yields a new function in the other variable

satisfying the other type of modularity. In other words, in the example above, if f
satisfies weight 2k modularity, then

 $\Phi$(f)( $\tau$):=\langle $\Theta$(\cdot,  $\tau$) , f\rangle
satisfies weight  k+1/2 modularity. This yields a theta lift  $\Phi$ from weight  2k modular
forms to weight k+1/2 modular forms. The example illustrated above is Shintani�s
construction [19] of his lift from integral weight to half‐integral weight modular forms

and the lift in the opposite direction can be shown to be one of Shimura�s lifts [18]
from half‐integral weight to integral weight (see [13] and [12] for two alternative options
for the theta kernel). Note: although we do not define half‐integral weight modular

forms here, one may simply think of these as generalizations of modular forms where

the slash operator is slightly augmented to resolve the issue that the square root is

multi‐valued and then modularity is again defined by (2.1).
Lifts from �simpler� spaces with special properties often yield strange or exceptional

modular forms which can be used to understand or narrow down conjectures that are

often precisely fake on the image or pre‐image of such lifts. For example, the \mathrm{S}}\mathrm{u}mura

lift generally sends cusp forms to cusp forms, but there is an exceptional class of

forms known as unary theta functions in weight 3/2 which are cusp forms but whose

image under the Shimura hft is an Eisenstein series. These unary theta functions are

also counter‐examples to the Ramanujan‐Petersson conjecture, which states that the

coefficients of weight  $\kappa$\displaystyle \in\frac{1}{2}\mathbb{Z} cusp forms f satisfy

|a_{f}(n)|\ll f, $\epsilon$ n^{\frac{ $\kappa$-1}{2}+ $\epsilon$}.
The coefficients of the unary theta functions grow like n^{1/2} , contradicting the conjec‐
ture in this wide of generality. However, for integral weight cusp forms f \in  S_{2k},
the conjecture is a celebrated result of Deligne [7] and it is conjectured that the

Ramanujan‐Petersson conjecture holds in half‐integral weight as long as f is orthog‐
onal to unary theta functions.

3.3. Computation of the inner product by the Brunier‐Funke pairing. For

f,g\in M_{2k}^{!} , we next describe a way to compute the inner product between these two

forms. There is a natural function G satisfying weight 2-2k associated with g . The

inner product between f and g is then given by a pairing between the function G and

f given by

\displaystyle \{f, G\} :=\sum_{n\in \mathrm{Z}}a_{f}(-n)a_{G}^{+}(n) , (3.2)

where a_{G}^{+}(n) is the nth coefficient of the holomorphic part of the Fourier expansion
(which has the same shape as (2.2)). In particular, we have

\{f,g\}=\{f, G\} . (3.3)
The pairing is useful for computing inner products because only finitely many terms

in (3.2) are non‐zero.

Roughly speaking, the pairing is shown by using Stokes Theorem to evaluate the

integral instead of the unfolding method described in Section 2.3. When applying
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Stokes Theorem, a pre‐image G of g under the operator $\xi$_{2-2k} :=2iy^{2-2k}\overline{\frac{\partial}{z}} naturally
appears. Since g is weakly holomorphic, we have

$\Delta$_{2-2k}(G)=-$\xi$_{2k}(g)=0,
where

$\Delta$_{2-2k}:=-$\xi$_{2k}0$\xi$_{2-2k} (3.4)
is the weight 2-2k hyperbolic Laplacian. Therefore, the pre‐image G is what is known

as a weight 2-2k harmonic Maass form (i.e., it satisfies weight 2-2k modularity, it

is annihilated by $\Delta$_{2-2k} , and it grows at most linear exponentially towards the cusps).
The pairing was first introduced by Bruinier and Funke in [6]. Its connection to

inner products defined as regularized integrals was then realized in a number of cases

by many authors and one may interpret the recent results in [3] as \mathrm{g}.ving an analytic
interpretation via a regularized integral for the Bruinier‐Funke pairing in the general
case for any arbitrary f,g\in M_{2k}^{1}.

4. INNER PRODUCTS FOR MEROMORPHIC MODULAR FORMS

We would now like to define an inner product on arbitrary meromorphic modular

forms f,g\in S_{2k} . However, an arbitrary meromorphic modular form f\in \mathcal{S}_{2k} may be

decomposed into two pieces, one of which only has poles at the cusps ( \mathrm{i}.\mathrm{e}. , it is in M_{2k}^{1} )
and one of which only has poles in the upper half‐plane (vanishing towards all cusps);
we can forms of the second type weight 2k meromorphic cusp forms and denote the

subspace of such forms by \mathrm{S}_{2k} . It thus essentially suffices to consider inner products
between forms f,g \in \mathrm{S}_{2k} (technically, we also have to take inner products between

forms f\in M_{2k}^{!} and g\in \mathrm{S}_{2k} , but hybrid approaches for the regularizations will work

in full generality and we ignore the details here).

4.1. Regularization of Petersson. The idea that Petersson used to generalize (2.3)
is very similar to the idea used in the regulaxization(3.1). Instead of cutting off the

fundamental domain away from  i\infty , one cuts out small neighborhoods around each

pole 3 of  f or g and then shrinks the hyperbolic volume of the neighborhoods to zero

in a limit. In particular, for 3\in \mathbb{H} define the ball

\mathcal{B}_{ $\epsilon$}(3):=\{z\in \mathbb{H}:r_{f}(z)< $\epsilon$\},
where r_{t}(z) :=|X_{t}(z)| with

X_{s}(z):=\displaystyle \frac{z- $\delta$}{z-\overline{3}}.
The functions r_{3}(z) are naturally connected to the hyperbolic distance d(z,3) between

z and 3=\mathfrak{z}_{1}+i_{f2} in \mathbb{H} via the formula

r_{t}(z)=\displaystyle \tanh(\frac{d(z,f)}{2}) ;

recall that the hyperbolic distance may be expressed through (see p. 131 of [1])

\cosh (d(z , ồ) )=1+\displaystyle \frac{|_{Z-f}|^{2}}{2y32} . (4.1)

Let [z1], .. . , [z_{r}] \in \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{Z})\backslash \mathbb{H} be the distinct \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})‐equivalence classes of all of

the poles of f,g\in \mathrm{S}_{2k} and choose a fundamental domain \mathcal{F}^{*} such that all z_{\ell} he in the
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interior of $\Gamma$_{z\ell}\mathcal{F}^{*} , where $\Gamma$_{\`{i}} is the stabilizer of  $\delta$ in \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) . Petersson�s regularized
inner product is then defined by

\langle f,g\rangle:=$\epsilon$_{1},\ldots,$\epsilon$_{r}\rightarrow 0+1\dot{\mathrm{m}}\`{I}_{\mathcal{F}^{*}\backslash (\bigcup_{l=1}^{r}B_{ $\epsilon$ p}(z\ell))^{f(z)\overline{g(z)}y^{2k}\frac{dxdy}{y^{2}}}} . (4.2)

A necessary and sufficient condition for the convergence of the regularization (4.2)
is given in [15, Satz 1]. Furthermore, certain Poincaré series related to the elliptic
expansions (Petersson proved an elliptic coefficient formula as well; cf. [15, Satz 9])
with poles in the upper half‐plane were also shown to be orthogonal to cusp forms in

[15, Satz 7]. Once again, Petersson�s necessary and sufficient condition implies that

his regularization diverges in particular when evaluating Petersson norms for elements
of \mathrm{S}_{2k} which are not cusp forms.

4.2. A new regularization. Since Petersson�s regularization still sometimes diverges,
one requires a further regularization; we recall the construction from [5]. Roughly
speaking, the integrand in (2.3) is multiplied by an \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})‐invariant function H_{s}( $\tau$)
which removes the poles of the integrand whenever {\rm Re}(s) is sufficiently large. We then

take the constant term of the Laurent expansion around s=0 to be our regularization.
To be more precise, let [z1], \cdots , [z_{r}] \in \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{Z})\backslash \mathbb{H} be the distinct \mathrm{S}\mathrm{L}_{2}(\mathbb{Z})‐equivalence
classes of all of the poles of f and g and define

(f,g\displaystyle \rangle:=\mathrm{C}\mathrm{T}_{s\triangleleft}-(\int_{\mathrm{S}\mathrm{L}_{2}(\mathrm{Z})\backslash \mathrm{r}\mathrm{i}}f(z)H_{s}(z)\overline{g(z)}y^{2k}\frac{dxdy}{y^{2}}) , (4.3)

where

H_{s}(z)=H_{s $\epsilon$ zz_{r}}1,\displaystyle \ldots,r,1,\ldots,(z):=\prod_{\ell=1}^{r}h_{s\ell,z_{l}}(z) .

Here

h_{$\epsilon$_{\ell},z_{l}}(z):=r_{z_{\ell}}^{28\ell}(Mz) ,

with M\in \mathrm{S}\mathrm{L}_{2}(\mathrm{Z}) chosen such that Mz\in \mathcal{F}^{*} . Moreover CT,=0 denotes the constant

term in the Laurent expansion around s_{1} = s_{2} =\cdots = s_{r} =0 of the meromorphic
continuation (if existent).

In the same sense that the results in [3] may be viewed as an analytic definition

for a regularized inner product satislYing the Bruinier‐IMnke pairing for arbitrary
f, g \in  M_{2k}^{1} , the above regularization may be viewed as an analytic definition for a

regularized integral giving a similar pairing for all f,g \in \mathrm{S}_{2k} . However, instead of

defining the pairing via the Fourier expansions, the pairing is defined via the elliptic
expansions of f and a weight 2-2k polar harmonic Maass form (i.e., a harmonic

Maass form with singularities in the upper half‐plane) G which is a preimage of g

under the  $\xi$‐operator. To describe the pairing, the elliptic expansion of  f\in \mathrm{S}_{2k} around

f\in \mathbb{H} is given by

f(z)=(z-\displaystyle \overline{f})^{-2k}\sum_{n\gg-\infty}a_{f_{3}},(n)X_{f}^{n}(z) . (4.4)

For the polar harmonic Maass form G , we again denote the coefficients of its mero‐

morphic part (i.e., of the form in (4.4)) by a_{G_{J}}^{+},(n) .
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Denoting 32 :={\rm Im}(f) and writing $\omega$_{t} for the size of the stabilizer $\Gamma$_{3} of 3 in \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) ,
the pairing is given by (see [4, Proposition 6.1])

\displaystyle \{f, G\}:=\sum_{\mathrm{r}\in \mathrm{S}\mathrm{L}_{2}(\mathrm{Z})\backslash \mathbb{H}}\frac{ $\pi$}{32$\omega$_{ $\delta$}}\sum_{n\in \mathrm{Z}}a_{f,f}(n)a_{G}^{+} ,ồ (-n-1) . (4.5)

It is again important to emphasize that the pairing gives a formula for the inner

product with only finitely many coefficients in (4.5) non‐zero. In comparison, Petersson

evaluated his inner product (3.1) (resp. (4.2)) on [15, pages 42−43] via the Fourier

(res. elliptic) coefficients of the forms f and g themselves, but his evaluation is given
as an infinite sum, so one can only obtain an approximation for the inner product
by computing the Fourier (resp. elliptic) coefficients. In other words, Petersson�s

constructions are better in the sense that they are given in terms of the coefficients of

the original functions, while one is required to introduce new functions to determine

(3.2) and (4.5), but the sums in these pairings are instead finite.

4.3. Higher Greens functions. The regularization (4.3) was used in [5] to compute
the inner product between

f_{Q}(z)=f_{k,-D,[Q]}(z):=D^{\frac{k}{2}}\displaystyle \sum_{Q\in[Q]}\mathcal{Q}(z, 1)^{-k}
for positive‐definite integral binary quadratic forms Q of discriminant -D . These are

weight 2k meromorphic modular forms which have poles of order k at the unique zero

$\tau$_{Q} of Q in \mathbb{H} . The evaluation of the inner product between two such functions is done

by again ưm\mathrm{g} Stokes Theorem to rewrite the inner product as the pairing (4.5) in

terms of the elliptic coefficients of f_{Q} and the elliptic coefficients of the meromorphic
part of a polar harmonic Maass form g_{Q} associated with f_{Q} via the  $\xi$‐operator. It

then remains to explicitly compute the elliptic coefficients occurring in (4.5).
In particular, choosing two such binary quadratic forms  Q and \mathcal{Q} , the inner product

between f_{Q} and f_{Q} is related to the higher Green�s function G_{k} : \mathbb{H}\times \mathbb{H}\rightarrow \mathbb{C} , which

is uniquely characterized by the following properties:

(1) G_{k} is a smooth real‐valued function on \mathbb{H}\times \mathbb{H}\backslash \{(z, $\gamma$ z)| $\gamma$\in $\Gamma$, z\in \mathbb{H}\}.
(2) For  $\gamma$_{1},$\gamma$_{2}\in $\Gamma$ , we have  G_{k}($\gamma$_{1}z,$\gamma$_{2f)}=G_{k}(z, $\delta$) .

(3) Denoting $\Delta$_{0,z} :=-4y^{2}\displaystyle \frac{\partial}{\partial z}\frac{\partial}{z} ) we have

$\Delta$_{0,z}(G_{k}(z,3))=$\Delta$_{0_{i}},(G_{k}(z, $\delta$))=k(1-k)G_{k}(z, $\delta$) .

(4) As z\rightarrow 3

G_{k}(z, $\delta$)=2$\omega$_{f}\log(r_{f}(z))+O(1) .

(5) As z approaches a cusp, G_{k}(z, $\delta$)\rightarrow 0.
These higher Green�s functions have a long history, appearing as special cases of the

resolvent kernel studied by Fay [8] and investigated thoroughly by Hejhal in [10], for

example. Gross and Zagier [9] conjectured that their evaluations at CM‐points are

essentially logarithms of algebraic numbers, which has been since proven in a number

of cases. To state the connection with inner products, let  $\beta$(a, b) :=\displaystyle \int_{0}^{1}t^{a-1}(1-t)^{b-1}dt
be the beta function, and let \mathcal{Q}_{-D} denote the set of positive‐definite integral binary
quadratic forms of discriminant -D<0 . Evaluating the elhptic coefficients in (4.5)
for f_{Q} and g_{Q} then yields the following theorem.
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Theorem 4.1 (Theorem 1.5 of [5]). For  Q\in \mathcal{Q}_{-D_{1}} and \mathcal{Q}\in \mathcal{Q}_{-D_{2}} (-D_{1}, -D_{2} <0

discriminants) with [$\tau$_{Q}]\neq[$\tau$_{Q}]_{f} we have

\displaystyle \{f_{Q}, f_{Q}\rangle=-\frac{ $\pi$(-4)^{1-k}}{(2k-1) $\beta$(k,k)}\frac{G_{k}($\tau$_{Q},$\tau$_{Q})}{$\omega$_{$\tau$_{Q}}$\omega$_{$\tau$_{Q}}}.
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